This application is a National Stage of International Application No. PCT/JP14/63470 filed May 21, 2014, which claims the benefit of Japanese Patent Application No. 2013-109156, filed May 23, 2013.
The present invention relates to a spark plug.
Conventionally, a spark plug is used in an internal combustion engine. The configuration of the spark plug generally includes a center electrode and a ground electrode. The center electrode and the ground electrode form the gap for causing a spark.
Improving the durability of the spark plug suppresses various malfunctions thereby reducing maintenance of the internal combustion engine. In this respect, the durability of the spark plug can be affected by various factors. For example, during the operation of the internal combustion engine, an increase in temperature of the electrode might cause electrode wear. The advance of the electrode wear might not allow the spark plug to provide the intended performance (for example, causes an ignition failure).
An advantage of the present invention is a new technique that improves the durability of the spark plug.
The present invention has been conceived to solve the above-mentioned problems, and can be realized as the following application examples.
In accordance with a first aspect of the present invention, there is provided a spark plug having a center electrode, an insulator, a metal shell, a first ground electrode, and a second ground electrode. The center electrode extends in an axial direction. The insulator has an axial hole extending in the axial direction. The center electrode is to be inserted into the axial hole. The metal shell is arranged at an outer periphery of the insulator. The first ground electrode has electrical continuity with the metal shell. The first ground electrode forms a first gap with a front end surface of the center electrode. The second ground electrode has electrical continuity with the metal shell. The second ground electrode is sealed to metal shell. The second ground electrode extends from the metal shell to a position facing a side surface of the center electrode. The second ground electrode forms an annular second gap between the side surface of the center electrode and an inner peripheral surface of the second ground electrode. A proportion of a size of the first gap to a size of the second gap is equal to or more than 0.80 and equal to or less than 1.25.
With this configuration, both the first ground electrode and the second ground electrode are used for discharge. This allows improving the durability of the spark plug.
In accordance with a second aspect of the present invention, there is provided a spark plug according to the application example 1, wherein the first ground electrode includes a first nickel portion that is a portion formed by nickel or a nickel alloy. The first nickel portion has a nickel content of 90 weight % or more. The second ground electrode includes a second nickel portion that is a portion formed by nickel or a nickel alloy. The second nickel portion has a nickel content of 90 weight % or more.
With this configuration, respective thermal conductivities of the first ground electrode and the second ground electrode are improved. This allows suppressing the wear of the first ground electrode and the second ground electrode due to high temperature.
In accordance with a third aspect of the present invention, there is provide a spark plug according to the application example 1 or 2, wherein at least one of the first ground electrode and the second ground electrode includes: a surface layer that forms a surface thereof; and a core portion that is formed inside of the surface layer and has a larger thermal conductivity than a thermal conductivity of the surface layer.
With this configuration, the thermal conductivity is improved by the core portion. This allows suppressing the wear of the ground electrode due to high temperature.
In accordance with a fourth aspect of the present invention, there is provided a spark plug according to the application example 3, wherein the first ground electrode is sealed to the second ground electrode.
With this configuration, the temperature of the first ground electrode is likely to increase compared with the case where the first ground electrode is sealed directly to the metal shell. However, the thermal conductivity is improved by the core portion. This allows suppressing the wear of the ground electrode due to high temperature.
In accordance with a fifth aspect of the present invention, there is provided a spark plug according to any one of the application examples 1 to 4, wherein a shortest distance between a surface of the second ground electrode and a surface of the insulator is twice or more as large as a maximum value between the size of the first gap and the size of the second gap.
This configuration allows suppressing occurrence of discharge along the surface of the insulator even in the case where the first gap and the second gap are large due to the wear of the ground electrode. Accordingly, the durability of the spark plug can be improved.
In accordance with a sixth aspect of the present invention, there is provided a spark plug according to any one of the application examples 1 to 5, wherein the first ground electrode includes a first noble metal portion that is formed by a noble metal or a noble metal alloy in a position forming the first gap. The second ground electrode includes a second noble metal portion that is formed by a noble metal or a noble metal alloy in a position forming the second gap. In the center electrode, at least a first portion and a second portion are formed by a noble metal or a noble metal alloy. The first portion forms the first gap with the first noble metal portion. The second portion forms the second gap with the second noble metal portion.
This configuration allows suppressing the wear of each of the center electrode, the first ground electrode, and the second ground electrode.
In accordance with a seventh aspect of the present invention, there is provided a spark plug according to the application example 6, wherein the noble metal or the noble metal alloy is iridium or an iridium alloy.
This configuration allows appropriately suppressing the wear of each of the center electrode, the first ground electrode, and the second ground electrode.
Here, the present invention can be realized by various forms, for example, can be realized in a form of a spark plug, an internal combustion engine on which the spark plug is mounted or similar form.
