Spatial data cartridge for event processing systems

Information

  • Patent Grant
  • 9430494
  • Patent Number
    9,430,494
  • Date Filed
    Thursday, November 18, 2010
    14 years ago
  • Date Issued
    Tuesday, August 30, 2016
    8 years ago
Abstract
Techniques for extending the capabilities of an event processing system to support the processing of spatial data. In one set of embodiments, this extensibility can be provided via a plug-in extension component referred to herein as a spatial data cartridge. The spatial data cartridge can enable the event processing system to support spatial data types (e.g., point, polygon, etc.) and various operations related to such data types (e.g., proximity determinations, overlap determinations, etc.). The spatial data cartridge can also define an indexing scheme that can be integrated with the capabilities of the event processing system to support the indexing of spatial data. Using the spatial data cartridge, the event processing system can operate on spatial data even if spatial data formats are not natively supported by the system.
Description
BACKGROUND

Embodiments of the present invention relate in general to event processing, and in particular to a spatial data cartridge for event processing systems.


Databases have traditionally been used in applications that require storage of data and querying capability on the stored data. Existing databases are thus best equipped to run queries over a finite stored data set. The traditional database model is however not well suited for a growing number of modern applications in which data is received as a stream of data events instead of being stored as a bounded data set. A data stream, also referred to as an event stream, is characterized by a real-time, potentially continuous, sequence of events. A data or event stream thus represents a potentially unbounded stream of data. Examples of sources of events can include various sensors and probes (e.g., RFID sensors, temperature sensors, etc.) configured to send a sequence of sensor readings, financial tickers sending out pricing information, network monitoring and traffic management applications sending network status updates, events from click stream analysis tools, global positioning systems (GPSs) sending GPS data, and others.


Oracle Corporation™ provides a system (referred to as a Complex Event Processing, or CEP, system) for processing such event streams. A CEP system is quite different from a relational database management system (RDBMS) in which data is stored in a database and then processed using one or more queries. In a CEP system, a query is run continuously and query processing is performed in real-time as events in a stream are received by the system.


A CEP system can receive data events from various different sources for various different applications. Accordingly, the data that is received may not follow a fixed format or schema but may be more heterogeneous in nature (e.g., binary data, XML data without an associated schema, etc.). For example, the data that is received may include streams of image data for an image processing application, streams of audio data for an audio processing application, streams of spatial or geographic or location data for a GPS application, streams of stock data for a financial application, and the like. As a result of the different data types and sources and their different data manipulation requirements, specialized functions or methods are usually needed to process the streaming data. While a CEP system can provide support for some native data types and/or methods/functions for the native data types, these native data types or functions are many times not sufficient to cover the diverse types of processing needed by applications that use a CEP system.


As a result, processing platforms, such as CEP systems, constantly have to be extended by application developers and service providers to support heterogeneous data formats and their data manipulation mechanisms in order to interact/interoperate with diverse sources of events and data. For example, consider a CEP system that processes localization events emitted by GPS devices. Such a CEP system would need to understand spatial data formats and functions related to the spatial data format.


In the past, the capabilities of a CEP system were extended exclusively through user defined functions (UDFs) or special code (e.g., customized Java beans). To achieve extensibility, an application developer for a specific application had to define customized user defined functions (UDFs) to interact with the specialized application. The application developer had to design one function at a time and define the function's interface based upon predefined data types provided by the CEP system.


However, this process has several drawbacks and inefficiencies. The UDFs that are designed are application-scoped and thus are hard to re-use amongst other applications of the CEP system. The UDFs cannot be reused since they are closely coupled or tied to the application defining the UDF. For example, a UDF defined for a video-processing application cannot be used in another application. Further, the UDFs are individually defined and cannot be grouped into domains (e.g., spatial), therefore making their management difficult. Additionally, UDFs provide a poor programming experience, as the usage of the extension in the form of a UDF is not transparent to the user.


BRIEF SUMMARY

Embodiments of the present invention provide techniques for extending the capabilities of an event processing system to support the processing of spatial data. In one set of embodiments, this extensibility can be provided via a plug-in extension component referred to herein as a spatial data cartridge. The spatial data cartridge can enable the event processing system to support spatial data types (e.g., point, polygon, etc.) and various operations related to such data types (e.g., proximity determinations, overlap determinations, etc.). The spatial data cartridge can also define an indexing scheme that can be integrated with the capabilities of the event processing system to support the indexing of spatial data. Using the spatial data cartridge, the event processing system can operate on spatial data even if spatial data formats are not natively supported by the system.


According to one embodiment of the present invention, a system is provided that includes a storage component configured to store a spatial data cartridge including metadata pertaining to a spatial function and code that implements the spatial function, where the spatial function is configured to determine a topological relationship between first spatial data and second spatial data. The system further includes a processor configured to receive a query referencing the spatial function, the query being adapted to process one or more data streams, compile the query based on the metadata included in spatial data cartridge, and execute the query based on the code included in the spatial data cartridge.


In one embodiment, the system is an event processing system.


In one embodiment, the query is a Continuous Query Language (CQL) query.


In one embodiment, the query includes a link definition that specifies the spatial function and the spatial data cartridge, and the processor is configured to identify the spatial data cartridge based on the link definition.


In one embodiment, the spatial function is selected from a group consisting of: contains, inside, withindistance, overlaps, touch, covers, and coveredby.


In one embodiment, the spatial data cartridge further includes metadata pertaining to one or more spatial data types and one or more spatial indexes.


In one embodiment, the one or more spatial data types are selected from a group consisting of: point, curve, polygon, and solid.


In one embodiment, compiling the query includes retrieving the metadata pertaining to the spatial function from the spatial data cartridge, performing semantic analysis of the query based on the metadata, and generating instructions for executing the query.


