This application claims the benefit of Japanese Patent Application No. 2015-144579, filed Jul. 22, 2015, the entire contents of which are incorporated herein by reference.
The present invention relates to a spark plug.
A spark plug is used for igniting a fuel gas in an internal combustion engine. In such a spark plug, a gap for generating spark discharge for ignition (also called “spark gap”) is provided between a center electrode and a ground electrode. In general, the ground electrode is welded to a forward end portion of a metallic shell. In some cases, in order to enhance heat resistance, the ground electrode has a multilayer structure in which outer and inner portions of the ground electrode are formed of materials that differ in thermal conductivity and hardness (see, for example, Japanese Patent Application Laid-Open (kokai) No. 2012-99496).
The welding interface between the metallic shell and the multilayer ground electrode is formed by the constituent material of the metallic shell and the various materials forming the ground electrode. Therefore, in the case where the inner portion of the ground electrode is formed of a material of low hardness such as copper (Cu), the material of low hardness may lower the strength of welding between the metallic shell and the ground electrode. Also, in some cases, the shape of the juncture portion of the ground electrode may be a cause of lowering the strength of the ground electrode. As described above, there yet remains room for enhancement of the reliability of joining between the metallic shell and the ground electrode.
The present invention has been accomplished so as to address at least the above-described problem, and the present invention can be embodied as the following modes.
According to one mode of the present invention, a spark plug is provided. This spark plug comprises a center electrode, an insulator, a metallic shell, and a ground electrode. The insulator accommodates the center electrode. The metallic shell accommodates the insulator. The ground electrode has a distal end portion disposed to face a forward end portion of the center electrode with a predetermined gap formed therebetween, and a base end portion extending along the center electrode and joined to the metallic shell. The base end portion includes a skin portion disposed on a surface side of the base end portion, an intermediate portion which is higher in thermal conductivity than the skin portion, and a core portion which is higher in hardness than the intermediate portion. A cross section containing a center axis of the spark plug and a center axis of the base end portion includes a first portion in which the intermediate portion is disposed inward of the skin portion and the core portion is disposed inward of the intermediate portion, a second portion which is located on a rear end side of the first portion and in which the skin portion and the core portion are in direct contact with each other, and an intersection point at which a first boundary line, a second boundary line, and a third boundary line meet with one another. The first boundary line is a boundary line between the metallic shell and the skin portion. The second boundary line is a boundary line between the metallic shell and the core portion. The third boundary line is a boundary line between the skin portion and the core portion and extends toward a surface side from a rear-end-side end of a boundary line between the skin portion and the intermediate portion. According to the spark plug of this mode, the intermediate portion is restrained from existing at the welding interface between the ground electrode and the metallic shell. Therefore, the strength of welding of the ground electrode to the metallic shell is increased.
In accordance with a second aspect of the present invention, there is provided a spark plug of the above-described mode, wherein, in the cross section, the intersection point may be present on each of opposite sides of the center axis of the base end portion. According to the spark plug of this mode, the strength of welding of the ground electrode to the metallic shell is increased further.
In accordance with a third aspect of the present invention, there is provided a spark plug of the above-described mode, wherein the first boundary line may extend from the intersection point such that a distance between the first boundary line and the center axis of the base end portion increases toward the rear end side. According to the spark plug of this mode, it is possible to suppress a decrease in the welding strength which occurs when a portion of the skin portion which constitutes the outer surface thereof is present at the welding interface.
In accordance with a fourth aspect of the present invention, there is provided a spark plug of the above-described mode, wherein the skin portion may have a first outer surface which faces toward the center electrode and a second outer surface which faces toward a side opposite the first outer surface, and in the cross section, at least one of the first outer surface and the second outer surface may have a straight portion which extends substantially straight from a forward end side toward the rear end side, and a curved portion which extends from the straight portion toward the rear end side while curving outward. According to the spark plug of this mode, a decrease in the strength at the juncture portion of the ground electrode is restrained, whereby breakage of the ground electrode is restrained.
In accordance with a fifth aspect of the present invention, there is provided a spark plug of the above-described mode, wherein, in the cross section, the curved portion may have a curvature radius of 0.5 mm or greater. According to the spark plug of this mode, breakage of the ground electrode is restrained to a greater degree.
In accordance with a sixth aspect of the present invention, there is provided a spark plug of the above-described mode, wherein, in the cross section, the second boundary line may be convex toward the metallic shell. According to the spark plug of this mode, the area of contact between the metallic shell and the core portion increases. Therefore, the strength of welding of the ground electrode to the metallic shell is increased further.
In accordance with a seventh aspect of the present invention, there is provided a spark plug of the above-described mode, wherein, the ground electrode is joined to an end surface of a forward end portion of the metallic shell, and when an imaginary plane which contains an end surface of a portion of the forward end portion to which the ground electrode is not joined is defined, in the cross section, a maximum value L of a distance between an imaginary straight line representing the imaginary plane and the boundary line between the ground electrode and the metallic shell may satisfy a relation of L>0 mm, where the distance assumes a positive value when the boundary line between the ground electrode and the metallic shell is located on the rear end side of the imaginary straight line. According to the spark plug of this mode, the strength of welding of the ground electrode to the metallic shell is increased further.
In accordance with an eighth aspect of the present invention, there is provided a spark plug of the above-described mode, wherein the maximum value L may satisfy a relation of L≥0.2 mm. According to the spark plug of this mode, the strength of welding of the ground electrode to the metallic shell is increased further.