The spark plug 100 includes a ceramic insulator 10, the center electrode 20, the first ground electrode 30, the second ground electrode 90, a terminal metal fitting 40, a metal shell 50, a conductive seal 60, a resistor element 70, a conductive seal 80, a front-end-side packing 8, a talc 9 as one example of a buffer, a first rear-end-side packing 6, and a second rear-end-side packing 7. The right side in the drawing shows an expansion (i.e., enlarged) figure of the cross section of the portions forming gaps g1 and g2 described later in the center electrode 20, the first ground electrode 30, and the second ground electrode 90 viewed from another direction.
The ceramic insulator 10 is an approximately cylindrically-shaped member with a through hole 12 (an axial hole). The through hole 12 extends along the central axis CL so as to pass through the ceramic insulator 10. The ceramic insulator 10 is formed by sintering alumina (another insulating material can also be adopted). The ceramic insulator 10 includes a nose portion 13, a first outer-diameter contracted portion 15, a front-end-side trunk portion 17, a flange portion 19, a second outer-diameter contracted portion 11, and a rear-end-side trunk portion 18 that are arranged from the front end side toward the rear end side in this order.
The flange portion 19 is the portion positioned approximately in the center of the axial direction of the ceramic insulator 10, and is the maximum outer diameter portion of the ceramic insulator 10. On the front end side of the flange portion 19, the front-end-side trunk portion 17 is disposed. On the front end side of the front-end-side trunk portion 17, the first outer-diameter contracted portion 15 is disposed. The outer diameter of the first outer-diameter contracted portion 15 gradually decreases from the rear end side toward the front end side. On the front end side of the first outer-diameter contracted portion 15, the nose portion 13 is disposed. In the state where the spark plug 100 is installed on an internal combustion engine (not shown), the nose portion 13 is exposed to a combustion chamber.
On the rear end side of the flange portion 19, the second outer-diameter contracted portion 11 is disposed. The outer diameter of the second outer-diameter contracted portion 11 gradually decreases from the front end side toward the rear end side. On the rear end side of the second outer-diameter contracted portion 11, the rear-end-side trunk portion 18 is disposed.
Into the front end side of the through hole 12 of the ceramic insulator 10, the center electrode 20 is inserted. The center electrode 20 is a rod-shaped member that extends along the central axis CL. The center electrode 20 includes an electrode base material 21, a core material 22, and a column-shaped tip 28. The core material 22 is buried inside of the electrode base material 21. The tip 28 is sealed to the front end side of the electrode base material 21, and has the center on the central axis CL. The rear end portion of the core material 22 is exposed from the electrode base material 21 so as to form the rear end portion of the center electrode 20. The other portion of the core material 22 is coated with the electrode base material 21. However, the entire core material 22 may be covered with the electrode base material 21. The electrode base material 21 is formed by using, for example, an alloy containing nickel. The core material 22 is formed of, for example, an alloy containing copper. The tip 28 is formed of an alloy containing iridium (however, another conductive material (for example, a metallic material) can also be adopted). The tip 28 is sealed to the electrode base material 21 by, for example, laser beam welding. A part of the rear end side of the center electrode 20 is arranged within the through hole 12 of the ceramic insulator 10. A part of the front end side of the center electrode 20 is exposed on the front end side of the ceramic insulator 10.
Into the rear end side of the through hole 12 of the ceramic insulator 10, the terminal metal fitting 40 is inserted. The terminal metal fitting 40 is a rod-shaped member that extends along the central axis CL. The terminal metal fitting 40 is formed using low-carbon steel (however, another conductive material (for example, a metallic material) can also be adopted). The terminal metal fitting 40 includes a flange portion 42, a plug cap installation portion 41, and a nose portion 43. The plug cap installation portion 41 forms the portion on the rear end side with respect to the flange portion 42. The nose portion 43 forms the portion on the front end side with respect to the flange portion 42. The plug cap installation portion 41 is exposed on the rear end side of the ceramic insulator 10. The nose portion 43 is inserted into the through hole 12 of the ceramic insulator 10.
In the through hole 12 of the ceramic insulator 10, the resistor element 70 is arranged between the terminal metal fitting 40 and the center electrode 20. The resistor element 70 reduces the radio wave noise during the occurrence of the spark. The resistor element 70 is formed by the composition containing glass particles such as B2O3—SiO2-based glass particles, ceramic particles such as ZrO2 ceramic particles, and a conductive material such as carbon particles and metal.
In the through hole 12, the clearance between the resistor element 70 and the center electrode 20 is filled with the conductive seal 60. The clearance between the resistor element 70 and the terminal metal fitting 40 is filled with the conductive seal 80. As a result, the center electrode 20 and the terminal metal fitting 40 electrically connect to each other via the resistor element 70 and the conductive seals 60 and 80. The conductive seal is formed using, for example, various glass particles described above and metal particles (such as Cu and Fe).