In one embodiment, executing the query includes executing the code that implements the spatial function in the spatial data cartridge.


In one embodiment, executing the code that implements the spatial function includes performing a first filter operation with respect to data in a first spatial data stream and data in a second spatial data stream, the first filter operation returning a superset of an exact result set for the spatial function; and performing a second filter operation with respect to the superset, the second filter operation returning the exact result set for the spatial function.


In one embodiment, performing the first filter operation includes comparing geometric approximations of the data in the first spatial data stream and the data in the second spatial data stream; and determining likely topological relationships between the data in the first spatial data stream and the data in the second spatial data stream based on the comparing.


In one embodiment, performing the second filter operation includes comparing exact geometries of the data in the first spatial data stream and the data in the second spatial data stream; and determining exact topological relationships between the data in the first spatial data stream and the data in the second spatial data stream based on the comparing.


In one embodiment, performing the first filter operation includes performing an index scan of a spatial index created for the first spatial data stream or the second spatial data stream.


In one embodiment, the storage component is further configured to store spatial context information, and executing the query is further based on the spatial context information.


In one embodiment, the spatial context information identifies a geometric coordinate system.


According to another embodiment of the present invention, a non-transitory computer-readable storage medium is provided that has stored thereon instructions executable by a processor. The instructions include instructions that cause the processor to register a spatial data cartridge including metadata pertaining to a spatial function and code that implements the spatial function, the spatial function being configured to determine a topological relationship between first spatial data and second spatial data. The instructions further include instructions that cause the processor to receive a query referencing the spatial function, the query being adapted to process one or more data streams, instructions that cause the processor to compile the query based on the metadata included in spatial data cartridge; and instructions that cause the processor to execute the query based on the code included in the spatial data cartridge.


According to another embodiment of the present invention, a method is provided that includes registering, by a computer system, a spatial data cartridge including metadata pertaining to a spatial function and code that implements the spatial function, the spatial function being configured to determine a topological relationship between first spatial data and second spatial data. The method further includes receiving, by the computer system, a query referencing the spatial function, the query being adapted to process one or more data streams, compiling, by the computer system, the query based on the metadata included in spatial data cartridge, and executing, by the computer system, the query based on the code included in the spatial data cartridge.


The foregoing, together with other features and embodiments will become more apparent when referring to the following specification, claims, and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified block diagram of an event processing system in accordance with an embodiment of the present invention.



FIG. 2 is a simplified block diagram of a data cartridge in accordance with an embodiment of the present invention.



FIG. 3 is another simplified block diagram of an event processing system in accordance with an embodiment of the present invention.



FIG. 4 is a flow diagram of a process performed by an event processing system for compiling a query using a data cartridge in accordance with an embodiment of the present invention.



FIG. 5 is a flow diagram of a process performed by an event processing system for executing a query using a data cartridge in accordance with an embodiment of the present invention.



FIG. 6 is a flow diagram of a process performed by a spatial data cartridge for executing a spatial function in a query in accordance with an embodiment of the present invention.



FIG. 7 is a simplified block diagram illustrating components of a system environment that can be used in accordance with an embodiment of the present invention.



FIG. 8 is a simplified block diagram of a computer system that can be used in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION

In the following description, for the purposes of explanation, specific details are set forth in order to provide a thorough understanding of embodiments of the invention. However, it will be apparent that certain embodiments can be practiced without these specific details.


Embodiments of the present invention provide techniques for extending the capabilities of an event processing system to support the processing of spatial data. In one set of embodiments, this extensibility can be provided via a plug-in extension component (i.e., a “data cartridge”) referred to as a spatial data cartridge. The spatial data cartridge can enable the event processing system to support spatial data types (e.g., point, polygon, etc.) and various operations related to such data types (e.g., proximity determinations, overlap determinations, etc.). The spatial data cartridge can also define an indexing scheme that can be integrated with the capabilities of the event processing system to support the indexing of spatial data.


As used herein, a “data cartridge” is a self-contained manageable unit that provides information for extending the capabilities of an event processing system. Examples of capabilities that can be extended include providing support for extensible data types, functions, indexing options, different sources of data, and others. A spatial data cartridge is a particular type of data cartridge that extends the capabilities of the event processing system to support the processing and indexing of spatial data (e.g., geographic or location data).


In one set of embodiments, the spatial data cartridge described herein can be used in conjunction with an event processing system such as the Complex Event Processing (CEP) system/server provided by Oracle Corporation™.



FIG. 1 is a simplified block diagram of a system 100 according to an embodiment of the present invention. As shown, system 100 includes an event processing system 102 that is configured to process event streams. Event processing system 102 can be a CEP system such as the one provided by Oracle Corporation™. Other event processing systems provided by other vendors can be used in alternative embodiments. The embodiment depicted in FIG. 1 is not intended to limit the scope of embodiments of the invention. Variations having more or less components than shown in FIG. 1 are possible in alternative embodiments.


Event processing system 102 can receive one or more inputs 104. Inputs 104 can include one or more event streams received from one or more sources. For example, as depicted in FIG. 1, event processing system 102 can receive an event stream 106 from a source S1108, an event stream 110 from a source S2112, and another event stream 114 from a source S3116. The sources can be diverse; for example, source S1 can be an RFID sensor providing a stream of sensor readings, source S2 can be a GPS device providing a stream of spatial coordinates, and source S3 can be a financial server providing a stream of stock prices. Accordingly, the type of events received on one stream can be different from events received on another stream. Event processing system 102 can receive the streams via a push-based mechanism, a pull-based mechanism, or other types of mechanisms.


