The present disclosure generally relates to a spark plug and, more particularly, to a spark plug having an insulator with an increased taper or angled surface along a portion at which the insulator projects past the spark plug shell.
When in use, spark plugs experience explosive forces generated from the combustion of fuel within the combustion chamber. These explosive forces are exerted against the portions of the spark plug that project into the combustion chamber, including the exposed portion of the insulator. The unexposed portion of the insulator is held in place by the spark plug shell within a bore of the cylinder head. The explosive forces are exerted against the exposed portion of the insulator while the unexposed portion of the insulator is held in place thereby resulting in a bending moment or force on the insulator, which can result in weakening or fracturing of the insulator.
According to one embodiment, there is provided a spark plug including: a metallic shell; an insulator at least partially surrounded by the metallic shell; a center electrode disposed within a bore of the insulator; and a ground electrode attached to the metallic shell. The insulator includes a first outer surface at least partly along an exposed portion and a second outer surface at least partly along an unexposed portion. The exposed portion includes a portion of the insulator that extends from an exposed-unexposed interface to a tip of the insulator. The first outer surface extends between the exposed-unexposed interface to a tip merge portion adjacent a distal end of the insulator. The first outer surface and the second outer surface meet at a nose surface transition. At the nose surface transition, the first outer surface is disposed at a first angle with respect to a central axis of the spark plug, and the second outer surface is disposed at a second angle with respect to the central axis of the spark plug. The first angle is larger than the second angle, and the nose surface transition is located within the unexposed portion or at the exposed-unexposed interface.
According to various embodiments, this spark plug may further include any one of the following features or any technically-feasible combination of some or all of these features:
According to another embodiment, there is provided a spark plug including: a metallic shell; an insulator at least partially surrounded by the metallic shell; a center electrode disposed within a bore of the insulator; and a ground electrode attached to the metallic shell. The insulator includes a first outer surface at least partly along an exposed portion and a second outer surface at least partly along an unexposed portion. The exposed portion includes a portion of the insulator that extends from an exposed-unexposed interface to a tip of the insulator. The first outer surface and the second outer surface meet at a nose surface transition. The first outer surface is conical between the nose surface transition and a distal end of the insulator. At the nose surface transition, the first outer surface is disposed at a first angle with respect to a central axis of the spark plug, and the second outer surface is disposed at a second angle with respect to the central axis of the spark plug. The first angle is larger than the second angle, and the difference between the first angle and the second angle is between 1° and 20°.
According to another embodiment, the difference between the first angle and the second angle is between 1° and 10°, inclusive.
According to yet another embodiment, there is provided a spark plug including: a metallic shell; an insulator at least partially surrounded by the metallic shell; a center electrode disposed within a bore of the insulator; and a ground electrode attached to the metallic shell. The insulator includes a first outer surface at least partly along an exposed portion, a second outer surface at least partly along an unexposed portion, and a third outer surface at least partly along the unexposed portion. The exposed portion includes a portion of the insulator that extends from an exposed-unexposed interface to a tip of the insulator. The first outer surface and the second outer surface meet at a first nose surface transition, and the second outer surface and the third outer surface meet at a second nose surface transition. At the first nose surface transition, the first outer surface is disposed at a first angle with respect to a central axis of the spark plug, and the second outer surface is disposed at a second angle with respect to the central axis of the spark plug. The first angle is larger than the second angle, and the second nose surface transition is located within the unexposed portion.
Preferred exemplary embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
The spark plug described herein includes a tapered insulator that includes an additional taper or angled surface at or around a point at which the insulator projects past the spark plug shell (an exposed portion of the insulator). In many embodiments, this additional taper includes a surface that is angled at an angle greater than that of the insulator surface that does not project past the spark plug shell (an unexposed portion of the insulator). This change of angle at the exposed portion along an outer insulator surface enables the insulator to maintain thickness at the unexposed portion within the shell while enabling the exposed portion of the insulator to withstand forces caused from combustion of gas within the combustion chamber. In this way, the insulator can maintain dielectric strength while helping to mitigate damage caused by the explosive forces generated within the combustion chamber.