The metal shell 50 is a cylindrically-shaped metal shell for securing the spark plug 100 to an engine head (not shown) of the internal combustion engine. The metal shell 50 is formed using a low-carbon steel material (or another conductive material (for example, a metallic material) can also be adopted). In the metal shell 50, a through hole 59 is formed. The through hole 59 passes through along the central axis CL. The ceramic insulator 10 is inserted into the through hole 59 of the metal shell 50. The metal shell 50 is secured to the outer periphery of the ceramic insulator 10. The front end of the ceramic insulator 10 is exposed from the front end of the metal shell 50. The rear end of the ceramic insulator 10 is exposed from the rear end of the metal shell 50.
The metal shell 50 includes a body 55, a seal portion 54, a deformed portion 58, a tool engagement portion 51, and a crimp portion 53 that are arranged from the front end side toward the rear end side in this order. The shape of the seal portion 54 is approximately cylindrically shaped. On the front end side of the seal portion 54, the body 55 is disposed. The outer diameter of the body 55 is smaller than the outer diameter of the seal portion 54. On the outer peripheral surface of the body 55, a screw portion 52 is formed to be threadably mounted on the mounting hole of the internal combustion engine. Between the seal portion 54 and the screw portion 52, an annular gasket 5 is fitted by insertion. The gasket 5 is formed by folding a metal plate.
The body 55 of the metal shell 50 includes an inner-diameter contracted portion 56. The inner-diameter contracted portion 56 is arranged on the front end side with respect to the flange portion 19 of the ceramic insulator 10. The internal diameter of the inner-diameter contracted portion 56 gradually decreases from the rear end side toward the front end side. Between the inner-diameter contracted portion 56 of the metal shell 50 and the first outer-diameter contracted portion 15 of the ceramic insulator 10, the front-end-side packing 8 is sandwiched. The front-end-side packing 8 is made of steel, and is an O-shaped ring. Here, another material (for example, a metallic material such as copper) can also be adopted.
On the rear end side of the seal portion 54, the deformed portion 58 is disposed. The deformed portion 58 has a wall thickness thinner than that of the seal portion 54. The deformed portion 58 is deformed such that the center portion projects toward the outside in the radial direction (the direction away from the central axis CL). On the rear end side of the deformed portion 58, the tool engagement portion 51 is disposed. The shape of the tool engagement portion 51 is a shape (for example, a hexagonal prism) with which a spark plug wrench is engaged. On the rear end side of the tool engagement portion 51, the crimp portion 53 is disposed. The crimp portion 53 has a wall thickness thinner than that of the tool engagement portion 51. The crimp portion 53 is arranged on the rear end side with respect to the second outer-diameter contracted portion 11 of the ceramic insulator 10 so as to form the rear end of the metal shell 50. The crimp portion 53 is flexed to radially inside.
Between the inner peripheral surface of the portion on the rear end side of the metal shell 50 and the outer peripheral surface of the ceramic insulator 10, an annular space SP is formed. This space SP is a space formed by the inner peripheral surface of the metal shell 50 and the outer peripheral surface of the ceramic insulator 10 at a position between the crimp portion 53 and the second outer-diameter contracted portion 11. On the rear end side within this space SP, the first rear-end-side packing 6 is arranged. On the front end side within this space SP, the second rear-end-side packing 7 is arranged. In this embodiment, these rear-end-side packings 6 and 7 are C-shaped rings made of steel (another material can also be adopted). Between the two rear-end-side packings 6 and 7 within the space SP, the powders of the talc 9 are filled up.
The crimp portion 53 is crimped so as to be folded to the inside. Accordingly, the ceramic insulator 10 is pressed to the front end side within the metal shell 50 via the packings 6 and 7 and the talc 9. Thus, the front-end-side packing 8 is pressed between the first outer-diameter contracted portion 15 and inner-diameter contracted portion 56. The front-end-side packing 8 seals between the metal shell 50 and the ceramic insulator 10. The above-described configuration suppresses the gas inside of the combustion chamber of the internal combustion engine to leak to the outside through between the metal shell 50 and the ceramic insulator 10.
