This application claims the benefit of German Application No. 10 2015 113 175.7, filed on Aug. 10, 2015, the contents of which are hereby incorporated by reference in their entirety.
The present invention is generally related to spark plugs, and more particularly, to spark plugs designed for internal combustion engines.
For quite a long time, spark plugs for internal combustion engines have been used in the millions in practice, and function reliably.
An object of the present disclosure is to create a spark plug for which manufacturing effort is reduced.
A spark plug according to one embodiment has a center conductor, an insulator surrounding the center conductor, at least two electrodes forming a spark gap, and a spark plug body surrounding the insulator and having an external thread arranged at the front end of the spark plug for screwing in to an internal combustion engine. Various components can be attached to the front end of the spark plug that project into the motor's combustion chamber during operation and come into contact with fuel that is injected into the combustion chamber or that flows into the combustion chamber in the form of an air/fuel mixture, such as, for example, a ground electrode connected in an electrically conductive manner to the spark plug body. The spark plug can also have, at its front end, a prechamber that contains the electrodes that form the spark gap and that is a precombustion chamber in which the air/fuel mixture is ignited by the ignition spark. The flame front propagates into the main combustion chamber of the internal combustion engine through openings in the wall of the prechamber. In order to form the prechamber, a dome-shaped component can be attached to the front end of the spark plug body.
A component coming into contact with fuel during operation is formed as a sintered powder injection molded part, for which a metal powder in the desired composition is used. The manufacturing process for the powder injection molded part is also referred to as “metal injection molding,” or “MIM” for short. The metal powder is mixed with a thermoplastic binder, and granulated to form a feedstock. This feedstock is injected into an injection mold, in a similar manner to plastic. Then the binder is removed from the “green part” thus formed, and the powder metal structure is sintered at high temperatures into a relatively dense component. The MIM process is known per se, but is not well known in the spark plug art to produce a spark plug component, since MIM components have a slight residual porosity after sintering which in itself gives reason to expect poorer thermal conductivity, and hence a higher component temperature, for the same shape and same dimensions of the component. As a basic principle, high temperatures of spark plug components that come into contact with fuel during operation can facilitate the occurrence of unwanted ignition of the air/fuel mixture. The present disclosure proposes using a MIM process to produce a component that comes into contact with fuel during operation for a spark plug of the initially mentioned type. A component produced in this way is called “MIM component” hereinafter. In particular, the porosity of the MIM component can be no more than 10%, in particular no more than 5%.
The MIM component is produced, in particular, from a high-temperature resistant and corrosion-resistant material that can contain nickel, for example, as the main constituent. For example, a nickel-based alloy with the material No. 2.4816 (also known by the brand name INCONEL 600) is suitable. The material can also be based on a mixture having nickel, iron, and chromium as the main components.
Embodiments are especially suitable for spark plugs that are used in stationary, gas-powered internal combustion engines. Owing to the ever increasing requirements for internal combustion engines to have low fuel consumption and low emissions, the requirements for precision have increased for spark plugs as well. Until now, the components of the spark plug that come into contact with fuel have been produced by machining processes. The semifinished products that are used for machining of the components may have internal stresses that can have the consequence that the machined part easily deforms after the material removal process due to the residual stresses contained in the material, so that its actual geometry does not match the desired geometry. For example, a ground electrode produced as a turned part may deform or bend in sections after turning so that a spark gap formed between it and a center electrode does not correspond to the desired nominal dimension. For a spark gap with, e.g., approximately 0.3 mm width a precision may be required, for example, at which the spark gap width is allowed to be no more than 0.03 mm above or below its nominal dimension. In contrast, a MIM component has the significant advantage that after forming it actually has its nominal geometry, which is not impaired by stresses contained in the material and deformations resulting therefrom. MIM components can be manufactured very easily and inexpensively without residual stresses.
On at least one surface that comes into contact with fuel during operation, the MIM component can have a low surface roughness with an average roughness Ra (DIN EN ISO 4287) of no more than 3.2. In particular, the MIM component can be attached to the spark plug body without finishing of the surfaces, notably without polishing the surface. This simplifies manufacture greatly. The smooth surface of the MIM component decreases its surface area that comes into contact with the hot combustion gases. As a result, the heat input into the MIM component is reduced.
In another embodiment, the MIM component can be made of nickel or of a material with nickel as the main constituent, in particular a nickel alloy. In comparison to a material produced by fusion metallurgy, the modulus of elasticity can be reduced in the MIM component. The MIM component can have a modulus of elasticity that is at least 5% smaller, in particular at least 10% smaller, than the modulus of elasticity of a comparable component of identical geometry produced by fusion metallurgy. Thus, the comparable component has the same shape as the MIM component, but is produced in a conventional manner. The comparable component is made of a material produced by fusion metallurgy having the same composition as the MIM component's material. A reduced modulus of elasticity has advantages, especially when the MIM component is a ground electrode. Owing to the reduced modulus of elasticity, the electrode spacing can be adjusted far more easily and with greater precision by slightly bending a section of the ground electrode that is already attached to the spark plug. Consequently, the required precision for the spark gap width can be achieved more easily during spark plug manufacture than with conventional ground electrodes. Manufacturing the spark plug is simplified as a result.
The MIM component can have an annular section that rests against the spark plug body. This can promote good heat removal from the MIM component that comes into contact with fuel during operation to the spark plug body seated in the cylinder head. The annular section can be welded to the front end of the spark plug body, in particular along its entire circumference.
Preferred exemplary embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements, and wherein:
In the embodiment from
In the embodiment of the spark plug 1 shown in
In the embodiment shown in
It is to be understood that the foregoing is a description of one or more preferred exemplary embodiments of the invention. The invention is not limited to the particular embodiment(s) disclosed herein, but rather is defined solely by the claims below. Furthermore, the statements contained in the foregoing description relate to particular embodiments and are not to be construed as limitations on the scope of the invention or on the definition of terms used in the claims, except where a term or phrase is expressly defined above. Various other embodiments and various changes and modifications to the disclosed embodiment(s) will become apparent to those skilled in the art. All such other embodiments, changes, and modifications are intended to come within the scope of the appended claims.
As used in this specification and claims, the terms “for example,” “e.g.,” “for instance,” “such as,” and “like,” and the verbs “comprising,” “having,” “including,” and their other verb forms, when used in conjunction with a listing of one or more components or other items, are each to be construed as open-ended, meaning that the listing is not to be considered as excluding other, additional components or items. Other terms are to be construed using their broadest reasonable meaning unless they are used in a context that requires a different interpretation.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 113 175 | Aug 2015 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5461276 | Matsutani | Oct 1995 | A |
6064144 | Knoll | May 2000 | A |
6080029 | Johnson | Jun 2000 | A |
20110148274 | Ernst | Jun 2011 | A1 |
20120125279 | Hampson | May 2012 | A1 |
20120186723 | Hattori | Jul 2012 | A1 |
20130139784 | Pierz | Jun 2013 | A1 |
20140345552 | Ando | Nov 2014 | A1 |
20170054274 | Sumoyama | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
WO0111741 | Feb 2001 | WO |
WO2007008819 | Jan 2007 | WO |
WO2014177169 | Nov 2014 | WO |
Entry |
---|
German Office Action for Application No. 102015113175.7 dated Apr. 13, 2016, 6 Pages. |
Number | Date | Country | |
---|---|---|---|
20170047712 A1 | Feb 2017 | US |