The present invention relates to spark-ignited internal combustion engines.
In internal combustion engines, it is conventional to initiate combustion with the use of spark plugs. In conventional spark plugs, a body which defines a longitudinal axis is provided. The body has, adjacent one end thereof, a metal ring which is orientated coaxially with the longitudinal axis. The body further includes a metal tube which: is orientated coaxially with the longitudinal axis; extends from the ring towards the other end of the body; and is externally-threaded for engagement in a corresponding threaded bore in an engine block in use. A porcelain insulator also forms part of the body. The insulator has a portion disposed inside the tube. This portion extends axially, from inside the tube, beyond the ring, and has an elongate void extending axially therethrough. An elongate positive electrode occupies the void and extends axially beyond the insulator to a terminus which defines the one end of the body. Conventional spark plugs also include an electrode leg. The electrode leg has two arms transversely connected to one another, with one arm extending axially from the ring and beyond the electrode and the other arm extending radially inwardly from the one arm so as to terminate in an end portion that is axially-spaced from the terminus. The spark gap in this conventional plug is the space defined between the positive electrode and the electrode leg.
A spark plug forms one aspect of the invention. The plug, which is for use with an engine block/cylinder head having a threaded bore and is also for use with a spark plug wrench and an ignition wire, comprises a nut portion, a coupling portion, an insulator portion, a positive electrode and a ground electrode. The nut portion is adapted to be turned by the wrench. The coupling portion extends from the nut portion and is adapted to receive the ignition wire. The insulator portion extends from the nut portion and away from the coupling portion to an end. The positive electrode extends through and beyond the end of the insulator portion. The ground electrode includes a tubular metal portion and a cap portion to which the tubular portion extends. The tubular metal portion: extends from the nut portion in circumferentially surrounding relation to the insulator portion; terminates such that a portion of the insulator portion extends beyond the tubular metal portion; is orientated coaxially about and defines a longitudinal axis; and is externally-threaded for engagement in the threaded bore in said engine block in use. The cap portion is disposed in spaced relation to the insulator portion and defines a void having: a central portion into which the positive electrode extends; an annular channel surrounding the central portion; and a plurality of lobes, each being positioned with respect to the central portion in a manner analogous to the placement of the planet gears with respect to the sun gear in a planetary gear. The cap also has a central surface that is axially spaced from that portion of the insulator that protrudes beyond the tubular metal portion; and a convex surface that surrounds and extends to the central surface.
According to another aspect of the invention, the central surface can be orientated substantially normally to the longitudinal axis and substantially coplanar with the end of the positive electrode.
According to another aspect of the invention, the plurality of lobes can consist of three to seven lobes.
According to another aspect of the invention, if
According to another aspect of the invention, the plurality of lobes can consist of seven lobes.
According to another aspect of the invention, the cap portion can have radially inwardly disposed fingers which separate the lobes from one another, each finger having a terminus to which said each finger extends, the thickness of the finger at the terminus as measured in the longitudinal direction being substantially equal to the length of that portion of the positive electrode that extends beyond the insulation.
Other advantages, features and characteristics of the present invention, as well as methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description and the appended claims with reference to the accompanying drawings, the latter being briefly described hereinafter.
As an initial matter, the spark plug 20 according to the exemplary embodiment shown in
The plug 20 also comprises, as is conventional, a nut portion 22, a coupling portion 24, an insulator portion 26, a positive electrode 28 and a ground electrode 30.
As is conventional: the nut portion 22 is adapted to be turned by the wrench; the coupling portion 24 extends from the nut portion 22 and is adapted to receive the ignition wire; the insulator portion 26 extends from the nut portion 22 and away from the coupling portion 24 to an end; the positive electrode 28 extends through and beyond the end of the insulator portion 26. Also as is conventional, the ground electrode 30 includes a tubular metal portion 32 which: extends from the nut portion 22 in surrounding relation to the insulator portion 26; terminates such that a portion 33 of the insulator portion 26 extends beyond the tubular metal portion 32; is orientated coaxially about and defines a longitudinal axis X-X and is externally-threaded for engagement in the threaded bore in said engine block in use.
However, in this spark plug, there is provided a cap portion 34 to which the tubular portion 32 extends and is circumferentially connected.
The cap portion 34:
The geometry of the cap portion is such that if R1 is the radius of each planet gear, R2 is the distance from the axis of each planet gear to the axis of the sun gear, R3 is the outer radius of the ground electrode and R4 is the outer radius of the annular channel, then R1:R2:R3:R4:R5 is about 0.12:0.305:0.475:0.25
The spark plug of the exemplary embodiment has proven to be of substantial advantage in numerous tests that have been carried out.