The first ground electrode 30 includes a base material 32 and a tip 38. The base material 32 is sealed to the front end of the metal shell 50. The tip 38 is sealed to a front end portion 31 of the base material 32. The base material 32 extends from the end sealed to the metal shell 50 toward the first direction D1, folded by approximately 90 degrees toward the central axis CL. The front end portion 31 is arranged on the front end side of the center electrode 20. The X direction Dx in the drawings is the direction vertical to the central axis CL from the sealed portion between the metal shell 50 and the base material 32 toward the central axis CL. The partial expansion figure in
The second ground electrode 90 includes a supporting portion 92 and a cylindrically-shaped tip 98 (also referred to as the “cylindrical tip 98”). The supporting portion 92 includes a hole forming portion 91 that forms a column-shaped through hole having the center on the central axis CL, and is sealed to the front end portion of the metal shell 50. The tip 98 is sealed to the inner peripheral surface of the hole forming portion 91, and has the center on the central axis CL. The cylindrical tip 98 is sealed to the inner peripheral surface of the hole forming portion 91 by, for example, brazing. The supporting portion 92 is sealed to the inner peripheral surface of the front end portion of the metal shell 50 (details will be described later). The supporting portion 92 is formed using a nickel alloy that contains nickel of 90 weight % or more. The cylindrical tip 98 is formed using an alloy that contains iridium. The inner peripheral surface of the cylindrical tip 98 of the second ground electrode 90 and the outer peripheral surface of the tip 28 of the center electrode 20 form an annular second gap g2.
Here,
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As described above, the first ground electrode 30 has the tip 38 formed of the noble metal alloy (specifically, the alloy containing iridium) in the position forming the first gap g1. The second ground electrode 90 has the cylindrical tip 98 formed of the noble metal alloy (specifically, the alloy containing iridium) in the position forming the second gap g2. In the center electrode 20, at least the portion forming the first gap g1 with the tip 38 (that is, the front end surface 28s1 of the tip 28) and the portion forming the second gap g2 with the cylindrical tip 98 (that is, the outer peripheral surface 28s2 of the tip 28) are formed of noble metal alloys (specifically, alloys containing iridium). Accordingly, this allows suppressing the wear of each of the center electrode 20, the first ground electrode 30, and the second ground electrode 90.
The following describes the first evaluation test using samples of the spark plug. In the first evaluation test, the relationship between: the ratio of the first gap size dg1 to the second gap size dg2, and the bias eccentricity of the number of discharges between the first gap g1 and the second gap g2 was evaluated. To evaluate this relationship, the first evaluation test employed test samples of the spark plug that includes a center electrode with the tip 28, a first ground electrode with the tip 38, and a second ground electrode with the cylindrical tip 98 (not shown). The configurations of the center electrode and the first ground electrode of the test samples are similar to the configurations of the center electrode 20 and the first ground electrode 30 in
The dimensions in common between the four samples used for the evaluation test are as follows.
The four samples are different in the first gap size dg1 from one another. The bent state of the first ground electrode (for example, a bend radius or similar state) is adjusted so as to adjust the first gap size dg1.
The testing method is as follows. The sample of the spark plug is arranged in a container for experiment filled with air. The internal pressure of the container is raised to 1 MPa. This pressure is determined assuming the pressure during ignition in the combustion chamber of the internal combustion engine. In this state, a voltage is applied to the sample of the spark plug to conduct a discharge. Every time a discharge is conducted, it is confirmed that the ground electrode that has caused a discharge is the first ground electrode or the second ground electrode by visual check. Hereinafter, the ground electrode that has caused the discharge is referred to as a “discharge ground electrode.” The discharge is repeatedly conducted so as to calculate the second discharge rate, that is, the rate of the number of discharges that have occurred between the center electrode and the second ground electrode to the number of all discharges.
As shown in table 1, the second discharge rate becomes higher as the gap ratio becomes larger. As the reason for this result, it is estimated that this is because a discharge is less likely to occur in the first gap g1 in the case where the gap ratio is large since the first gap size dg1 is larger than the second gap size dg2 compared with the case where the gap ratio is small. Specifically, as shown in Table 1, in the case where the gap ratio is 0.70, the second discharge rate is 30%. That is, the discharge ground electrode is biased to the first ground electrode. In the case where the gap ratio is 1.30, the second discharge rate is 70%. That is, the discharge ground electrode is biased to the second ground electrode. In the case where the gap ratio is 0.80, the second discharge rate is 45%. In the case where the gap ratio is 1.25, the second discharge rate is 55%. In these two cases, discharge occurs approximately equally between the first ground electrode and the second ground electrode.
Setting the gap ratio within the range of 0.80 or more and 1.25 or less allows approximately equally using both the first ground electrode and the second ground electrode for discharge. This consequently allows suppressing significant wear of one ground electrode compared with the other ground electrode, thus improving the durability of the spark plug. For example, stable discharges can be achieved over a long period of time.