When a spark plug is in use within an internal combustion engine, the spark plug experiences forces from the combustion of fuel within the combustion chamber, such as explosive forces. These forces act against the insulator (predominantly at the exposed portion of the insulator) and can cause a bending force or moment to be exerted on the insulator, which can lead to weakening or fracturing of the insulator. To combat this bending force, the exposed insulator surface (or at least a portion thereof) can be angled or tapered at an angle with respect to the central axis of the spark plug. The use of an increased or relatively high angle at this exposed insulator surface can result in a smaller exposed cross-sectional area, which refers to a cross-sectional or profiled area that is encountered by a gas flow that is orthogonal to the central axis of the spark plug. In other words, the exposed cross-sectional area coincides with a plane orthogonal to the central axis of the spark plug taken at the main force direction on the insulator core nose. Moreover, use of a larger angle for this exposed insulator surface causes a larger proportion of the explosive forces to be directed upward in a compressive manner thereby combating the bending forces experienced by the insulator. Thus, the larger the angle of the exposed insulator surface, the more the forces are distributed into a compressive force and less the forces are distributed into a bending force. And, in general, use of this larger angle (and, thus, smaller exposed cross-sectional area) can result in less of the overall force being applied to the insulator. In at least some embodiments, in order to maximize this angle without reducing the mechanical, electrical, and thermal performance of the insulator, it is advantageous to maintain the diameter of the insulator at all locations inside the shell. Therefore, in one embodiment, provided a set internal bore thickness or diameter of the metal shell, the thickness of the insulator at the unexposed portion should not be angled at the relatively high angle of the exposed insulator portion since doing so would result in the insulator having to be unacceptably thin, which would result in a commensurate fall in mechanical, thermal, and especially electrical performance. However, outside the grounded metallic shell, these considerations become secondary to the forces applied by gas motion and an increase in angle is desirable. Thus, at least according to one embodiment, the result is that it is beneficial to have a change in angle as the insulator passes through the end of the shell, where the angle at the exposed portion of the insulator is higher than at the unexposed portion.
With reference to
The center electrode 12 projects past the shell 16 of the spark plug 10 and includes a tip 13 (
The insulator 14 is an elongated and generally cylindrical component that is made from an electrically insulating material and is designed to isolate the center electrode 12 from the metallic shell 16 so that high-voltage ignition pulses in the center electrode are directed to the spark gap G. The insulator 14 may be comprised of any operable ceramic-based material, and in one embodiment, includes an alumina (Al2O3) based ceramic material. Alumina-based ceramics in particular tend to have relatively high mechanical and dielectric strength, as well as high electrical resistivity and low dielectric loss, and are known to retain these properties over a relatively wide temperature range.
The insulator 14 includes a nose portion 30, an intermediate portion 32, and a terminal portion 34; however, other configurations or embodiments may be implemented. The intermediate portion 32 of the insulator extends in the axial direction between an external step 36 and an external locking feature 38. In the particular embodiment illustrated in
The terminal portion 34 is at the opposite end of the insulator 14 as the nose portion 30 and the terminal portion 34 extend in the axial direction between the external locking feature 38 and a distal end 44. In the illustrated embodiment, the terminal portion 34 is quite long; however, it may be shorter and/or have any number of other features, like annular ribs. The spark plug 10 is not limited to the illustrated embodiment and may utilize any combination of other known spark plug components, such as terminal studs, internal resistors, internal seals, various gaskets, precious metal elements, etc., to cite a few of the possibilities. It should be pointed out that spark plug 10 is simply a non-limiting example of a plug that may utilize the insulator described herein. The insulator may be used with any number of other types of spark plugs and/or ignitors, such as, but not limited to, those having: J-gap, annular, single gap, multi gap and/or other types of spark gap arrangements; precious metal tips on both the center and ground electrodes, precious metal tips on only one of the center or ground electrodes, no precious metal tips, multi piece precious metal tip assemblies, single piece precious metal tips, precious metal pieces in the form of rivets, rods, cylinders, disks, pads, protrusions, annular rings, annular sleeves and/or other embodiments; as well as any other suitable spark plug and/or ignitor configuration. The insulator described herein is not limited to any particular spark plug or ignitor.