In accordance with a ninth aspect of the present invention, there is provided a spark plug of the above-described mode, wherein the maximum value L may satisfy a relation of L≥0.4 mm. According to the spark plug of this mode, the strength of welding of the ground electrode to the metallic shell is increased further.
In accordance with a tenth aspect of the present invention, there is provided a spark plug of the above-described mode, wherein the maximum value L may satisfy a relation of L<1.5 mm. According to the spark plug of this mode, deterioration of the metallic shell at the juncture portion of the ground electrode is restrained.
In accordance with an eleventh aspect of the present invention, there is provided a spark plug of the above-described mode, wherein the skin portion may have an aluminum content WP which satisfies a relation of 0 wt. %<WP<5.0 wt %. According to the spark plug of this mode, it is possible to increase the strength of welding of the ground electrode to the metallic shell while enhancing the oxidation resistance of the ground electrode.
All the plurality of constituent elements of each mode of the present invention are not essential. In order to solve, partially or entirely, the above-mentioned problem or yield, partially or entirely, the effects described in the present specification, a part of the elements may be properly modified, deleted, or replaced with another new element, or the limitation thereof may be partially removed. Also, in order to solve, partially or entirely, the above-mentioned problem or yield, partially or entirely, the effects described in the present specification, a portion or all of the above-described technical features contained in one mode of the present invention may be combined with a portion or all of the above-described technical features contained in other modes of the present invention to thereby attain an independent mode of the present invention.
The present invention can be realized in various forms other than the spark plug. For example, the present invention can be realized as an internal combustion engine equipped with a spark plug or a metallic shell to which a ground electrode is joined. Also, the present invention can be realized as a method of manufacturing a spark plug, a method of joining a ground electrode to a metallic shell, a metallic shell, a method of manufacturing the metallic shell, or apparatuses for executing these methods.
Structure of a Spark Plug
The structure of a spark plug 10 according to a first embodiment will be briefly described with reference to
The spark plug 10 (
The center electrode 11 has a rod-like shape. The center electrode 11 is held by the metallic shell 40 with the insulator 20 disposed therebetween such that the center axis of the center electrode 11 coincides with the center axis PX of the spark plug 10 and a forward end portion 11e of the center electrode 11 is exposed to the outside. The center electrode 11 is electrically connected to an external power supply (not shown) through the terminal 30 disposed on the rear end side.
The ground electrode 13 is attached to an open end 42 of the metallic shell 40 on the forward end side and electrically communicates with the metallic shell 40. The ground electrode 13 has a base end portion 13a and a distal end portion 13b. The base end portion 13a is a portion which extends approximately straight, along the axial direction, from the forward-end-side open end 42 of the metallic shell 40 toward the forward end side (
In the present embodiment, the ground electrode 13 has a multilayer structure in which a plurality of layers of different members are layered. In the present embodiment, the ground electrode 13 is welded to the open end 42 of the metallic shell 40. The internal structure of the ground electrode 13 and the welding between the ground electrode 13 and the metallic shell 40 will be described in detail later.
A predetermined gap SG for generating spark discharge is provided between the tip portion 14 of the ground electrode 13 and the forward end portion 11e of the center electrode 11 (
The insulator 20 is a tubular insulating member and has an axial hole 21 which penetrates the insulator 20 at the center thereof (
The center electrode 11 is held in a forward end portion of the axial hole 21 of the insulator 20. The forward end portion 11e of the center electrode 11 projects outward from the forward end of the insulator 20. The rod-shaped terminal 30 is inserted into a rear end portion of the axial hole 21 of the insulator 20 from the rear end side. Notably, a rear end portion 31 of the terminal 30 is disposed outside the insulator 20 so that the rear end portion 31 of the terminal 30 can be connected to the external power supply (not shown).
A first glass seal material 36, a resistor 35, and a second glass seal material 37 are accommodated in the axial hole 21 of the insulator 20 in this order from the forward end side to be located between the center electrode 11 and the terminal 30. The center electrode 11 is electrically connected to the terminal 30 through the first glass seal material 36, the resistor 35, and the second glass seal material 37. As a result, in the spark plug 10, radio noise at the time of generation of spark discharge is suppressed.
The metallic shell 40 is a tubular metallic member having a bore 41 which penetrates the metallic shell 40 at the center thereof. The center axis of the metallic shell 40 coincides with the center axis PX of the spark plug 10. The metallic shell 40 is formed of, for example, carbon steel. The insulator 20 is accommodated in the bore 41 of the metallic shell 40. The insulator 20 is fixedly disposed in the bore 41 such that forward and rear end portions of the insulator 20 extend to the outside. As described above, the ground electrode 13 is welded to the forward-end-side open end 42 of the metallic shell 40.
A screw portion 43 which engages with a thread groove of an attachment hole (not shown) of the internal combustion engine is provided on the outer circumferential surface of a forward end portion of the metallic shell 40. A tool engagement portion 45 is provided on the rear end side of the screw portion 43. A tool is engaged with the tool engagement portion 45 when the spark plug 10 is attached to the internal combustion engine. A crimped portion 47 is provided on the rear end side of the tool engagement portion 45. As a result of crimping, the crimped portion 47 fixes a portion of the insulator 20 on the rear end side. The crimped portion 47 is formed by crimping inward an open end of the metallic shell 40 on the rear end side.