Here, the test sample has the three tips 28, 38, and 98 that form the first gap g1 and the second gap g2 similarly to the spark plug 100 shown in
Here, the distance between the two discharging surfaces (here, the outer peripheral surface 28s2 of the tip 28 and the inner peripheral surface 98s of the cylindrical tip 98) that form the second gap g2 might change corresponding to the position on the discharging surface. For example, the displacement (particularly, the displacement in the direction perpendicular to the central axis CL) of the center electrode 20 might be larger than zero. Alternatively, the displacement of the second ground electrode 90 might be larger than zero. In the case where this displacement occurs, the distance between the two discharging surfaces 28s2 and 98s might change corresponding to the position on the discharging surface 28s2. In this case, it is only necessary to adopt the shortest distance between the two discharging surfaces (here, the two discharging surfaces 28s2 and 98s) that form the second gap g2 as the second gap size dg2. Similarly, the distance between the two discharging surfaces (here, the front end surface 28s1 of the tip 28 and the surface 38s of the tip 38) that form the first gap g1 might change corresponding to the position on the discharging surface. In this case, it is only necessary to adopt the shortest distance between the two discharging surfaces (here, the two discharging surfaces 28s1 and 38s) that form the first gap g1 as the first gap size dg1. The first gap size dg1 and the second gap size dg2 thus obtained are used to calculate a gap ratio (dg1/dg2). This gap ratio (dg1/dg2) is preferred to be within the range of 0.80 or more and 1.25 or less. This allows approximately equally using both the first ground electrode 30 and the second ground electrode 90 for discharge.
Here, the difference in likelihood of discharge between the first gap g1 and the second gap g2 is estimated to be caused mainly by the difference between the first gap size dg1 and the second gap size dg2. Accordingly, the above-described preferred range of the gap ratio is estimated to be applicable irrespective of the configuration other than the gap sizes dg1 and dg2. For example, the above-described preferred range is estimated to be applicable irrespective of the material (here, the material of the tip 28 and the material of the tip 38) of the portion that forms the first gap g1 in the electrode, the material (here, the material of the tip 28 and the material of the cylindrical tip 98) of the portion that forms the second gap g2 in the electrode, and the area of the portions that form the gaps g1 and g2 on the surfaces of the electrodes 20, 30, and 90.
The following describes the second evaluation test using samples of the spark plug. In the second evaluation test, the rate of occurrence of a creeping discharge in the spark plug (referred to as a “used spark plug”) after the operation of the internal combustion engine mounted with the sample of the spark plug for 1000 hours was measured.
The electrodes 20, 30, and 90 might wear by the operation for 1000 hours. Particularly, wear is likely to occur in the portion that causes a discharge, that is, the front end surface 28s1 of the tip 28, the outer peripheral surface 28s2 of the tip 28, the surface 38s of the tip 38, and the inner peripheral surface 98s of the tip 98.
In
The creeping discharge that might occur in the spark plug 100 in
In the second evaluation test, samples of four spark plugs with different shortest distances h were used to measure the rate of occurrence of the creeping discharge after the operation for 1000 hours. Table 2 below shows the measurement result.
In Table 2, an initial distance ratio (h/dg) is the ratio of the shortest distance h to the initial gap sizes dg1 and dg2 of the sample of the spark plug before use. The occurrence rate of the creeping discharge after use for 1000 hours is the rate of the number of creeping discharges with respect to the number of all discharges in the case where the sample of the spark plug after use for 1000 hours is used and discharge is repeated under the same condition as that of the first evaluation test. Whether or not the discharge was the creeping discharge was confirmed by visual check.
The dimensions in common between the four samples used for the evaluation test are as follows.
The four samples are different in the shortest distance h from one another. The length along the central axis CL of the nose portion 13 of the ceramic insulator 10 is adjusted so as to adjust the shortest distance h.
As shown in Table 2, as the initial distance ratio becomes larger, the rate of the creeping discharge becomes smaller. The reason for this result is estimated as follows. As described above, the gap sizes dg1e and dg2e might become larger than the initial gap sizes dg1 and dg2 due to the operation for 1000 hours. Here, in the case where the initial distance ratio is large, the proportion of the gap sizes dg1e and dg2e after use to the shortest distance h is small compared with the case where the initial distance ratio is small. That is, in the case where the initial distance ratio is large, the discharge is likely to occur in the gaps g1 and g2 compared with the case where the initial distance ratio is small. Accordingly, in the case where the operating period is the same, that is, in the case where the electrode wear occurs approximately equally, the rate of the creeping discharge becomes smaller as the initial distance ratio becomes larger.
Specifically, as shown in Table 2, in the case where the initial distance ratio is equal to or more than 2.0, more specifically, in the case where the initial distance ratio is 2.0 or 2.1, the occurrence rate of the creeping discharge is zero percent. In the case where the initial distance ratio is 1.9, the occurrence rate of the creeping discharge is 10%. In the case where the initial distance ratio is 1.8, the occurrence rate of the creeping discharge is 30%. Setting the initial distance ratio to be equal to or more than 2 in this method allows suppressing the creeping discharge. This consequently allows improving the durability of the spark plug.