A radial distance L between the interior surface of the shell 16 and the exterior surface of the insulator 14 (such as at the exposed-unexposed interface 54 or at the nose surface transition 70) can be greater than 1 mm (millimeter), or in some embodiments can be equal to 1 mm. Additionally, at least in some embodiments, a radial distance L taken at the exposed-unexposed interface 54 (or at the nose surface transition 70) can be greater than the spark gap G. The radial distance L can be greatest at the exposed-unexposed interface 54 (or the end 52 of the shell 16) when compared to a radial distance taken at any other point of the unexposed portion 48 along an outer surface of the insulator. And, the radial distance L can be smallest at the exposed-unexposed interface 54 (or nose surface transition 70) when compared to any other radial distances taken between the ground electrode and the insulator at any other point of the exposed portion 50 along an outer surface of the insulator. In such a case, these radial distances are measured along an axis orthogonal to the central axis C (i.e., along a radial direction with respect to the central axis C). Although the radial distance is typically used to describe a distance between an interior surface of the metallic shell 16 and an exterior surface of the insulator 14, there may be axial locations in which the metallic shell 16 is not present, such as axial locations that correspond to the exposed portion 50. In such instances, the radial distance can be measured in a radial direction between an exterior surface of the insulator 14 and an interior surface of the ground electrode 18.
Also, as shown in
The exposed portion 50 of the nose portion 30 of the spark plug 10 is exposed to the combustion chamber, as well as thermal and mechanical forces therein. The thickness of the insulator 14 may be set at every point to meet the mechanical strength, thermal behavior, and dielectric strength of the system in which the insulator 14 (or spark plug 10) is to be used. In many instances, setting the thickness of the insulator 14 results in a tradeoff between the dielectric strength of the insulator 14 (such as at portions that are inside the shell 16) and the forces generated by gas motion acting on the nose portion 30, particularly at the exposed portion 50 of the nose portion 30. In some instances, use of a thicker insulator 14 enables the insulator 14 to withstand higher mechanical and electrical loads, but also results in an increased exposed cross-sectional area, which can result in increased bending forces since the area exposed to the combustion forces is greater. The exposed cross-sectional area refers to the cross-sectional or profiled area of the exposed portion 50 taken (or sliced) at the center of the insulator 14 when viewed in the radial direction, such as that which is shown in
The extent to which the nose portion 30 axially extends or protrudes beyond the end of the metallic shell 16 may be greater or less than that shown in
The unexposed portion 48 of the nose portion 30 includes a nose root portion 56 and an unexposed body portion 58. The nose root portion 56 serves as a transition from the external step (or gasket seat) 36 of the insulator 14 and the unexposed body portion 58, and can serve as a first end of the nose portion 30. The external step 36 can be or can include a surface for abutting an internal gasket 60 that seals off the internal bore 28 of the shell 16 so as to prevent gases from the combustion chamber from entering the internal bore 28 when the spark plug 10 is in use.
The exposed portion 50 of the nose portion 30 includes the nose tip 46, a tip merge portion 62, and an exposed body portion 64. The nose tip 46 can include a surface that is orthogonal (or substantially orthogonal) to the central axis C. The nose tip 46 projects into the combustion chamber and beyond the shell 16. In many instances, this projection enables a well-formed spark to be generated at the spark gap G so as to provide a suitable ignition source for the fuel and air mixture in the combustion chamber. The surface of the exposed body portion 64 merges into the nose tip 46 at the tip merge portion 62, which is a rounded or radiused surface disposed between the exposed body portion 64 and the nose tip 46. In other embodiments, the tip merge portion can be omitted and a hard edge can be formed between the exposed body portion 64 and the nose tip 46. Other implementations of the nose tip 46 and tip merge portion 62 may be used.