In one set of embodiments, an event stream can be a real-time sequence of events. In a particular embodiment, an event stream can correspond to a sequence of <tuple, timestamp> pairs, with the tuples representing the data portion of the stream. The timestamps associated with the tuples can define a chronological order over the tuples in the stream. In one set of embodiments, the timestamps can be set by an application (e.g., within event processing system 102) configured to receive and/or process the event stream. For example, the receiving application can timestamp each tuple/event upon receipt In other embodiments, the timestamps can be set an application configured to send out the event stream. In certain embodiments, multiple tuples can be associated with the same timestamp in a stream. For purposes of the present disclosure, the terms “tuple” and “event” are used interchangeably.


Inputs 104 can also include other inputs 118 such collections of elements (e.g., a relation). These other inputs 118 can be received from various sources including applications executing on external systems or even on event processing system 102. For example, other inputs 118 can comprise datasets (e.g., relations) configured by applications executing on systems external to event processing system 102 or on event processing system 102. In certain embodiments, the contents of a relation can vary over time. For example, the contents of a relation can change over time by adding one or more elements to the relation, deleting one or more elements from the relation, or updating the relation.


In various embodiments, event processing system 102 can process received inputs 104 and generate one or more outbound event streams as a result of the processing. The processing of inputs 104 can be based upon rules configured for event processing system 102 that determine the runtime behavior of the system. In a particular embodiment, these rules can be expressed as queries using a query language. An example of such a query language is Continuous Query Language (referred to herein as CQL). Generally speaking, CQL is a query language that is based upon SQL, with added constructs that support streaming data. A query written using CQL can be referred to as a CQL query. The queries can be used for processing inputs 104 and generating outbound event streams. Queries typically perform filtering and aggregation functions to discover and extract one or more events from the input streams. The CQL queries thus determine the runtime behavior of event processing system 102. The queries can represent the runtime conditions that are to be monitored over the streams.


The queries executed by an event processing system, such as event processing system 102 depicted in FIG. 1, are different from queries that are executed in a typical relational database management system (RDBMS). In an RDBMS, the data is stored in a database and a query is executed over the stored data. The lifetime of the query thus ends upon its execution. In event processing system 102, due to the streaming nature of the inputs, queries are run over a continuing period of time over time-varying data received over inputs such as input streams. Accordingly, these queries are referred to as continuous queries.


The outbound streams generated by event processing system 102 from the processing of the input streams can be provided to one or more applications. For example, as depicted in FIG. 1, an outbound stream 120 can be provided to application A1122, a second outbound stream 124 can be provided to application A2126, and a third outbound stream 128 can be provided to application A3130. In certain embodiments, an application receiving an outbound stream can perform further processing on the stream. The applications receiving the outbound stream can be executing on event processing system 102 or some other system.


In one set of embodiments, event processing system 102 can natively support a fixed set of data types and operations on those data types (referred to herein as native data types and operations). For purposes of the present disclosure, the terms operation and function are used synonymously. In some situations, these native data types and operations may not sufficient to support the heterogeneous data formats received via the input streams 104 and the functions (e.g., data manipulation functions) related to the data formats. Thus, in certain embodiments, the capabilities of event processing system 102 can be extended through the use of one or more data cartridges 132. Generally speaking, data cartridges 132 enable event processing system 102 to support data types, operations, indexing schemes, and other objects not natively supported by the system. For example, in a particular embodiment, data cartridges 132 can include a spatial data cartridge that enables event processing system 102 to process and index spatial data (e.g., geographic or location data). The notion of a spatial data cartridge is discussed in greater detail below.


With a framework supporting data cartridges, CQL queries specified for event processing system 102 can not only reference capabilities provided natively by event processing system 102, but can also reference extended capabilities provided by one or more data cartridges 132. For example, a CQL query can refer to extensible objects (e.g., data types, functions, indexes, sources) defined by, e.g., a spatial data cartridge supporting spatial objects, a java data cartridge supporting java objects, and so on. In certain embodiments, references to data types and operations that are not supported natively by event processing system 102 can be seamlessly integrated with native data types and operations in the same query. In this manner, data cartridges 132 enable event processing system 102 to be easily extended beyond its native capabilities. As discussed in greater detail below. the processing to support such queries can be automatically taken care of by interactions between event processing system 102 and data cartridges 132.



FIG. 2 is a simplified block diagram of a data cartridge 132 according to an embodiment of the present invention. As shown, data cartridge 132 can store information for one or more extensible objects 200. Examples of such extensible objects include data types, functions, indexes, sources, and others. In one set of embodiments, the information stored for each extensible object 200 can include at least two components or portions: (1) a compile-time (or metadata) component 202 that describes the extensible object in sufficient detail so that the object can be compiled; and (2) a runtime component 204 that can be invoked at execution time or runtime.


In one set of embodiments, compile-time component 202 can be used for compilation of queries (e.g., CQL queries). The compile-time component of an extensible object can include information (referred to generically as metadata) that describes the extensible object in enough detail so that the compilation of queries referencing the extensible object can perform all the necessary syntactic and semantic analyses and generate execution instructions that are executable at runtime. In some embodiments, extensible objects 200 can be of different types or classes. In these cases, each different object type/class can define a different set of metadata. In one embodiment, the metadata for a particular extensible object can include the signature of the extensible object's methods, fields, and constructors.


In various embodiments, all of the metadata provided by data cartridge 132 can be managed by the cartridge itself and not by event processing system 102. This avoids the need to keep data in-sync between data cartridge 132 and event processing system 102 or to pollute event processing system 102 with external data definitions. More details on how these components or portions of a data cartridge are used are provided below.