Here, the first initial gap size dg1 may be different from the second initial gap size dg2. In this case, the shortest distance h is preferred to be twice or more as large as the maximum value among the first initial gap size dg1 and the second initial gap size dg2. This configuration allows suppressing the creeping discharge even in the case where any of the first ground electrode 30 and the second ground electrode 90 wears.
In each case, various values can be adopted as the upper limit of the initial distance ratio. For example, the initial distance ratio may be set to be equal to or less than “2.1” that is the evaluated value in the second evaluation test. As the upper limit of the initial distance ratio, the value larger than 2.1 (for example, any value selected from 3, 3.5, and 4) may be adopted (the initial distance ratio is equal to or less than the upper limit). In the case where the first initial gap size dg1 is different from the second initial gap size dg2, the ratio of the shortest distance h to the maximum value between the first initial gap size dg1 and the second initial gap size dg2 can be adopted as the initial distance ratio. Here, in the case where the shortest distance h is large, the portion (referred to as the outside portion) positioned on the outside of the through hole 12 of the ceramic insulator 10 in the center electrode 20 is often large. In the case where the outside portion of the center electrode 20 is long, the durability of the center electrode 20 is likely to be low. Accordingly, the shortest distance h, and thus the initial distance ratio is preferred to be small.
As described above, in the test sample, in the case where the tips 28, 38, and 98 wear due to discharge, the creeping discharge might occur similarly to the spark plug 100 shown in
Here, the rate of electrode wear (for example, an increased amount of the gap sizes dg1 and dg2 per unit of operating period) might change corresponding to the materials of the tips 28, 38, and 98, the presence of the tips 28, 38, and 98, the area of the portions that form the gaps g1 and g2 on the surfaces of the electrodes 20, 30, and 90, and similar parameter. In each case, when the shortest distance h is twice or more as large as the maximum value among the first initial gap size dg1 and the second initial gap size dg2, the shortest distance h larger than the gap sizes dg1 and dg2 can be maintained until the gap sizes dg1 and dg2 increases double. This allows suppressing the creeping discharge over a long period of time compared with the case where the shortest distance h is less than twice as large as the above-described maximum value. In this method, the durability of the spark plug can be improved. However, the shortest distance h may be less than twice as large as the maximum value between the first initial gap size dg1 and the second initial gap size dg2.
Here, in the embodiment in
In the second embodiment, a first ground electrode 30a includes the surface layer 36, the core portion 37, which is disposed inside of the surface layer 36, and the tip 38, which is sealed to a front end portion 31a of the first ground electrode 30a. The outer shape of the surface layer 36 is the same as the outer shape of the base material 32 of the first embodiment. As shown in
The core portion 37 is formed using a material with a higher thermal conductivity than that of the surface layer 36. Accordingly, the heat transfer by the first ground electrode 30a can be promoted compared with the case where the core portion 37 is omitted. As a result, this simply allows transferring heat from the first ground electrode 30a to the metal shell 50 during the operation of the internal combustion engine. Accordingly, this allows suppressing the state where the temperature of the first ground electrode 30a becomes high and the long-continued state where the temperature of the first ground electrode 30a is high. As a result, this allows suppressing the wear of the first ground electrode 30a (for example, oxidation of the surface of the first ground electrode 30a).
Here, as the material of the surface layer 36, various materials can be adopted. For example, an alloy containing nickel can be adopted similarly to the base material 32 of the first embodiment. As the material of the core portion 37, various materials with higher thermal conductivities than that of the surface layer 36 can be adopted. For example, copper or an alloy containing copper can be adopted.
In the second embodiment, a second ground electrode 90a includes the surface layer 96, the core portion 97, which is disposed inside of the surface layer 96, and the cylindrical tip 98, which is sealed to the inner peripheral surface of the surface layer 96. The outer shape of the surface layer 96 is the same as the outer shape of the supporting portion 92 of the first embodiment. Hereinafter, the whole of the surface layer 96 and the core portion 97 is referred to as a “supporting portion 92a.” Reference sign obtained by adding the character “a” to the tail end of reference sign of the element corresponding to the supporting portion 92 in
The core portion 97 is formed using the material with the higher thermal conductivity than that of the surface layer 96. Accordingly, the heat transfer by the second ground electrode 90a can be promoted compared with the case where the core portion 97 is omitted. As a result, this simply allows transferring heat from the second ground electrode 90a to the metal shell 50 during the operation of the internal combustion engine. Accordingly, this allows suppressing the state where the temperature of the second ground electrode 90a becomes high and the long-continued state where the temperature of the second ground electrode 90a is high. As a result, this allows suppressing the wear of the second ground electrode 90a (for example, oxidation of the surface of the second ground electrode 90a).