Table 1 shows dynamometer tests carried out using a CRA Super Series Template 360 Chev Racing Engine with a 9:1 compression. Timing was set at 34. The carburetor used was a Holly 390 with 77 jets. Oil used was 15/40 viscosity. Fuel octane: 110. Load factor was set at 1.21. The left columns show developed torque and HP at RPM values between 5500 and 8000 using a set of new, standard Autolite AR3932X plugs. The middle columns shows the same data set for the same plugs, modified with the inventive cap portion. The right columns shown the torque and horsepower gains, which manifest at all measured speeds.
Table 2 shows dynamometer tests carried out using a NASCAR-approved, NCATS Series Restricted 1⅛″ engine with 10:1 compression. Timing was set at 30. The carburetor used was a Holly 390 with 64/64 jets. Oil used was 15/40 viscosity. Fuel octane: 94. Load factor was set at 1.21. The left columns show developed torque and HP at RPM values between 4500 and 6500 using a set of new, standard Autolite AR473 plugs. The middle columns show the same data set for the same plugs, modified with the inventive cap portion. The right columns shown the torque and horsepower gains, which manifest all at all measured speeds.
Table 3 shows dynamometer tests carried out using a Chevy Big Block at 12:1 Compression. Timing was set at 32. The carburetor used was a Holly 850 with 77 jets. Oil used was 15/40 viscosity. Fuel octane: 110. Load factor was set at 0.77. The left columns show developed torque and HP at RPM values between 4500 and 7000 using a set of new, standard Autolite AR3932X plugs. The middle columns show the same data set for the same plugs, modified with the inventive cap portion. The right columns shown the torque and horsepower gains, which manifest at all but 5500-5700 RPM.
Table 4 shows dynamometer tests carried out using a Chevy Big Block at 12:1 Compression, 0.045 gap. Timing was set at 32. The carburetor used was a Holly 850 with 77 jets. Oil used was 15/40 viscosity. Fuel octane: 110. Load factor was set at 0.77. The left columns show developed torque and HP at RPM values between 4500 and 7000 using a set of new, standard Autolite AR3932X plugs. The middle columns show the same data set for the same plugs, modified with the inventive cap portion. The right columns shown the torque and horsepower gains, which manifest at all but 5500-5800 RPM.
Tables 5 and 6 show dynamometer tests for a Chevy Big Block. Timing was set at 32. The carburetor used was a Holly 850 with 77/77 jets. Oil used was 15/40 viscosity. Fuel octane: 110. Load factor was set at 0.77. In Table 5, the three left columns show developed horsepower at RPM between 4500 and 7000 using a set of new AR3932X plugs. The three right columns show the same data for the same plugs, modified with the inventive cap portion. Horsepower gains were obtained at all speeds but for 5600 RPM. In Table 6, the three left columns show developed torque at RPM between 4500 and 7000 using a set of new AR3932X plugs. The three right columns show the same data for the same plugs, modified with the inventive cap portion. Torque gains were obtained at all speeds but for 5600 RPM
In each of the examples, reference is made to plugs that have been modified with the inventive cap portion. In this regard, it will be appreciated that, in each case, the reference/baseline plug mentioned was modified by grinding off the electrode leg thereof and welding a ring thereto, as illustrated by
An exemplary ring is shown in
However, it will be understood that these dimensions were selected such that the distance between the positive electrode and the ring is the distance specified by the manufacturer of the vehicle with which the modified plug was used. Variation from these dimensions are possible and indeed would be adopted in other engine applications to meet the specifications of the engine manufacturer.
Further, whereas a seven lobe structure is disclosed, the plurality of lobes can consist of three to seven lobes.
Accordingly, it should be understood that the invention is to be limited only by the accompanying claims, purposively construed.
This application is a continuation of U.S. patent application Ser. No. 14/462,184 filed Aug. 18, 2014, which is a continuation-in-part of U.S. patent application Ser. No. 14/233,522, filed Apr. 28, 2014, which is national stage entry application of PCT/CA2011/001184, filed Oct. 24, 2011, which claims priority of U.S. Provisional Application No. 61/509,270, filed Jul. 19, 2011, all of which are incorporated herein in their entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
5731654 | Benedikt et al. | Mar 1998 | A |
20090140623 | Ugalde | Jun 2009 | A1 |
20090241321 | Farrell et al. | Oct 2009 | A1 |
20100133976 | Siegel | Jun 2010 | A1 |
20110025186 | Kunitomo et al. | Feb 2011 | A1 |
20110071874 | Schneersohn et al. | Mar 2011 | A1 |
Number | Date | Country |
---|---|---|
0069993 | Jan 1983 | EP |
Entry |
---|
International Search Report and Written Opinion for PCT/CA2011/001184, dated Mar. 7, 2012. |
Extended European Search Report CTM Application No. 11869542.8-1801 / 2735065 PCT/CA2011001184 dated Oct. 22, 2014. |
Number | Date | Country | |
---|---|---|---|
20150171599 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
61509270 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14462184 | Aug 2014 | US |
Child | 14628621 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14233522 | US | |
Child | 14462184 | US |