This application claims the benefit of German Patent Application No. DE 10 2012 107 771.1, filed on Aug. 23, 2012, the entire contents of which are incorporated herein.
The invention generally relates to a spark plug and, in particular, to a spark plug that may be used in an internal combustion engine, such as an indirect injection engine equipped with some type of pre-chamber.
A spark plug is known from DE 101 33 229 A1. Usually, a precious metal component situated on the ground electrode is embedded in the material of the ground electrode in order to achieve a good dissipation of heat from the precious metal component. In this case, all of the side surfaces of the precious metal component, which are oriented in the longitudinal direction of the spark plug and transversely relative to the ignition surface of the precious metal component, are at least partially covered by the material of the ground electrode. The width of the ground electrode is therefore greater than the width of the precious metal component. In addition, the precious metal component does not extend all the way to the end surface of the ground electrode, but is instead slightly recessed from the end surface of the ground electrode. As a result, the precious metal component can be welded to the ground electrode along its entire circumference encompassing the ignition surface. In an exemplary embodiment from DE 101 33 229 A1, a block-shaped precious metal component is disclosed, which is situated flush with the end surface of the ground electrode. The precious metal component is nevertheless still embedded in the material of the ground electrode. It is at least partially covered by the material of the ground electrode on its two side surfaces, i.e., on a total of four out of its six surfaces.
The development of such spark plugs has already been pushed to its limits on the whole. The spark plugs have a service life that is quite long and have an operational reliability that is quite high. Development is only progressing in small steps, since it is difficult to achieve further improvements.
In the known embodiments of the ground electrode, it has been observed that cracks and chips can occur in the precious metal component, which result in ignition problems and a failure to achieve the desired service life. In such cases, the spark plug must be replaced before the next regularly scheduled maintenance of the gasoline engine, i.e., an unplanned disruption in operation.
One potential object is to improve the operational reliability of a spark plug of the type previously mentioned and to increase its service life. This object may be attained by means of a spark plug with the features recited in the claims.
According to one embodiment, there is provided a spark plug having a center electrode, a longitudinal direction extending parallel to the center electrode, a spark plug body with a front end and rear end, and a rod-shaped ground electrode designed so that the ground electrode is attached to the front end of the spark plug body. The spark plug can include an inner conductor and an insulator surrounding the inner conductor, the center electrode being connected to the inner conductor and the insulator being accommodated in the spark plug body. The longitudinal direction of the spark plug extends along the spark plug body, from its front end to its rear end. The rod-shaped ground electrode has an electrode end section extending transversely relative to the longitudinal direction of the spark plug. In particular, the electrode end section extends perpendicular to the longitudinal direction and protrudes toward the center electrode. The electrode end section of the ground electrode has an end surface and two side surfaces. The side surfaces are oriented in the longitudinal direction of the spark plug, define a width of the electrode end section oriented transversely relative to the longitudinal direction of the spark plug, and are connected to each other by an end surface likewise oriented in the longitudinal direction of the spark plug. In a viewing direction oriented parallel to the electrode end section, the end surface of the ground electrode therefore has a width extending transversely relative to the longitudinal direction of the spark plug and a height extending in the longitudinal direction. Preferably, surfaces oriented in the longitudinal direction of the spark plug extend parallel to the longitudinal direction. Surfaces or dimensions extending transversely relative to the longitudinal direction of the spark plug are preferably perpendicular to the longitudinal direction of the spark plug.
The electrode end section of the ground electrode may be provided with a step onto which a precious metal component is welded. The precious metal component ends flush with the electrode end section at the end surface of the ground electrode and has an ignition surface, which extends transversely relative to the end surface of the ground electrode and, together with the center electrode, forms a spark air gap. The spark air gap is formed with an end surface of the center electrode extending transversely relative to the longitudinal direction of the spark plug. The ignition surface of the precious metal component is preferably parallel to the end surface of the center electrode. The step in the electrode end section extends over part of the height of the end surface of the ground electrode so that the end surface is partially comprised by the precious metal component. The step embodied in the electrode end section and the precious metal component situated on it extend across the entire width of the electrode end section so that the precious metal component ends flush with the electrode end section at both side surfaces of the ground electrode. The step and the precious metal component therefore both extend across the entire width of the end surface, but each in a different height range of the end surface.