Referring back to FIG. 1, event processing system 102 can further include a compiler 134 and a runtime engine 136. Compiler 134 can be configured to compile one or more queries 138 (e.g., CQL queries) and generate executable code/instructions 140. In one set of embodiments, compiler 132 can use the compile-time components stored for the various extensible objects in a data cartridge to facilitate the compilation process. Code/instructions 140 generated as a result of the compilation can be executed during runtime to process incoming events. In certain embodiments, code/instructions 140 can comprise call-outs to functions that are implemented by runtime component 204 stored in data cartridge 132 for each extensible object. In this manner, a data cartridge provides both compile-time support and runtime implementations for an extensible object. The outbound data streams generated by the execution of code/instructions 140 can then be forwarded to one or more applications (e.g., 122, 126, 130).


In the embodiment of FIG. 1, compiler 134 and runtime engine 136 are shown as being part of the same event processing system 102. In alternative embodiments, these components can be resident on different systems. For example, in a particular embodiment, compiler 132 can be resident on a first system and runtime engine 136 can be resident on a second system, where both systems have access to the requisite data cartridges.


Several interactions can take place between event processing system 102 and a data cartridge 132 during query compilation and query runtime execution. For example, during the compilation phase, compiler 134 can receive from, and send to, data cartridge 132 information that facilitates compilation of the query and generation of executable code. During the runtime execution phase, execution of the code generated during the compilation phase can cause interactions and exchange of information between runtime engine 136 and data cartridge 132. For example, whenever a callout is encountered in the executable code and the implementation of the callout is provided by data cartridge 132, event processing system 102 can interact with the data cartridge.



FIG. 3 is another simplified block diagram of event processing system 102 according to an embodiment of the present invention. As in FIG. 1, event processing system 102 includes a compiler 134 and a runtime engine 136. Further, as shown in FIG. 3, compiler 134 can include a lexer/parser 302, a semantic analyzer 304, a locator module 306, and a code generator module 310. The components of compiler 134 can be implemented in software (code or instructions executed by a processor) or hardware, or combinations thereof. The software can be stored on a non-transitory computer-readable storage medium. The embodiment of event processing system 102 depicted in FIG. 3 is not intended to limit the scope of embodiments of the invention. Variations having more or less components than shown in FIG. 3 are possible in alternative embodiments.


At a conceptual level, the processing performed by event processing system 102 can be divided into design-time (or compile-time) processing and runtime processing. During design-time processing, compiler 134 can receive one or more continuous queries configured for the event processing system and can compile the queries. This compilation can result in the generation of executable code/instructions 140. One or more CQL queries can be compiled as a set to generate executable code/instructions 140. During runtime processing, runtime engine 136 can execute code/instructions 140 to process the incoming event streams 104.


Accordingly, at design-time, one or more queries (e.g., CQL queries) 138 can be provided as inputs to compiler 134. Parser 302 of compiler 134 can parse the queries based upon a grammar. For example, a CQL query can be parsed according to a CQL grammar. The tokens generated by parser 302 from parsing the query can then be passed to semantic analyzer 304 for further processing.


In one set of embodiments, the association between an extensible object and a repository (e.g., a data cartridge) storing metadata for the object is done though a link name or definition, which is specified in the query using the query language. In a particular embodiment, a CQL query programmer can use the following CQL code syntax to define a link definition in a query:


object@source


In this embodiment, the @ symbol signals to the compiler that a link definition is present. The string immediately before the @ symbol refers to an object or component (e.g., an extensible object) that is to be compiled and the string immediately after the @ symbol identifies the source or repository of the metadata to be used for compiling the object. The two strings are tokenized by parser 302 and provided to semantic analyzer 304 for semantic analysis. In this manner, a link definition can be provided at the query language level that enables compiler 134 of event processing system 102 to identify the component to be compiled and the source of the metadata (e.g., a data cartridge) to be used for compiling that query component. In one embodiment, a default data cartridge can be used if no specific data cartridge is identified.


Usage examples include:


(1) foo@java


where “foo” identifies an object or component (e.g., an extensible function) that is to be compiled using a “java” data cartridge. The “java” data cartridge stores metadata to be used for compiling the identified “foo” object. The “foo” object can be an extensible object such as an extensible data type, an extensible index, etc.


(2) foo@scala


Here, the component “foo” is to be compiled using a data cartridge named “scala” (different from the “java” data cartridge) that provides the metadata to be used for compiling the “foo” object. Note that the “foo” object is this example is not the same object as in the previous example; they are different objects since they are owned by different cartridges.


(3) CONTAINS@SPATIAL(R1.polygon, R2.point)


Here, “CONTAINS” identifies an extensible function defined within the “SPATIAL” data cartridge. As part of the parsing performed by parser 302, the arguments (if any) defined for a function can be determined and tokenized. In this example, the arguments of function CONTAINS include “R1.polygon” and “R2.point.”


In one set of embodiments, before a data cartridge can be used by an event processing system, the data cartridge has to be registered with the event processing system. Various data cartridges can be registered with event processing system 102. The registration information stored for a data cartridge can identify the name of the data cartridge, e.g., “scala,” “java,” etc. This registration information can be stored in a registry of event processing system 102 and used during the compilation phase. For example, when a particular data cartridge is identified by a link definition in a query, information for the data cartridge can be fetched from the registration repository.


As described above, as part of the compilation process, parser 302 of event processing system 102 can parse CQL query 138 to identify occurrences of link definitions in the query. In one embodiment, the processing can include parsing the CQL query to look for occurrences of the @ symbol, and for each occurrence, determining the object to be compiled, the source of metadata for compiling the object, and arguments, if any, to the object. The tokens generated by parser 302 can then be passed to semantic analyzer 304 for semantic analysis.


Semantic analyzer 304 can perform semantic analysis on the query, such as type checking. In certain embodiments, for a set of tokens received from parser 302, semantic analyzer 304 can invoke a locator 306 to retrieve metadata to be used for performing semantic analysis related to the tokens. For example, based upon the tokens received from parser 302, semantic analyzer 304 can send a request to locator 306 to locate the metadata source or repository (e.g., a data cartridge) identified by a token. In response, locator 306 can provide semantic analyzer 304 a handle to the requested metadata source or repository.