Structures of the Ground Electrode and its Juncture Portion
The skin portion 50 is provided on the surface side of the ground electrode 13 and constitutes the surface layer of the ground electrode 13. The skin portion 50 is formed of a metallic material which is high in heat resistance and is the highest in hardness among the metallic materials used to form the ground electrode 13. The skin portion 50 is formed of an Ni-based heat resisting alloy containing nickel (Ni) as a main component such as NCF601. In the present specification, the term “main component” means a material component whose content is the highest. Notably, it is desired that the alloy used to form the skin portion 50 contain aluminum (Al) at a predetermined ratio. The Al content of the skin portion 50 will be described later.
The intermediate portion 51 is provided on the inner side of the skin portion 50. The intermediate portion 51 is formed of a metallic material which is higher in thermal conductivity than the skin portion 50. Also, it is desired that the intermediate portion 51 be formed of a metallic material which is higher in thermal conductivity than the metallic material used to form the core portion 52. The intermediate portion 51 is formed of, for example, pure Cu or a Cu alloy.
The core portion 52 is provided at the center of the ground electrode 13, and at the base end portion 13a, the core portion 52 is provided at a position through which the center axis EX passes. The core portion 52 is formed of a metallic material which is higher in hardness than the intermediate portion 51. The core portion 52 is formed of, for example, pure Ni or an Ni alloy.
In the ground electrode 13 of the present embodiment, the greater part of the base end portion 13a is formed of a first multilayer portion 55 having a multilayer structure in which a layer of the skin portion 50, a layer of the intermediate portion 51, and a layer of the core portion 52 are successively layered in this order from the outer surface toward the center axis EX. The first multilayer portion 55 corresponds to a subgeneric concept of the first portion in the present invention. The first multilayer portion 55 is formed on opposite sides of the center axis EX.
Since the ground electrode 13 includes the intermediate portion 51, which is high in thermal conductivity, the ground electrode 13 has an enhanced heat radiation performance and an enhanced heat resistance. Since the intermediate portion 51 of the ground electrode 13 is sandwiched between the skin portion 50 and the core portion 52, which are high in hardness, the ground electrode 13 has an increased strength and an enhanced durability.
In the ground electrode 13 of the present embodiment, a portion 56 in which is the skin portion 50 is in direct contact with the core portion 52 without the presence of the intermediate portion 51 therebetween at least in the center cross section CP is formed on the rear end side of the first multilayer portion 55. In the following description, that portion 56 will also be referred to as a “second multilayer portion 56.” The second multilayer portion 56 corresponds to a subgeneric concept of the second portion in the present invention.
In the center cross section CP, the skin portion 50 is in contact with the core portion 52 as follows in the second multilayer portion 56. In a region (hereinafter also referred to as the “outer circumferential side region”) on the side opposite the center electrode 11 with respect to the center axis EX of the base end portion 13a, an end portion of the core portion 52 on the rear end side extends toward the skin portion 50 and comes into contact with the skin portion 50. Meanwhile, in a region (hereinafter also referred to as the “inner circumferential side region”) on the side toward the center electrode 11 with respect to the center axis EX of the base end portion 13a, an end portion 50t of the skin portion 50 on the rear end side extends toward the core portion 52 while bending and comes into contact with the core portion 52. This end portion 50t is a portion which partially constitutes the outer surface of the skin portion 50 before welding. Notably, in the present specification, the side of the base end portion 13a toward the center electrode 11 (the right-hand side of the sheet of
Further, in the spark plug 10 of the present embodiment, an intersection point PI which will be described below is formed at least in the second multilayer portion 56 in the center cross section CP. In the present embodiment, the intersection point PI is formed in the outer circumferential side region. The intersection point PI is a point at which the following three boundary lines BLa, BLb, and BLc meet. The first boundary line BLa is the boundary line between the metallic shell 40 and the skin portion 50. The second boundary line BLb is the boundary line between the metallic shell 40 and the core portion 52. The third boundary line BLc is the boundary line between the skin portion 50 and the core portion 52 and extends toward the surface side from the rear-end-side end of the boundary line between the skin portion 50 and the intermediate portion 51.
Since the constituent material of the intermediate portion 51 is low in hardness although it is high in thermal conductivity, its degree of contribution to the welding strength is small. In the case where, at least in the center cross section CP, the intersection point PI is present in the second multilayer portion 56, the constituent material of the intermediate portion 51 is restrained from existing at the welding interface between the ground electrode 13 and the metallic shell 40. Also, when a portion (e.g., the end portion 50t) which forms the outer surface of the skin portion 50 before welding enters the welding interface between the ground electrode 13 and the metallic shell 40, external foreign substances such as oxygen atoms are restrained from reaching the welding interface. Accordingly, deterioration in the welding between the ground electrode 13 and the metallic shell 40, which deterioration occurs due to the presence of foreign substances or the constituent material of the intermediate portion 51 at the welding interface, is restrained, whereby the strength of the welding between the ground electrode 13 and the metallic shell 40 is increased.
In the spark plug 10 of the present embodiment, in the center cross section CP, the first boundary line BLa, which the boundary line between the metallic shell 40 and the skin portion 50, extends toward the rear end side such that the distance between the first boundary line BLa and the center axis EX of the base end portion 13a increases toward the rear end side. As described above, in the spark plug 10 of the present embodiment, at the juncture portion between the ground electrode 13 and the metallic shell 40, the hard skin portion 50 intrudes into the metallic shell 40 more deeply. Therefore, the strength of welding between the ground electrode 13 and the metallic shell 40 increases.