In the design of a spark plug, the size of the ignition surface may be determined based on the required service life and other conditions of use. With an unchanged size and width of the ignition surface of the precious metal component, the embodiment according to the invention permits the width of the electrode end section to be reduced since the precious metal component is no longer covered by the material of the ground electrode on both side surfaces. A reduced width of the ground electrode results in a reduced cross-sectional area of the ground electrode when the dimensions otherwise remain the same. One may expect a reduced cross-sectional area of the ground electrode to be accompanied by a reduced dissipation of heat from the electrode end section to the spark plug body during operation and therefore result in higher temperatures in the electrode end section. Surprisingly, however, with this particular embodiment, it has turned out that the temperatures occurring in the precious metal component and the electrode end section of the ground electrode that occur during operation are actually reduced. Depending on the spark plug, it was possible to sometimes achieve temperature reductions of approximately 100° C. A potential advantage of this embodiment is the fact that the spark plug is suitable for applications involving high thermal demands.
Another potential advantage of this embodiment lies in the fact that the precious metal component that is flush with the side surfaces of the ground electrode is accessible so that a weld can be produced on the side surfaces. On the side surfaces, the precious metal component can be welded with a welding seam that extends along an interstice between the precious metal component and the electrode end section. The alternative welding options permit an optimized welding and improved attachment of the precious metal component, which reduces cracking and spalling during operation.
On the whole, including when used in internal combustion engines equipped with some type of pre-chamber, it has been possible for the spark plug of this embodiment to achieve increased ignition reliability and an extended service life.
It may be advantageous if the two side surfaces of the ground electrode extend parallel to each other at least in the electrode end section. The rod-shaped ground electrode can be welded to the end surface at the front end of the spark plug body and can have a bend so that the electrode end section extends perpendicular to the longitudinal direction of the spark plug. The rod-shaped ground electrode has two ends; a first end is welded to the spark plug body and a second end protrudes from the spark plug body toward the center electrode in the radial direction and includes the electrode end section. The end of the ground electrode protruding toward the center electrode is defined by the end surface. In one potential embodiment, the front end of the spark plug body has a cam-like extension onto which is welded a rod-shaped ground electrode that extends in a straight line. In this case, the ground electrode can be welded onto the end surface of the cam-like extension or onto its inner surface that is oriented toward the center electrode. This embodiment may yield a further temperature reduction of the center electrode. This also may make it possible to eliminate the work step of the bending the ground electrode when manufacturing the spark plug.
According to another embodiment, the precious metal component and the electrode end section are welded with a welding seam that forms an alloy zone composed of the materials of the precious metal component and the electrode end section, with the welding seam extending along an interstice between the precious metal component and the electrode end section. The precious metal component is preferably welded to the electrode end section along an interstice on the end surface of the ground electrode, along an interstice on the surface of the ground electrode oriented toward the center electrode, and along interstices on the two side surfaces of the ground electrode, which define the width of the end surface, forming alloys zones extending along the interstices. It may be preferable for the precious metal component to be completely welded to the electrode end section along all of the interstices. This can produce a good, lasting connection of the precious metal component to the ground electrode.
In one embodiment, the precious metal component can be block-shaped and the end surface of the ground electrode can lie in a plane extending parallel to the longitudinal direction of the spark plug. In another embodiment, the precious metal component can be disk-shaped and the end surface of the ground electrode can be embodied in the form of a part of a circumference surface of a circular cylinder whose longitudinal axis extends parallel to the longitudinal direction of the spark plug. It may be advantageous if the shape of the step in the electrode end section is adapted to an external form of the precious metal component that encompasses the ignition surface.
It can be advantageous if the ignition surface of the precious metal component ends flush with a surface of the electrode end section that adjoins the precious metal component and is oriented toward the center electrode. Alternatively, it can be advantageous if the ignition surface of the precious metal component protrudes in step fashion above a surface of the electrode end section that adjoins the precious metal component and is oriented toward the center electrode, with a height of 0.1 mm to 0.8 mm or with a height of 0.2 mm to 0.4 mm, for example. It can be advantageous for the ground electrode to have a copper core in order to improve heat dissipation. The copper core may be encompassed by a material composed of a high-temperature-resistant nickel-based alloy. The precious metal component can preferably be composed of an iridium-containing material so that it is very wear-resistant.