In one set of embodiments, the repository can be a system that is internal to event processing system 102. For example, for natively supported data types and/or operations, the metadata can be provided by a built-in manager 308 of event processing system 102. For extensible objects that are not natively supported by event processing system 102, the repository can be a data cartridge 132 that is registered with event processing system 102.


Semantic analyzer 304 can then access or retrieve the requisite metadata stored by the metadata source using the handle provided by locator 306. Semantic analyzer 304 can use this retrieved information to perform semantic analysis. In one set of embodiments, using the handle, semantic analyzer 304 can interact with the metadata source via well-known interfaces provided by the developer of the repository. For example, if the metadata source is data cartridge 132, the data cartridge can provide well-known interfaces created by the data cartridge developer to enable semantic analyzer 304 to interact with the data cartridge. These well-known interfaces can be developed by the data cartridge developer according to predetermined interface standards that allow data cartridge 132 to be compatible with a data cartridge infrastructure provided by event processing system 102.


From the perspective of semantic analyzer 304, it does not matter whether the handle returned by locator 306 is a handle to a data cartridge or some other source; both handles are treated and interacted with in a similar manner. Locator 306 thus provides the interface between compiler 134 and the source of the metadata that enables the source of the metadata to be decoupled from compiler 134. This enables the metadata to be provided from any source, including a source within event processing system 102 or a data cartridge 132. Additionally, the source of the metadata can be distributed, for example, made available in a cloud, etc.


For instance, in examples (1), (2), and (3) shown above, semantic analyzer 304 can request locator 306 to get handles to data cartridges “java,” “scala,” and “SPATIAL.” These data cartridges can be pre-registered with event processing system 102 and information related to the registered data cartridges, including the names of the data cartridges and handles to the data cartridges, can be stored in a registry. Locator 306 can perform a lookup in this registry to get a handle to the requested data cartridge and provide the handle to semantic analyzer 304.


Upon receiving a handle to a metadata source such as data cartridge 132, semantic analyzer 304 can interact with the data cartridge using published interfaces. For example, semantic analyzer 304 can use the interfaces to retrieve metadata from the data cartridge and use the retrieved metadata to perform semantic analysis of the query, including performing type checking for extensible objects included in the query. The result of the semantic analysis performed by semantic analyzer 304 is an intermediate representation that can be provided to code generator 310 for further analysis/processing.


In one set of embodiments, for a particular extensible object, the metadata provided to semantic analyzer 304 by data cartridge 132 for compilation of the extensible object can include information identifying one or more factories to be used for creating one or more instances of the extensible object. The metadata provided to compiler 134 can also include application context information that is used during runtime processing. For example, when performing spatial data analysis, a specific coordinate system usually need to be specified for performing the analysis. Different spatial data applications can use different coordinate systems. The application context information can be used to specify the coordinate system to be used during runtime for an application. This context information can be provided by data cartridge 132 to semantic analyzer 304 (or in general to compiler 134). In this manner, data cartridge 132 can provide information to event processing system 102 during the compilation phase that is to be used during the runtime phase. In certain embodiments, this application context information can be configured by a developer of the data cartridge. Thus, the data cartridge developer can set parameters to be used for runtime processing.


Code generator 310 can generate an execution plan for the query being compiled and can generate execution structures (e.g., executable code/instructions 140) based upon the execution plan. The execution structures that are generated can include instances of extensible objects referenced in the query. The extensible object instances can be created using one or more factories identified in the metadata retrieved from the data cartridge during compilation.


Executable instructions 140 generated by compiler 134 can then be executed at runtime by runtime engine 136 with respect to events received via an input stream 104. The instructions can comprise one or more call-out instructions whose implementations are provided by the runtime component stored by the data cartridge for the extensible object. A call-out instruction executes an invokable component that is part of the runtime component stored by the data cartridge for the extensible object. In one embodiment, a call-out invokes an “execute” call-back (i.e., function), whose implementation is provided by the data cartridge. This “function” in the data cartridge can be implemented using different programming languages, such as a Java type, a Hadoop function, a Scala class, etc. The call-out instruction thus provides a handoff between runtime engine 136 and data cartridge 132.


In the examples discussed above, the queries are expressed in CQL. Accordingly, compiler 134 and runtime engine 136 can be together referred to as the CQL engine of event processing system 102. In alternative embodiments, other languages that provide features for stream-based processing can also be used for configuring queries executed by event processing system 102.


The use of data cartridges thus enables event processing system 102 to handle complex data types and related functions that are not natively supported by the system. For example, object-oriented data types that cannot be natively supported by an event processing system can be supported by the event processing system via data cartridges. In a particular embodiment, use of a Java data cartridge can enable event processing system 102 to support object-oriented data types (classes) and programming constructs.



FIG. 4 is a flow diagram of a process 400 for compiling a query in an event processing system using a data cartridge according to an embodiment of the present invention. In various embodiments, process 400 can be performed by software (e.g., program, code, instructions) executed by a processor, hardware, or combinations thereof. The software can be stored on a non-transitory computer-readable storage medium. In a particular embodiment, process 400 can be performed by compiler 134 of FIGS. 1 and 3.


As shown, processing can be initiated upon receiving a query to be compiled (block 402). In some embodiments, multiple queries can be received and compiled together as a set. However, for the sake of simplicity, it is assumed that one query is received in process 400. The query received in 402 can be, for example, a CQL query. The query can be received from various sources, such as sources 108, 112, 116, 118 of FIG. 1.


At block 404, the query can be parsed by a compiler 134 into a set of tokens. As part of this step, compiler 134 can identify (via, e.g., parser 302) one or more link definitions included in the query. These link definitions can identify extensible objects used in the query, as well as their corresponding data cartridges. Compiler 132 can then determine the data cartridges needed for compiling the query based upon the link definitions (block 406).