Here, as the material of the surface layer 96, various materials can be adopted. For example, an alloy containing nickel can be adopted similarly to the supporting portion 92 of the first embodiment. As the material of the core portion 97, various materials with higher thermal conductivities than that of the surface layer 96 can be adopted. For example, copper or an alloy containing copper can be adopted.
The configuration of the portion other than the above-described two differences of the spark plug 100a of the second embodiment is the same as the configuration of the spark plug 100 of the first embodiment. Accordingly, the spark plug 100a of the second embodiment can achieve the same advantage as that of the spark plug 100 of the first embodiment. For example, the proportion of the first gap size dg1 to the second gap size dg2 is set to be equal to or more than 0.80 and equal to or less than 1.25. This allows approximately equally using both the first ground electrode 30a and the second ground electrode 90a for discharge. This consequently allows suppressing significant wear of one ground electrode compared with the other ground electrode, thus improving the durability of the spark plug 100a. Additionally, similarly to the first embodiment described in
1) The first difference is that the large internal diameter portion 501 of the metal shell 50 is omitted.
2) The second difference is that a supporting portion 92b (here, a surface layer 96b) of a second ground electrode 90b extends toward the outside in the radial direction up to the position of the outer peripheral surface of a front end portion 501b of a metal shell 50b.
3) The third difference is that a first ground electrode 30b is sealed to a surface 92bs on the first direction D1 side of the supporting portion 92b of the second ground electrode 90b. As shown in
The other configuration of a spark plug 100b of the third embodiment is the same as the configuration of the spark plug 100a of the second embodiment (in the drawings, like reference signs designate corresponding or identical configurations, and therefore such configurations will not be further elaborated here). For example, the configuration of the metal shell 50b of the third embodiment is the same as the configurations of the metal shells 50 of the first and second embodiments except that the portion that forms the large internal diameter portion 501 is omitted. The arrangement of the tips 28, 38, and 98 forming the gaps g1 and g2 is the same as the arrangements in the embodiments shown in
As shown in
As shown in
In this embodiment, as shown in
As shown in
The first ground electrode 30b is sealed to the metal shell 50b via the second ground electrode 90b. In this case, the heat transfer from the first ground electrode 30b to the metal shell 50b is suppressed compared with the case where the first ground electrode 30b is sealed directly to the metal shell 50b. Accordingly, the temperature of the first ground electrode 30b is likely to increase. However, the core portion 37b is buried in the first ground electrode 30b. Accordingly, this allows suppressing the state where the temperature of the first ground electrode 30b becomes high and the long-continued state where the temperature of the first ground electrode 30b is high. As a result, this allows suppressing the wear of the first ground electrode 30b (for example, oxidation of the surface of the first ground electrode 30b).
The configuration of the portion other than the above-described differences of the spark plug 100b of the third embodiment is the same as the configuration of the spark plug 100a of the second embodiment. Accordingly, the spark plug 100b of the third embodiment can achieve the same advantage as that of the spark plug 100a of the second embodiment. For example, the proportion of the first gap size dg1 to the second gap size dg2 is set to be equal to or more than 0.80 and equal to or less than 1.25. This allows approximately equally using both the first ground electrode 30b and the second ground electrode 90b for discharge. This consequently allows suppressing significant wear of one ground electrode compared with the other ground electrode, thus improving the durability of the spark plug 100b. Similarly to the first embodiment described in
As shown in
As shown in the expansion figure in
As shown in
As shown in
The partial cylindrical surface 941fs of the supporting portion 92c is brought into contact with the partial cylindrical surface 501fs of the metal shell 50c. Accordingly, this allows suppressing the displacement (the displacement in the direction perpendicular to the central axis CL) of the second ground electrode 90c with respect to the metal shell 50c. As a result, the second gap size dg2 is approximately constant over the whole circumference on the outer peripheral surface of the tip 28 of the center electrode 20.
As shown in
Here, the configuration of the portion other than the above-described difference of the spark plug 100c of the fourth embodiment is the same as the configuration of the spark plug 100b of the third embodiment. Accordingly, the spark plug 100c of the fourth embodiment can achieve various advantages similar to those of the spark plug 100b of the third embodiment. For example, the proportion of the first gap size dg1 to the second gap size dg2 is set to be equal to or more than 0.80 and equal to or less than 1.25. This allows approximately equally using both the first ground electrode 30b and the second ground electrode 90c for discharge. This consequently allows suppressing significant wear of one ground electrode compared with the other ground electrode, thus improving the durability of the spark plug 100c. Similarly to the first embodiment described in
(1) In the above-described respective embodiments, the first ground electrode is preferred to include a first nickel portion that is the portion formed by nickel or a nickel alloy, and the nickel content of the first nickel portion is preferred to be equal to or more than 90 weight %. For example, in the above-described embodiments, the base material 32 in
Similarly, the second ground electrode is preferred to include a second nickel portion that is the portion formed by nickel or a nickel alloy, and the nickel content of the second nickel portion is preferred to be equal to or more than 90 weight %. For example, in the above-described embodiments, the entire supporting portion 92 in
However, the first ground electrode may be formed using a conductive material other than nickel without containing nickel. Similarly, the second ground electrode may be formed using a conductive material other than nickel without containing nickel.