In the spark plug 10 of the present embodiment, the skin portion 50 has a first outer surface 61 on the outer circumferential side and a second outer surface 62 on the inner circumferential side in the center cross section CP. The two outer surfaces 61 and 62 have straight portions 61s and 62s and curved portions 61c and 62c, respectively. The straight portions 61s and 62s extend approximately straight from the forward end side toward the rear end side. The curved portions 61c and 62c extend from the straight portions 61s and 62s, respectively, toward the rear end side while curving in directions away from the center axis EX.
As described above, in the spark plug 10 of the present embodiment, the curved portions 61c and 62c of the skin portion 50 are formed in a rear-end-side region near the juncture portion of the ground electrode 13. Therefore, it is possible to restrain the occurrence of stress concentration in the vicinity of the juncture portion of the ground electrode 13. Therefore, it is possible to restrain breakage of the ground electrode 13, which breakage occurs due to the occurrence of stress concentration at the juncture portion of the ground electrode 13. In particular, in the present embodiment, the skin portion 50 have the curved portions 61c and 62c on the opposite sides of the center axis EX. Therefore, the occurrence of stress concentration at the juncture portion of the ground electrode 13 is restrained further. Notably, as will be described in experimental examples which will be descried later, it is desired that, in the center cross section CP, each of the curved portions 61c and 62c depict a curved line having a curvature radius of 0.5 mm or greater (e.g., 0.5 to 0.7 mm).
Here, an imaginary plane BP is defined such that the imaginary plane BP contains an open end surface 42p of the metallic shell 40 on the forward end side. The open end surface 42p is the end surface of a portion of the open end of the metallic shell 40, to which portion the ground electrode 13 is not joined. In this case, it is desired that, in the cross section shown in
L represents the depth to which the metallic shell 40 melts when the ground electrode 13 is welded thereto. The greater the depth L (>0), the greater the degree to which the strength of welding between the ground electrode 13 and the metallic shell 40 increases. In the following description, the depth L will also be referred to as the “welding depth L” The welding depth L is desirably 0.2 mm or greater, and more desirably 0.4 mm or greater. However, in the case where the welding depth L is excessively large, during welding, a portion of the melted constituent material of the intermediate portion 51 intrudes into the metallic shell 40, and the constituent material intruded into the metallic shell 40 may cause corrosion and/or deterioration of the metallic shell 40 later on. Therefore, as will be described in the experimental examples which will be described later, the welding depth L is preferably less than 1.5 mm, and more preferably 1.2 mm or less.
As described above, it is desired that the alloy used to form the skin portion 50 contain Al. Namely, it is desired that the Al content WP of the alloy used to form the skin portion 50 is greater than 0 wt. %. This is because, as will be described in the experimental examples which will be described later, when the skin portion 50 contains Al, the durability of the ground electrode 13 can be enhanced. However, the Al content WP of the alloy used to form the skin portion 50 is desirably less than 5.0 wt. %, and more desirably 2.5 wt. % or less. This is because, as will be described in the experimental examples which will be described later, when the Al content WP is 5.0 wt. % or greater, the strength of welding to the metallic shell 40 may lower.
Since the Al content of NCF601 falls within the above-described preferred range as will be described below, NCF601 is preferably used as the constituent material of the skin portion 50.
Components contained in NCF601
Ni: 58 to 63 wt. %
Chromium (Cr): 21 to 25 wt. %
•Silicon (Si): 0 to 0.5 wt. %
Al: 1.0 to 1.7 wt. %
Manganese (Mn): 0 to 0.5 wt. %
Carbon (C): 0.02 to 0.05 wt. %
Balance being unavoidable impurities and Fe
Examples of the “unavoidable impurities” include phosphorus (P) in an amount of 0.03 wt. % or less and sulfur (S) in an amount of 0.03 wt. % or less.
Steps for Manufacturing the Ground Electrode and Steps for Joining the Ground Electrode
Steps for manufacturing the base material of the ground electrode 13 and steps for welding the base material to the metallic shell 40 will be described successively with reference to
The first base material 70 is made as follows. A metallic material for forming the core portion 52 is shaped into a circular columnar shape by means of, for example, cold forging, whereby a core portion base material 71 is made. Similarly, a metallic material for forming the intermediate portion 51 is shaped into a cylindrical tubular shape by means of, for example, cold forging, whereby an intermediate portion base material 72 is made. The core portion base material 71 is inserted into a bore 72h of the intermediate portion base material 72 such that the core portion base material 71 is mated and integrated with the intermediate portion base material 72, whereby the first base material 70 is made.
The second base material 75 is made by shaping a metallic material for forming the skin portion 50 into the shape of a cylindrical tube with a bottom by means of, for example, cold forging. The third base material 78 is made by inserting the first base material 70 into a bore 75h of the second base material 75 such that the first base material 70 is mated with the second base material 75.
In the second step, an extended base material 80 is made by performing extrusion forming; i.e., extruding the third base material 78, along its center axis, toward the second base material 75 side (section (b) of
In the third step, the forward-end-side portion 81 is cut out from the extended base material 80, by means of cutting work, as a ground electrode base material 85 which constitutes the ground electrode 13 (section (c) of
The fourth through sixth steps schematically shown in
In the fifth step, the rear end portion 83 of the ground electrode base material 85 is pressed against the open end 42 of the metallic shell 40 on the forward end side thereof, and a high-frequency current is supplied such that the high-frequency current flows through the ground electrode base material 85 and the metallic shell 40, whereby the ground electrode base material 85 is resistance-welded to the metallic shell 40 (section (b) of
In the sixth step, bulges of the juncture portion formed as result of melting of the constituent materials of the ground electrode base material 85 and the metallic shell 40 are removed by means of, for example, cutting work or polishing work (section (c) of
Other structural examples of the juncture portion between the ground electrode 13 and the metallic shell 40 in the first embodiment will be described with reference to
The sectional structure shown in
In the sectional structure of the center cross section CP shown in
As described above, in the spark plug 10 of the first embodiment, the heat resistance of the ground electrode 13 is enhanced by providing the intermediate portion 51 in the ground electrode 13. Also, the constituent material of the intermediate portion 51 and external foreign substances are restrained from existing at the welding interface between the ground electrode 13 and the metallic shell 40. Therefore, the strength of welding of the ground electrode 13 to the metallic shell 40 is increased. Furthermore, the spark plug 10 of the first embodiment can achieve various actions and effects explained in the description of the embodiment.