At block 408, compiler 134 can retrieve metadata from the data cartridge(s) determined at block 406. In one set of embodiments, compiler 134 first obtains (via, e.g., locator 306) a handle to each data cartridge. Using the handle, compiler can access metadata from the data cartridge via one or more well-known interfaces provided by the data cartridge.


At block 410, compiler can perform (via, e.g., semantic analyzer 304) various types of semantic analysis on the parsed query using the metadata retrieved at block 408. Such analysis can include, for example, type checking.


An execution plan can then determined for the query, and code/instructions can be generated based upon the execution plan (blocks 412, 414). In one set of embodiments, the processing performed at block 414 can include instantiating execution structures for the query. The code/instructions generated at block 414 (including the execution structures) can be stored on a non-transitory computer-readable storage medium. In a particular embodiment, the execution structures can be generated using one or more factories identified by the metadata retrieved at block 408. The code/instructions can then be executed during runtime for processing event streams received by event processing system 102.


Although not shown in FIG. 4, in certain embodiments the metadata retrieved from a data cartridge at block 408 can include application context information that is to be used during runtime processing. This application context information can be incorporated into the code/instructions generated in 414.


It should be appreciated that process 400 is illustrative and that variations and modifications are possible. Steps described as sequential can be executed in parallel, order of steps can be varied, and steps can be modified, combined, added, or omitted. One of ordinary skill in the art will recognize many variations, modifications, and alternatives.



FIG. 5 is a flow diagram of a process 500 performed by an event processing system for executing a query using a data cartridge according to an embodiment of the present invention. In certain embodiments, process 500 can correspond to the runtime processing performed by event processing system 102 for executing the query compiled in FIG. 4. In a particular embodiment, process 500 can be performed by runtime engine 136 of system 102.


At block 502, runtime engine 136 can receive an input event 500 via an input stream (e.g., 108, 112, 116, 118) received by event processing system 102. Runtime engine 136 can then process input event 500 with respect to a query by executing the code/instructions generated for the query at block 414 of FIG. 4.


During execution of the code/instructions, runtime engine 136 can encounter a call-out function whose implementation (e.g., 508) is provided by data cartridge (e.g., 132). In response, runtime engine 136 can invoke the call-out function, which causes implementation 508 within data cartridge 132 to be executed (block 506). Implementation 508 can process input event 508, and can return the results of the processing to runtime engine 136. An output event 512 can then be generated based upon the processing (block 510). In various embodiments, the output event can be provided to one or more applications via an outbound stream (e.g., 102, 124, 128 of FIG. 1).


Although not shown in FIG. 5, in certain embodiments runtime engine 136 can pass application context information to data cartridge 132 when invoking the call-out function at block 506. This application context information can correspond to the context information received from the data cartridge during the compilation process of FIG. 4. Data cartridge can then execute the function/operation based on the application context information. For example, if data cartridge 132 is configured to provide support for spatial data types, and if the function invoked at block 506 is a spatial function (e.g., CONTAINS), runtime engine 136 may pass application context information including a spatial coordinate system to data cartridge 132. Data cartridge 132 can then execute the CONTAINS function on input event 500 with respect to the coordinate system specified in the application context information.


It should be appreciated that process 500 is illustrative and that variations and modifications are possible. Steps described as sequential can be executed in parallel, order of steps can be varied, and steps can be modified, combined, added, or omitted. One of ordinary skill in the art will recognize many variations, modifications, and alternatives.


As discussed above, embodiments of the present invention provide an infrastructure for extending the native capabilities of an event processing system via data cartridges. In one set of embodiments, the event processing system can interact with a data cartridge at query compilation time to retrieve metadata regarding extensible objects and to generate executable code/instructions for the query. Since the metadata for extensible objects is entirely contained within the data cartridge, the event processing system does not need to store any information pertaining to the objects.


In further set of embodiments, the event processing system can interact with the data cartridge at runtime to facilitate execution of the query. For example, when a call-out to a data cartridge function is encountered during execution of the query, the system can hand over processing to the data cartridge, which can execute the function as implemented within the cartridge. In various embodiments, the call-out can refer to a function related to an extensible object provided by the data cartridge. Since the implementation of the function is entirely contained within the data cartridge, the event processing system does not need to maintain any implementations or other code for extensible objects.


Thus, the data cartridge framework of the present invention provides a modular and flexible mechanism for extending the native capabilities of an event processing system. In particular, each data cartridge can be a self-contained, modular unit configured to store all of the compile-time metadata and runtime code need to support extensible objects. These data cartridges can then be dynamically registered/enabled on a particular system on an as needed basis to provide the additional features supported by the data cartridges. Since all data pertaining to extensible objects is maintained by the data cartridge, the event processing system does not need to be modified or customized for each desired feature.


This is substantially different from the use of UDFs (described in the Background section), where UDF-related needs to be stored in the memory of the event processing system. A data cartridge thus increases the scalability and usability of an event processing system. For example, data cartridges can be added to an event processing system without having to increase the memory and/or storage resources of the system.


In addition, the data cartridge framework of the present invention is preferable over UDFs because data cartridges can be reused by different applications, and even by different event processing systems. Further, data cartridges can assemble or group into several domain-specific extensible objects into a single manageable unit. Data cartridges can also provide a deeper integration with the native query language of an event processing system (e.g., CQL), thus providing a simpler programming experience.