(2) In the above-described embodiments that include the core portions 37 and 37b of the first ground electrodes, the core portions 37 and 37b may be omitted. Additionally, in the embodiment without the core portion, the core portion (for example, the core portions 37 and 37b) may be added. Additionally, in the embodiment that includes the core portion 97 of the second ground electrode, the core portion 97 may be omitted. In the embodiment without the core portion 97, the core portion 97 may be added. In this method, the core portion may be disposed only in any one of the first ground electrode and the second ground electrode. The core portion may be omitted from both the first ground electrode and the second ground electrode. The core portion may be disposed in both the first ground electrode and the second ground electrode.
As the material of the core portion, various materials with larger thermal conductivities than that of the surface layer disposed in the peripheral area of the core portion can be adopted. For example, a conductive material such as copper, an alloy containing copper, and silver can be adopted.
(3) In the above-described respective embodiments, respective noble metal tips apart from one another may be disposed in the portion that forms the first gap g1 and the portion that forms the second gap g2 in the center electrode 20. Additionally, the above-described respective embodiments, at least one of the noble metal tips 38 and 98 disposed in the ground electrode may be omitted. In the above-described respective embodiments, the noble metal tips of one or more portions optionally selected from the portion that forms the first gap g1 of the center electrode 20, the portion that generates the second gap g2 of the center electrode 20, the portion that forms the first gap g1 of the first ground electrode, and the portion that forms the second gap g2 of the second ground electrode may be omitted.
The material of the noble metal tip is not limited to iridium or an alloy containing iridium, and other various materials can be adopted. For example, platinum or an alloy containing platinum may be adopted. Generally, a noble metal or a noble metal alloy can be adopted. Additionally, the respective materials of the noble metal tips in the portion that forms the first gap g1 of the center electrode 20, the portion that generates the second gap g2 of the center electrode 20, the portion that forms the first gap g1 of the first ground electrode, and the portion that forms the second gap g2 of the second ground electrode may be selected independently from one another. For example, the tip 28 may be formed using the noble metal (for example, iridium). The noble metal tip 38 and the cylindrical tip 98 may be formed using the noble metal alloy (for example, an iridium alloy).
(4) The area of the discharging surface (in the above-described respective embodiments, the area of the inner peripheral surface 98s of the cylindrical tip 98) that forms the second gap g2 of the second ground electrode is preferred to be twice or more as large as the area of the discharging surface (in the above-described respective embodiments, the area of the surface 38s of the tip 38) that forms the first gap g1 of the first ground electrode. This configuration achieves the area of the discharging surface three times as large as the area in the case where the second ground electrode is omitted, thus improving the durability of the spark plug. For example, a stable discharge can be achieved over a long period of time.
(5) To suppress the displacement (particularly, the displacement in the direction intersecting with the central axis CL) of the second ground electrode with respect to the metal shell, the second ground electrode is preferred to be the surface in contact with the metal shell and to have the surface (referred to as a “position specifying surface”) specified by the normal line intersecting with the first direction D1. For example, in the above-described embodiments, the surfaces on the outside in the radial direction of the two end portions 921 and 921a of the supporting portions 92 and 92a in
Here, the configurations of the center electrode, the first ground electrode, and the second ground electrode are not limited to the above-described configurations. Other various configurations can be adopted.
The present invention has been described above based on the embodiment and the modifications. The above-described embodiments of the invention are for ease of understanding of the present invention and do not limit the present invention. The present invention may be modified or improved without departing from the gist and the claims of the present invention, and includes the equivalents.
The present invention is preferably applicable to a spark plug that includes a center electrode, a first ground electrode that forms a first gap with a front end surface of the center electrode, and a second ground electrode that forms an annular second gap between the side surface of the center electrode and the inner peripheral surface of the second ground electrode.
Number | Date | Country | Kind |
---|---|---|---|
2013-109156 | May 2013 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/063470 | 5/21/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/189079 | 11/27/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5693999 | Osamura et al. | Dec 1997 | A |
20070228916 | Kunitomo | Oct 2007 | A1 |
20100133976 | Siegel | Jun 2010 | A1 |
20120299459 | Sakakura | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
8-315955 | Nov 1996 | JP |
2003-257585 | Sep 2003 | JP |
Entry |
---|
International Search Report issued in corresponding International Application No. PCT/JP2014/063470, dated Jun. 24, 2014. |
Number | Date | Country | |
---|---|---|---|
20160087411 A1 | Mar 2016 | US |