Structure of the Juncture Portion of the Ground Electrode
In the spark plug 10 of the second embodiment, in both the outer circumferential side region and the inner circumferential side region, the rear end portion of the skin portion 50 expands in a direction away from the center axis EX such that the distance between the center axis EX and the rear end portion increases toward the rear end side. Further, a rear end portion of the core portion 52 greatly bulges toward the outer and inner circumferential sides and is in contact with the skin portion 50. Even in the spark plug 10 of the second embodiment, in the center cross section CP, the second multilayer portion 56 in which the skin portion 50 and the core portion 52 are in direct contact with each other is formed on the rear end side of the first multilayer portion 55.
Also, in the spark plug 10 of the second embodiment, at least two intersections PI are formed in the second multilayer portion 56 in the center cross section CP. The two intersection points PI are located on opposite sides of the center axis EX of the base end portion 13a. The first intersection point PI is located in the outer circumferential side region, and the second intersection point PI is located in the inner circumferential side region. As described above, in the spark plug 10 of the second embodiment, the constituent material of the intermediate portion 51, etc. are restrained from existing at the welding interface in both the outer circumferential side region and the inner circumferential side region, whereby the welding strength is increased further.
In the spark plug 10 of the second embodiment, two first boundary lines BLa extend toward the rear end side from the two intersection points PI such that the distances between the first boundary lines BLa and the center axis EX increase toward the rear end side. According, in both the outer circumferential side region and the inner circumferential side region, the strength of welding of the skin portion 50 to the metallic shell 40 is increased.
In addition, in the spark plug 10 of the second embodiment, in the center cross section CP, the second boundary line BLb, which is the boundary line between the rear end portion of the core portion 52 and the metallic shell 40, is curved toward the metallic shell 40 side. More specifically, the second boundary line BLb bulges into a curved shape to depict a curved line which is convex toward the metallic shell 40 side. As a result, as compared with the case where the second boundary line BLb is flat, the area of contact between the core portion 52 and the metallic shell 40 increases and thus the strength of welding between the core portion 52 and the metallic shell 40 is increased.
Also, in the spark plug 10 of the second embodiment, in the center cross section CP, the rear end portion of the core portion 52 bulges outward toward the intersection point PI in the outer circumferential side region and bulges inward toward the intersection point PI in the inner circumferential side region. More specifically, in both the outer circumferential side region and the inner circumferential side region, the outline of the rear end portion of the core portion 52 is convex toward the corresponding intersection point PI as a result of the second boundary line BLb depicting a curved line convex toward the rear end side and the third boundary line BLc depicting a curved line convex toward the forward end side. As a result, the area of contact between the core portion 52 and the metallic shell 40 increases further, whereby the strength of welding between the core portion 52 and the metallic shell 40 is increased further.
In the spark plug 10 of the second embodiment as well, as having been described in the first embodiment, it is desired that the welding depth L—which is the maximum value of the distance between the imaginary straight line representing the imaginary plane BP and the boundary line between the ground electrode 13 and the metallic shell 40—be greater than 0 mm and not greater than 1.2 mm. Also, it is desired that each of the curved portions 61c and 62c of the skin portion 50 have a curvature radius of 0.5 mm or greater.
Step of Joining the Ground Electrode
Subsequently, the machined rear end portion 83s is brought into contact with the open end 42 of the metallic shell 40 on the forward end side, and resistance welding is performed (section (c) of
After the resistance welding, as having been described in the first embodiment, bulges of the juncture portion formed as result of the resistance welding are removed by, for example, cutting work or polishing work. Subsequently, after a plating step, etc., the ground electrode base material 85 is bent toward the center axis MX of the metallic shell 40.
Other structural examples of the juncture portion between the ground electrode 13 and the metallic shell 40 described in the second embodiment will be described with reference to
The sectional structure shown in
The cross section of the juncture portion shown in
As described above, in the spark plug 10 of the second embodiment, the ground electrode 13 and the metallic shell 40 are welded to each other such that two intersection points PI are produced on the opposite sides of the center axis EX at least in the center cross section CP, whereby the strength of welding between the ground electrode 13 and the metallic shell 40 is increased. Furthermore, the spark plug 10 of the second embodiment can achieve various actions and effects similar to the actions and effects explained in the description of the first embodiment.
Experimental examples 1 through 5 regarding the juncture portions of the ground electrodes 13 having various sectional structures described in the embodiments will be described with reference to
Manufacturing Conditions of Each Sample
In each sample, the metallic shell 40 was formed of carbon steel, the skin portion 50 of the ground electrode base material 85 was formed of NCF601, the intermediate portion 51 of the ground electrode base material 85 was formed of Cu, and the core portion 52 of the ground electrode base material 85 was formed of Ni. Also, the conditions of energization control during resistance welding, the conditions of machining the rear end portion of the ground electrode base material 85, etc. were changed among the samples such that the samples had different sectional structures in the juncture portion of the ground electrode base material 85.