In certain embodiments, the data cartridge framework enables the rapid integration of an event processing system with other technologies, such as the Java language, spatial manipulation services, Oracle RDBMS, data mining, and the like that cannot be otherwise supported by the event processing system. In one set of embodiments, a particular type of data cartridge (referred to herein as a spatial data cartridge) can be provided that can extend the capabilities of an event processing system to specifically support the processing of spatial data (e.g., geographic, geometric, or location data). For example, a spatial data cartridge can enable an event processing system to compile and execute CQL queries that reference spatial data streams and spatial operations over those streams. The spatial data cartridge can also enable the event processing system to efficiently index spatial data. Support for spatial data processing can be useful in a wide variety of applications, such as automobile traffic monitoring, emergency services, air traffic control, and the like, where it can be necessary to process continuous streams of two-dimensional or three-dimensional location data (e.g., geographic coordinates, etc.).


The following table identifies spatial data types that can be supported by the spatial data cartridge according to an embodiment of the present invention. As used herein, a “spatial data type” is a data type is that configured to describe spatial (e.g., geographic, geometric, location-based, etc.) data. Other spatial data types not listed below can also be supported.













Spatial Data Type
Description







POINT
Geometry contains one point.


CURVE
Geometry contains one line string that can contain straight or



circular arc segments, or both. (LINE and CURVE are synonymous



in this context).


POLYGON, SURFACE
Geometry contains one polygon with or without holes or one surface



consisting of one or more polygons. In a three-dimensional polygon,



all points must lie on the same plane.


COLLECTION
Geometry is a heterogeneous collection of elements.



COLLECTION is a superset that includes all other types.


MULTIPOINT
Geometry has one or more points (MULTIPOINT is a superset of



POINT).


MULTICURVE
Geometry has one or more line strings. (MULTICURVE and



MULTILINE are synonymous in this context, and each is a superset



of both LINE and CURVE).


MULTIPOLYGON,
Geometry can have multiple, disjoint polygons (more than one


MULTISURFACE
exterior boundary) or surfaces (MULTIPOLYGON is a superset of



POLYGON, and MULTISURFACE is a superset of SURFACE).


SOLID
Geometry consists of multiple surfaces and is completely enclosed



in a three-dimensional space. Can be a cuboid or a frustum.


MULTISOLID
Geometry can have multiple, disjoint solids (more than one exterior



boundary). (MULTISOLID is a superset of SOLID).









The following table identifies spatial operators/functions that can be supported by the spatial data cartridge according to an embodiment of the present invention. As used herein, a “spatial operator/function” is a function is that configured to operate on spatial data types. Certain types of spatial functions can determine topological relationships between various spatial data instances. Other spatial functions not listed below can also be supported.













Operator
Description







ANYINTERACT
Checks if any geometries have the ANYINTERACT topological



relationship with a specified geometry.


CONTAINS
Checks if any geometries have the CONTAINS topological



relationship with a specified geometry.


INSIDE
Checks if any geometries have the INSIDE topological



relationship with a specified geometry.


WITHINDISTANCE
Determines if two geometries are within a specified distance



from one another.


FILTER
Identifies the set of spatial objects that are likely to interact



spatially with a given object. In one set of embodiments, this is



performed by scanning a spatial index on the set of spatial



objects (described in further detail below).


NN
Determines the nearest neighbor geometries to a geometry.


COVEREDBY
Checks if any geometries have the COVEREDBY topological



relationship with a specified geometry.


COVERS
Checks if any geometries have the COVERS topological



relationship with a specified geometry.


EQUAL
Checks if any geometries have the EQUAL topological



relationship with a specified geometry.


ON
Checks if any geometries have the ON topological relationship



with a specified geometry.


OVERLAPBDYDISJOINT
Checks if any geometries have the OVERLAPBDYDISJOINT



topological relationship with a specified geometry.


OVERLAPBDYINTERSECT
Checks if any geometries have the



OVERLAPBDYINTERSECT topological relationship with a



specified geometry.


OVERLAPS
Checks if any geometries overlap (i.e., have the



OVERLAPBDYDISJOINT or OVERLAPBDYINTERSECT



topological relationship with) a specified geometry.


TOUCH
Checks if any geometries have the TOUCH topological



relationship with a specified geometry.









The following is an example of a CQL query that references a spatial data cartridge named “SPATIAL” and executes the CONTAINS function on two relations comprising spatial data:


SELECT *


FROM R1, R2


WHERE CONTAINS@SPATIAL(R1.polygon, R2.point)


The objective of this query is to output one tuple for each (polygon, point) pair from the cross product of relations R1 and R2 where the polygon contains the point. Merely by way of example, each point in R2 can represent the two-dimensional location of an individual, and each polygon in R1 can represent a two-dimensional hazard area (e.g., the location of a fire). Thus, in this example, the result set of the query can identify every individual that is located within a hazard area.


As shown, the CQL query includes a link definition (“CONTAINS@SPATIAL”) indicating that the function CONTAINS is an extensible object defined within the data cartridge SPATIAL. In addition, the CQL statement specifies two spatial data types—polygon and point. As described with respect to FIG. 4 above, event processing system 102 of FIG. 1 can interact with the SPATIAL data cartridge at compile-time to retrieve metadata for the CONTAINS function and the polygon and point data types. Based on that metadata, executable code/instructions can be generated for the query. Further, as described with respect to FIG. 5 above, event processing system 102 can execute the generated code/instructions at runtime by invoking a call-out to the CONTAINS function as implemented in the SPATIAL data cartridge.


In one set of embodiments, the spatial data cartridge can use a two-tier query model to resolve spatial queries such as the query above. The first tier (referred to as the primary filter) can be used to quickly select candidate records to pass along to the second tier (referred to as the secondary filter). In one embodiment, the primary filter compares geometric approximations to reduce computational complexity, and thus is considered a lower-cost filter. Because the primary filter compares geometric approximations (rather than doing an exact geometric comparison), the filter returns a superset of the exact result set.