The nose portion 30 includes a first outer surface 66 and a second outer surface 68. In many embodiments, the first outer surface 66 includes at least part of the exposed body portion 64 and the second outer surface 68 includes at least part of the unexposed body portion 58. And, in the depicted embodiment, the first outer surface 66 coincides with the exposed body portion 64 and the second outer surface 68 coincides with the unexposed body portion 58. Moreover, the first outer surface 66 (and also the exposed body portion 64) is angled or slanted at a first angle A1 with respect to the central axis C of the spark plug 10 and, thus, can be referred to as a first angled surface. Also, the second outer surface 68 (and also the unexposed body portion 58) is angled or slanted at a second angle A2 with respect to the central axis C of the spark plug 10 and, thus, can be referred to as a second angled surface. At least in this embodiment, the first angle A1 can be referred to an exposed nose angle A1 and the second angle A2 can be referred to an unexposed nose angle A2. As shown in the depicted embodiment, the exposed nose angle A1 is larger than the unexposed nose angle A2 and, thus, the nose portion 30 includes a positive change of angle ΔA1,2. The change of angle ΔA1,2 is the difference between the exposed nose angle (or first angle) A1 and the unexposed nose angle (or second angle) A2, which can be expressed as (A1−A2). This change of angle ΔA1,2 can be positive as shown in the depicted embodiment. In general, the angle of the insulator surface at the transition 54 increases from the unexposed region to the exposed region, and this transition occurs largely coplanar with the end 52 of the shell 16. Advantageously, in many embodiments, neither the first outer surface 66 nor the second outer surface 68 are parallel with the central axis C.
As discussed above, the nose portion 30 of the insulator 14 is tapered at both the unexposed portion 48 and the exposed portion 50. The exposed body portion 64 (or the exposed portion 50) is shown as having a continuous and uniform taper along its axial extent, and is angled at the exposed nose angle A1. Similarly, the unexposed body portion 58 (or the unexposed portion 48) is shown as having a continuous and uniform taper along its axial extent, and is angled at the unexposed nose angle A2. In many embodiments, the unexposed body portion 48 is non-tangential with the exposed body portion 50. This arrangement can maximize insulator volume at the unexposed portion 48 while improving bending strength at the exposed portion 50, particularly compared to exposed portions that have exposed surfaces that are generally parallel or in line with the central axis C.
The angle of the nose portion 30 abruptly transitions from the exposed nose angle A1 to the unexposed nose angle A2 at the exposed-unexposed interface 54, and this transition can be referred to as a nose surface transition 70. Thus, in this depicted embodiment, the exposed-unexposed interface 54 coincides with the nose surface transition 70 and includes a circumferential vertex (or sharp edge). In many embodiments, this circumferential vertex extends outwardly or is convex with respect to the outer surface of the insulator, as opposed to transitions at the exposed-unexposed interface that have a more concave configuration. In other embodiments, the nose surface transition 70 between the exposed nose angle A1 and the unexposed nose angle A2 can be gradual and, in particular, can be radiused or rounded. Moreover, in alternative embodiments, the nose surface transition 70 between the exposed nose angle A1 and the unexposed nose angle A2 can include a filet, chamfer, multiple sharp edges, or the like. In other embodiments, another nose surface transition can occur at a point other than the exposed-unexposed interface 54. For example, a nose surface transition can occur at a point within the shell 16 and/or at a point within the unexposed body portion 58. Or, a nose surface transition can occur at a point outside the shell 16 and at a point within the exposed body portion 64. And, in other embodiments, a plurality of nose surface transitions can be used.