Types of the Sectional Structure in the Experimental Examples
The table of
Type A: the sectional structure of
Type B: the sectional structure of
Type C: the sectional structure of
Type D: the sectional structure of
Type E: the sectional structure of
Type F: the sectional structure of
Type G: the sectional structure of
Type H: the sectional structure of
The type Z corresponds to the sectional structure of the center cross section observed in a reference example. In the center cross section CP of the reference example, in both the outer circumferential side region and the inner circumferential side region, a portion of the constituent material of the metallic shell 40 intervenes between the core portion 52 and the skin portion 50 and is in direct contact with the intermediate portion 51. Therefore, the center cross section CP of the reference example have no intersection point PI at which three boundary lines BLa through BLc meet as having described in the embodiments.
Details of a Test Regarding the Reliability of Joining
In each of the experimental examples 1 through 5, any one of (a) a welding strength evaluation test, (b) a breakage strength evaluation test, (c) a shell state evaluation test, and (d) an oxidation resistance evaluation test was carried out as a test for evaluating the reliability of joining of the ground electrode base material 85. The specific procedure of each test is as follows.
(a) Welding Strength Evaluation Test:
An operation of bending a portion of the ground electrode base material 85 on the forward end side toward the center axis MX of the metallic shell 40 by an angle of about 90 degrees and bending that portion back to the straight state was repeated until the ground electrode base material 85 fractured, and the number of times of the bending operation before occurrence of fracture was counted. Notably, the position at which the ground electrode base material 85 was bent was set to a position shifted from the rear-end-side end portion (the juncture portion) of the ground electrode base material 85 toward the forward end side by about 1 mm. One was added to the number of times of bending the ground electrode base material 85 when the ground electrode base material 85 was bent toward the center axis MX by the angle of about 90 degrees, and one was added to the number of times of bending when the ground electrode base material 85 was bent back to the straight state.
(b) Breakage Strength Evaluation Test:
A weight of 50 g was attached to the forward end portion of the ground electrode base material 85, vibration was applied under the following conditions, and the time elapsed before the ground electrode base material 85 fractured was measured.
Vibration Conditions
Frequency: 50 Hz-200 Hz
Frequency variation period (time over which the frequency is changed from the upper limit to the lower limit or is changed from the lower limit to the upper limit): 0.5 min
Acceleration: 5 G
(c) Shell State Evaluation Test:
Presence or absence of a region where Cu (the constituent material of the intermediate portion 51) intruded into the metallic shell 40 was visually checked in the center cross section CP of each sample.
(d) Oxidation Resistance Evaluation Test:
A temperature load was applied to each sample by subjecting each sample to a predetermined number of temperature cycles in which each sample was periodically and alternatingly placed in a high temperature environment and a low temperature environment, and a change in the width of the ground electrode base material 85 between a point before the application of the temperature load and a point after application of the temperature load was inspected. More specifically, a temperature load was applied to each sample under the following conditions, and the ratio (T2/T1) of the width T2 of the ground electrode base material 85 after the application of the temperature load to the width T1 of the ground electrode base material 85 before the application of the temperature load was obtained.
Conditions of the Temperature Load
Temperature of the high temperature environment and exposure time: 1100° C., 2 minutes
Temperature of the low temperature environment and exposure time: room temperature (about 20° C.), 1 minute
Number of cycles during which the temperature load was applied: 10,000 cycles
The test results obtained in Experimental example 1 show that Sample S13 was the highest in welding strength, Sample S12 was the second highest in welding strength, and Sample S11 was the lowest in welding strength. These test results reveal that when at least one intersection point PI is present in the center cross section CP, the welding strength is increased, and when the intersection point PI is present on the opposite sides of the center axis EX, the welding strength is increased further.
Sample S23 had a sectional structure of the type F, and the first boundary lines BLa in its center cross section CP extended from the two intersection points PI along the direction orthogonal to the center axis EX. In contrast, Sample S24 had a sectional structure of the type H, and the first boundary lines BLa in its center cross section CP extended from the two intersection points PI toward the rear end side such that the distances between the first boundary lines BLa and the center axis EX increased toward the rear end side.
The test results show that Sample S22 was higher in welding strength than Sample S21. Also, the test results show that Sample S24 was higher in welding strength than Sample S23. As described above, in the case where the first boundary line(s) BLa extends toward the rear end side such that the distance(s) between the first boundary line(s) BLa and the center axis EX increases toward the rear end side, the welding strength is higher as compared with the case where the first boundary line(s) BLa extends along the direction orthogonal to the center axis EX. Also, like the test results in Experimental example 1, the test results in Experimental example 2 show that Samples S23 and S24 having two intersection points PI were higher in welding strength than Samples S21 and S22 having a single intersection point PI.
The test results obtained in Experimental example 3 show that, as compared with Sample S31 in which the skin portion 50 did not have the curved portions 61c and 62c, Samples S32 and S33 in which the skin portion 50 had the curved portions 61c and 62c restricted fracture of the ground electrode base material 85 to a greater degree and had higher strength against breakage. In the case of Sample S32 in which the curved portions 61c and 62c had a curvature radius less than 0.5 mm, the ground electrode base material 85 fractured within 20 to 60 minutes after the start of the test. In contrast, in the case of Sample S33 in which the curved portions 61c and 62c had a curvature radius equal to or greater than 0.5 mm, the ground electrode base material 85 did not fracture within 60 minutes after the start of the test. These test results reveal that it is desired that the curved portions 61c and 62c have a curvature radius equal to or greater than 0.5 mm.