It should be appreciated that the aforementioned embodiments, components, arrangements, features, advantages, etc. are simply meant to illustrate some possibilities and that the present spark plug is not limited thereto. Accordingly, the present spark plug may use or be provided according to any of the embodiments, components, arrangements, features, advantages, etc. listed above, as well as others that are not listed.
Preferred exemplary embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
The ground electrode 7 has an electrode end section 10 extending transversely relative to the longitudinal direction 9 of the spark plug 1. The rod-shaped ground electrode 7 has a first end 11 at which the ground electrode is attached to the front end 6 of the spark plug body 5. The second end 12 of the rod-shaped ground electrode 7 includes the electrode end section 10 and protrudes toward the center electrode 3. In the electrode end section 10, the ground electrode 7 has an end surface 13 and has two side surfaces 14, 15 that are oriented in the longitudinal direction 9, define a width b of the electrode end section 10 extending transversely relative to the longitudinal direction 9, and are connected to each other by the end surface 13 likewise oriented in the longitudinal direction 9. The side surfaces 14, 15 are not visible in
The electrode section 10 is provided with a step 16 onto which a precious metal component 17 is welded. The precious metal component is composed of an alloy predominantly containing iridium. The precious metal component 17 ends flush with the electrode end section 10 at the end surface 13 so that the end surface 13 is partially composed of the electrode end section 10 and partially composed of the precious metal component 17. The precious metal component 17 has an ignition surface 18, which is situated transversely relative to the end surface 13 and together with the center electrode 3, forms a spark air gap 19. The end surface 20 of the center electrode 3 situated perpendicular to the longitudinal direction 9 can be composed of an optional precious metal component 21 situated on the center electrode 3 so that the spark air gap 19 is formed between the precious metal component 17 and the precious metal component 21. In a different example, the precious metal component 17 forms the spark air gap 19 directly with an ignition surface of the center electrode 3, without the optional precious metal component 21.
The embodiment of the precious metal component 17 and the step 16 adapted to it is particularly shown in
In
In
In the exemplary embodiment of
In the embodiment shown in
Depending on the requirements, the precious metal component 17 can be embodied as block-shaped like the one in
Like the embodiment shown in
It is to be understood that the foregoing is a description of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims.
A used in this specification and claims, the terms “for example,” “e.g.,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 107 771 | Aug 2012 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2642053 | Dowson | Jun 1953 | A |
4488081 | Kondo et al. | Dec 1984 | A |
4514657 | Igashira et al. | Apr 1985 | A |
5510667 | Loffler et al. | Apr 1996 | A |
6642638 | Ishiguro | Nov 2003 | B2 |
6724132 | Kanao | Apr 2004 | B2 |
6794803 | Hori et al. | Sep 2004 | B2 |
6923699 | Matsubara et al. | Aug 2005 | B2 |
7084558 | Teramura et al. | Aug 2006 | B2 |
7321187 | Teramura et al. | Jan 2008 | B2 |
7808165 | Kowalski | Oct 2010 | B2 |
8013503 | Kameda et al. | Sep 2011 | B2 |
8013504 | Kameda et al. | Sep 2011 | B2 |
8138660 | Nakamura et al. | Mar 2012 | B2 |
8247740 | Nakayama et al. | Aug 2012 | B2 |
8766520 | Boehler et al. | Jul 2014 | B2 |
20020003389 | Ishiguro | Jan 2002 | A1 |
20040041506 | Teramura et al. | Mar 2004 | A1 |
20060238092 | Teramura et al. | Oct 2006 | A1 |
20070290593 | Kowalski | Dec 2007 | A1 |
20090134764 | Kameda et al. | May 2009 | A1 |
20090140624 | Kameda et al. | Jun 2009 | A1 |
20090289539 | Sakakura | Nov 2009 | A1 |
20110037373 | Nakamura et al. | Feb 2011 | A1 |
20110279009 | Quitmeyer et al. | Nov 2011 | A1 |
20130009539 | Quitmeyer et al. | Jan 2013 | A1 |
20130234580 | Boehler et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
10133229 | Feb 2002 | DE |
Number | Date | Country | |
---|---|---|---|
20140055023 A1 | Feb 2014 | US |