In some instances, the unexposed nose angle A2 is slight or small (and, in some cases, zero) so that the thickness of the insulator 14 at the unexposed portion 48 can be sufficiently thick to withstand forces exerted during engine operation as well as maintain dielectric integrity between the ground electrode 18 and the center electrode 12 so as to prevent electrical failure of the spark plug 10. Moreover, in various embodiments, the length of the unexposed portion 48 can be extended and, in such cases, using a small (or zero) unexposed nose angle A2 along the unexposed body portion 58 can maintain insulator thickness. Moreover, other requirements may be factored into the setting or selection of insulator thickness and/or unexposed nose angle A2, including shell thread diameter.
With reference to
With reference to
As mentioned above, the exposed cross-sectional area is a function of the first angle A1 such that as the first angle A1 is increased, the exposed cross-sectional area is decreased. As mentioned above, the exposed cross-sectional area refers to a cross-sectional or profiled area that is encountered by a gas flow that is orthogonal to the central axis of the spark plug. In many instances, the force F experienced by the insulator 14 is reduced as the exposed cross-sectional area is reduced. Thus, by increasing the first angle (or exposed nose angle) A1 (and, thus, reducing the exposed cross-sectional area), the force F experienced is reduced.
With reference to
With particular reference to
The nose portion 330 includes an exposed-unexposed interface 354 at which a nose surface transition 370 takes place between a first outer surface 366 and a second outer surface 368. The first outer surface 366 can be angled or slanted at a first angle A1 and the second outer surface 368 can be angled or slanted at a second angle A2. It should be appreciated that, at least in the depicted embodiment, the first outer surface 366 coincides with (and, thus, at least partially includes) the exposed body portion 364 and the second outer surface 368 coincides with (and, thus, at least partially includes) the unexposed body portion 358. Thus, in this embodiment, the second outer surface 368 at the nose surface transition 370 is parallel to the central axis C and the second outer surface 368 is angled at a non-zero angle at a portion located near the nose root portion 356. However, in other embodiments, the nose surface transition 370 can be disposed within either the unexposed portion 348 or the exposed portion 350. In such cases, the first outer surface 366 or the second outer surface 368 can include the exposed-unexposed interface 354.
With particular reference to
The nose portion 430 includes an exposed-unexposed interface 454 at which a nose surface transition 470 takes place between the first outer surface 466 and a second outer surface 468. The first outer surface 466 can be angled or slanted at the first angle A1 and the second outer surface 468 can be angled or slanted at a second angle A2. It should be appreciated that, at least in the depicted embodiment, the first outer surface 466 coincides with (and, thus, at least partially includes) the exposed body portion 464 and the second outer surface 468 coincides with (and, thus, at least partially includes) the unexposed body portion 458. However, in other embodiments, the nose surface transition 470 can be disposed within either the unexposed portion 448 or the exposed portion 450. In such cases, the first outer surface 466 or the second outer surface 468 can include the exposed-unexposed interface 454. In this embodiment, the second outer surface 468 merges into the nose root portion 456 in a gradual fashion. Moreover, the nose root portion 456 gradually merges into an external step 436 and includes a surface 457 with a radius of curvature that is larger than that of the insulator 14 of
With particular reference to
The unexposed portion 548 includes an unexposed body portion 558 and a nose root portion 556. The unexposed body portion 558 includes a second outer surface (or first unexposed surface) 568 and a third outer surface (or second unexposed surface) 572. The second outer surface 568 forms a first nose surface transition 570 at an exposed-unexposed interface 554 with the first outer surface 566. And, the second outer surface 568 forms a second nose surface transition 574 with the third outer surface 572. Thus, the second nose surface transition 574 resides along a plane D that is orthogonal to the central axis C and that is within unexposed portion 548 of the insulator 514. The second outer surface 568 can be a surface of the unexposed portion 548 that is between the exposed-unexposed interface 554 (or the first nose surface transition 570) and the second nose surface transition 574. The third outer surface 572 can be a surface of the unexposed portion 548 that is between the second nose surface transition 574 and a nose root portion 556. In other embodiments, the first nose surface transition 570 can be within the exposed portion 550 such that a surface (at a second angle A2 (also referred to as a first unexposed nose angle in this embodiment)) between the first and second nose surface transitions 570, 574 includes at least part of the unexposed portion 548 and at least part of the exposed portion 550.