Each of Samples S41-1 through S41-5 had a sectional structure of the type B and each of Samples S42-1 through S42-5 had a sectional structure of the type C. In each of Samples S41-1 through S41-5 and Samples S42-1 through S42-5, a single intersection point PI was present in the center cross section CP. Each of Samples S43-1 through S43-5 had a sectional structure of the type E and each of Samples S44-1 through S44-5 had a sectional structure of the type G. In each of Samples S43-1 through S43-5 and Samples S44-1 through S44-5, two intersection points PI were present in the center cross section CP.
The results of the welding strength evaluation test performed in Experimental example 4 show that in each of sample groups having different types of sectional structures, the welding strength increased with the welding depth L when the welding depth L was within the range of 0 to 1.2 mm. Also, the results of the shell state evaluation test performed in Experimental example 4 shows that in each of sample groups having different types of sectional structures, intrusion of Cu from the ground electrode base material 85 into the metallic shell 40 was not observed when the welding depth L was within the range of 0 to 1.2 mm. These test results reveal that the welding depth L is desirable to be greater than 0 mm, more desirable to be 0.2 mm or greater, and particularly desirable to be 0.4 mm or greater.
Meanwhile, the results of the welding strength evaluation test performed in Experimental example 4 show that the samples in which the welding depth L was 1.5 mm had the same welding strength as the samples in which the welding depth L was 1.2 mm. Also, in the shell state evaluation test, intrusion of Cu from the ground electrode base material 85 into the metallic shell 40 was observed in the samples in which the welding depth L was 1.5 mm. These test results reveal that it is preferred that the welding depth L be smaller than 1.5 mm and it is more preferred that the welding depth L be equal to or smaller than 1.2 mm.
In the welding strength evaluation test performed in Experimental example 4, for the samples having the same welding depth L, the same results as those obtained in the above-described Experimental example 1 were obtained. Namely, the samples having two intersection points PI in the center cross section CP exhibit higher welding strength than the samples having a single intersection point PI in the center cross section CP. Also, for the samples having the same welding depth L and the same number of intersection point(s) PI in the center cross section CP, the same results as those obtained in the above-described Experimental example 2 were obtained. Namely, the sample in which the first boundary line(s) BLa extends toward the rear end side such that the distance between the first boundary line(s) BLa and the center axis EX increases toward the rear end side exhibits higher welding strength than the sample in which the first boundary line(s) BLa extends along the direction orthogonal to the center axis EX.
Experimental Example 5
In the sample number of each sample in Experimental example 5, when samples have the same two-digit number following the symbol “S,” the sectional structures of these samples are of the same type. Samples whose sample numbers start with “S51” have a sectional structure of the type A (
Samples whose sample numbers start with “S55” have a sectional structure of the type E (
The samples tested in Experimental example 5 have different welding depths. Namely, in samples whose sample numbers end with “1,” “2,” or “3,” the welding depth L is greater than 0 and less than 0.2 mm. In samples whose sample numbers end with “4,” “5,” or “6,” the welding depth L is 0.2 mm. In samples whose sample numbers end with “7,” “8,” or “9,” the welding depth L is 0.4 mm. In samples whose sample numbers end with “10,” “11,” or “12,” the welding depth L is 1.2 mm. In samples whose sample numbers end with “1,” “4,” “7,” or “10,” the Al content of the skin portion 50 is 0 wt. %. In samples whose sample numbers end with “2,” “5,” “8,” or “11,” the Al content of the skin portion 50 is 2.5 wt. %. In samples whose sample numbers end with “3,” “6,” “9,” or “12,” the Al content of the skin portion 50 is 5.0 wt. %.
The results of the oxidation resistance evaluation test performed in Experimental example 5 show that, irrespective of the sectional structure type and the welding depth L, the value of T2/T1 became 0.5 or greater when the Al content of the skin portion 50 was greater than 0 wt. %. The greater the amount by which the width of the ground electrode base material 85 decreased as a result of a temperature load, the smaller the value of T2/T1. Namely, the results in Experimental example 5 show that when the ground electrode base material 85 is formed such that the Al content of the skin portion 50 is greater than 0 wt. %, a change in its shape due to a temperature load is suppressed, and its durability is enhanced. Conceivably, these advantage effects are attained for the following reason. Since Al is contained in the skin portion 50, oxide film is formed on the first outer surface 61 and the second outer surface 62 of the skin portion 50, whereby the oxidation resistance of the ground electrode base material 85 is enhanced. These results reveal that the Al content of the skin portion 50 is desirably greater than 0 wt. %.
Meanwhile, the results of the welding strength evaluation test performed in Experimental example 5 show that, irrespective of the sectional structure type and the welding depth L, the samples in which the Al content of the skin portion 50 was 2.5 wt. % had higher welding strength as compared with the samples in which the Al content of the skin portion 50 was 5.0 wt. %. Conceivably, the reason why an increase in the Al content of the skin portion 50 from 2.5 wt. % to 5.0 wt. % resulted in a decrease in welding strength is that oxygen atoms within the oxide film formed on the skin portion 50 migrate to the welding interface. These results reveal that the Al content of the skin portion 50 is desirably less than 5.0 wt. %, and is more desirably equal to or less than 2.5 wt. %.
Moreover, the results of the welding strength evaluation test performed in Experimental example 5 show the flowing. When the welding strengths of the samples having the same welding depth L and the same Al content in the skin portion 50 are compared with one another, there is found a tendency that the samples having two intersection points PI in the center cross section CP (
D1. Modification 1:
In the above-described embodiments (including their variations. This applies to the description of modifications described below), the skin portion 50 is formed as the most outer layer of the ground electrode 13. However, a different material layer may be formed on the outer side of the skin portion 50 of the ground electrode 13. In the above-described embodiments, the layer of the skin portion 50 and the layer of the intermediate portion 51 are formed to be located adjacent to each other, and the layer of the intermediate portion 51 and the layer of the core portion 52 are formed to be located adjacent to each other. However, a different material layer may be interposed between the layer of the skin portion 50 and the layer of the intermediate portion 51 or between the layer of the intermediate portion 51 and the layer of the core portion 52.
D2. Modification 2:
In the above-described embodiments, there is described a structure in which, in the center cross section CP, the first boundary line BLa extends toward the rear end side such that the distance between the first boundary line BLa and the center axis EX of the base end portion 13a increases toward the rear end side in both the outer circumferential side region and the inner circumferential side region. However, in the center cross section CP, the first boundary line BLa may extend toward the rear end side such that the distance between the first boundary line BLa and the center axis EX of the base end portion 13a increases toward the rear end side in only one of the outer circumferential side region and the inner circumferential side region.
D3. Modification 3:
In the above-described embodiments, there is described the structure in which, in the center cross section CP, the curved portions 61c and 62c are formed on the first outer surface 61 and the second outer surface 62, respectively, of the skin portion 50. However, in the center cross section CP, the curved portion is not required to be formed on both the first outer surface 61 and the second outer surface 62 of the skin portion 50, and the curved portion may be formed on only one of the first outer surface 61 and the second outer surface 62 of the skin portion 50. Also, in the case of the structure in which, in the center cross section CP, the skin portion 50 has the two curved portions 61c and 62c, only one of the curved portions 61c and 62c may have a curvature radius of 0.5 mm or greater. Notably, as exemplified in the structures of the variations described in each embodiment, the skin portion 50 is not required to have the curved portions 61c and 62c in the center cross section CP. However, the curved portions 61c and 62c are desirably formed on both the first outer surface 61 and the second outer surface 62 of the skin portion 50 in the center cross section CP, because the strength of the ground electrode 13 can be increased further.
D4. Modification 4:
In the above-described embodiments, in the center cross section CP, the second multilayer portion 56 in which the skin portion 50 and the core portion 52 are in direct contact with each other is formed in both the inner circumferential side region and the outer circumferential side region. However, the second multilayer portion 56 may be formed in at least one of the inner circumferential side region and the outer circumferential side region.
D5. Modification 5:
In the sectional structure of the second embodiment shown in
D6. Modification 6:
The skin portion 50, the intermediate portion 51, and the core portion 52 in the above-described embodiments may be formed of metallic materials other than the materials specifically shown in the embodiments as examples. The skin portion 50 may be formed of a metallic material other than an Ni-based heat resisting alloy, the intermediate portion 51 may be formed of a metal other than Cu, and the core portion 52 may be formed of a material other than Ni.
The present invention is not limited to the above described embodiments, examples, and modifications and may be embodied in various other forms without departing from the spirit of the invention. For example, the technical features in the embodiments, examples, and modifications corresponding to the technical features in the modes described in Summary of the Invention can be appropriately replaced or combined to solve some of or all the foregoing problems or to achieve some of or all the foregoing effects. A technical feature which is not described as an essential feature in the present specification may be appropriately deleted.
10: spark plug
11: center electrode
11
e: forward end portion
13: ground electrode
13
a: base end portion
13
b: distal end portion
14: tip portion
20: insulator
21: axial hole
30: terminal
31: rear end portion
35: resistor
36, 37: glass seal material
40: metallic shell
41: bore
42: open end
43: screw portion
45: tool engagement portion
47: crimped portion
50: skin portion
50
t: end portion
51: intermediate portion
52: core portion
52
t: end portion
55: first multilayer portion
56: second multilayer portion
61: first outer surface
61
s: straight portion
61
c: curved portion
62: second outer surface
62
s: straight portion
62
c: curved portion
70: first base material
71: core portion base material
72: intermediate portion base material
72
h: bore
75: second base material
75
h: bore
78: third base material
80: extended base material
81: forward-end-side portion
82: forward end portion
83, 83a: rear end portion
85: ground electrode base material
CP: center cross section
BLa, BLb, BLc: boundary line
PI: intersection point
Number | Date | Country | Kind |
---|---|---|---|
2015-144579 | Jul 2015 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
8884503 | Nagasawa et al. | Nov 2014 | B2 |
9270087 | Nagasawa et al. | Feb 2016 | B2 |
20050179353 | Watanabe | Aug 2005 | A1 |
20100019644 | Fukuzawa | Jan 2010 | A1 |
20100096968 | Ban | Apr 2010 | A1 |
20100275870 | Kameda et al. | Nov 2010 | A1 |
20130214671 | Nagasawa | Aug 2013 | A1 |
20140368105 | Nagasawa et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
103190043 | Jul 2013 | CN |
106415956 | Feb 2017 | CN |
2012-099496 | May 2012 | JP |
WO-2015111634 | Jul 2015 | WO |
Entry |
---|
Office Action issued in corresponding Chinese Patent Application No. 201610579766.9 dated Nov. 23, 2017. |
Number | Date | Country | |
---|---|---|---|
20170025822 A1 | Jan 2017 | US |