The second outer surface 568 can be angled or slanted at the second angle A2 and the third outer surface 572 can be angled or slanted at a third angle A3 (also referred to as a second unexposed nose angle in this embodiment). In one embodiment, such as that which is shown in the depicted embodiment of
With reference to
The nose portion 30 includes an exposed-unexposed interface 654 at which a nose surface transition 670 takes place between a first outer surface 666 and a second outer surface 668. The first outer surface 666 can be angled or slanted at a first angle A1 and the second outer surface 668 can be angled or slanted at a second angle A2. It should be appreciated that, at least in the depicted embodiment, the first outer surface 666 coincides with (and, thus, at least partially includes) the exposed body portion 664 and the second outer surface 668 coincides with (and, thus, at least partially includes) the unexposed body portion 658. Thus, in this embodiment, the second outer surface 668 is parallel to the central axis C. However, in other embodiments, the nose surface transition 670 can be disposed within either the unexposed portion 648 or the exposed portion 650. In such cases, the first outer surface 666 or the second outer surface 668 can include the exposed-unexposed interface 654. In the
It is to be understood that the foregoing description is not a definition of the invention, but is a description of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims
As used in this specification and claims, the terms “for example,” “e.g.,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation. In addition, the term “and/or” is to be construed as an inclusive OR. Therefore, for example, the phrase “A, B, and/or C” is to be interpreted as covering all of the following: “A”; “B”; “C”; “A and B”; “A and C”; “B and C”; and “A, B, and C.”
This application claims the benefit of U.S. Provisional Application No. 62/744,309 filed Oct. 11, 2018, the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5831377 | Matsubara et al. | Nov 1998 | A |
7176608 | Kanao | Feb 2007 | B2 |
7262547 | Klett et al. | Aug 2007 | B2 |
7449824 | Moribe et al. | Nov 2008 | B2 |
7923910 | Nakamura et al. | Apr 2011 | B2 |
8143773 | Suzuki et al. | Mar 2012 | B2 |
8237343 | Hotta et al. | Aug 2012 | B2 |
8294347 | Nakamura et al. | Oct 2012 | B2 |
8432092 | Mori | Apr 2013 | B2 |
8536770 | Kameda et al. | Sep 2013 | B2 |
8624475 | Shimamura et al. | Jan 2014 | B2 |
8643263 | Burrows | Feb 2014 | B2 |
8952603 | Kobayashi | Feb 2015 | B2 |
8981634 | Henke | Mar 2015 | B2 |
9548592 | Fujino et al. | Jan 2017 | B2 |
9819155 | Kersting et al. | Nov 2017 | B2 |
20010017125 | Matsubara | Aug 2001 | A1 |
20050052107 | Klett | Mar 2005 | A1 |
20050057134 | Kanao | Mar 2005 | A1 |
20070228916 | Kunitomo | Oct 2007 | A1 |
20080093965 | Takada | Apr 2008 | A1 |
20100282197 | Permuy et al. | Nov 2010 | A1 |
20110000453 | Kuribayashi | Jan 2011 | A1 |
20110241522 | Quitmeyer | Oct 2011 | A1 |
20110291543 | Lykowski | Dec 2011 | A1 |
20150180215 | Fujino et al. | Jun 2015 | A1 |
20150188293 | Ozeki et al. | Jul 2015 | A1 |
20150295388 | Kobayashi | Oct 2015 | A1 |
20150333487 | Katsuraya | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
102009055397 | Jul 2011 | DE |
144962 | Jun 1920 | GB |
2014131705 | Sep 2014 | WO |
Number | Date | Country | |
---|---|---|---|
20200119529 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
62744309 | Oct 2018 | US |