The secondary filter applies exact computations to the geometries that result from the primary filter. Thus, the secondary filter yields an exact answer to the spatial query. The second filter operation (i.e., performing exact geometric comparisons) can be computationally expensive, but is only applied to the primary filter results, rather than the entire data set. Thus, by using this two-tier query model, spatial operations can be performed in a computational efficient manner.


Applying this model to the CQL query example above, at runtime the SPATIAL data cartridge can run a primary filter on geometric approximations of the polygons in relation R1 to quickly determine a superset of polygons that can contain a given point in relation R2. The SPATIAL data cartridge can then perform an exact CONTAINS comparison based on the geometric coordinates of the polygons in the superset and the geometric coordinates of the point, thereby producing an exact result set.


In one set of embodiments, the spatial data cartridge can specify an indexing scheme for one or more spatial operators (the techniques for creating such an index are described U.S. Provisional Application No. 61/327,903, filed Apr. 26, 2010, entitled EXTENSIBLE INDEXING FRAMEWORK USING DATA CARTRIDGES, which the present application claims priority to, and which is incorporated herein by reference for all purposes). For example, the spatial data cartridge can instantiate a spatial index on the set of geometries to be searched via the CONTAINS operator. In these embodiments, the spatial index can be used to implement the primary filter.


The purpose of the spatial index is to quickly create a subset of the data to be searched and thereby reduce the processing burden on the secondary filter (i.e., where exact geometric comparisons are performed). A spatial index, like any other index, provides a mechanism to limit searches, but in the case of the spatial data cartridge the mechanism is based on spatial criteria such as intersection and containment.


In one set of embodiments, the spatial data cartridge can use R-Tree indexing as its default indexing mechanism. A spatial R-Tree index can index spatial data of up to four dimensions. In a particular embodiment, an R-Tree index can approximate each geometry by a single rectangle that minimally encloses the geometry (referred to as the minimum bounding rectangle, or MBR).


Returning to the CQL query example above, at compile-time, compiler 134 of event processing system 102 can determine (based on the metadata retrieved from the SPATIAL data cartridge) than an indexing scheme is provided for the CONTAINS operator, and thus compiler 134 can create an index-based execution plan for executing the query. In addition, an R-Tree index can be instantiated by the SPATIAL data cartridge for storing the polygons belonging to relation R1.


At runtime, when a new polygon is added to R1, the SPATIAL data cartridge can insert the new polygon into the R-Tree index instance. As part of this insertion process, the polygon can be approximated using a minimum bounding rectangle. When a new point is added to R2, the SPATIAL data cartridge can scan the index on R1 to identify all polygons in R1 that contain the newly added point (i.e., the primary filter). The results of the index scan can then be used to perform an exact CONTAINS comparison based on the geometric coordinates of the polygons in the superset and the geometric coordinates of the point, thereby producing an exact result set (i.e., the secondary filter).



FIG. 6 is a flow diagram of a process 600 performed by a spatial data cartridge for executing a spatial function in a query according to an embodiment of the present invention. Process 600 can be implemented in software, hardware, or a combination of both. As software, process 600 can be stored on a non-transitory computer-readable medium. In a particular embodiment, the spatial data cartridge can correspond to data cartridge 132 depicted in FIGS. 1-3.


At block 602, the spatial data cartridge can receive, from runtime engine 136 of event processing system 102, an invocation of a spatial function implemented in the data cartridge. For example, this invocation can be received in response to a call-out performed by runtime engine 136 during query execution as shown at block 506 of FIG. 5.


At block 604, the spatial data cartridge can execute a primary filter operation on the input arguments to the function (e.g., input streams and/or relations) to determine a non-exact result set for the function. For example, if the function is a geometric CONTAINS function performed on a relation of polygons and a point, the primary filter can determine, based on geometric approximations of the polygons, a group of candidate polygons that is likely contain the point. Note that this group of candidate polygons is a superset of the exact result set for the CONTAINS function, since some of the candidate polygons may not, in fact, contain the point. The purpose of the primary filter is to prune the search space (in this case, the relation of polygons) using a computationally inexpensive operation, so that more expensive geometric comparisons can be subsequently performed on the smaller group of candidate polygons (rather than the entire relation).


As discussed above, in certain embodiments the primary filter can be implemented using a spatial index. For example, a spatial index can be defined for the relation of polygons, where the geometry of each polygon in the index is approximated using, e.g., a minimum bounding rectangle. In this embodiment, executing the primary filter can comprise performing a index scan on the index to identify all polygons that include the point. Since the geometries of the polygons are approximated rather than exact, the result set returned by the index scan will be a superset of the exact result set.


Once the primary filter has been executed, the spatial data cartridge can execute a secondary filter operation on the non-exact results returned by the primary filter, thereby resulting in a exact result for the spatial function (blocks 606. 608). For instance, returning to the example above, executing the secondary filter operation can include performing the CONTAINS operation based on the exact geometric coordinates of the candidate polygons returned by the primary filter, and the geometric coordinates of the point. This yields an exact result set for the CONTAINS function. Although the secondary filter operation (i.e., performing exact geometric comparisons) can be computationally expensive, since it only applied to the primary filter results, the overall cost for executing the spatial function is reduced.


It should be appreciated that process 600 is illustrative and that variations and modifications are possible. Steps described as sequential can be executed in parallel, order of steps can be varied, and steps can be modified, combined, added, or omitted. One of ordinary skill in the art will recognize many variations, modifications, and alternatives.


In one set of embodiments, the spatial data cartridge can specify application context information that is used during runtime processing of spatial queries. For example, when performing spatial data analysis, a specific geometric coordinate system usually needs to be specified. Different spatial data applications can use different coordinate systems. By predefining this type of information in an application context, this information can be accessible to the application when creating new spatial data object instances or invoking spatial functions. This context information can be configured by a developer of the spatial data cartridge and stored in a data file, such as an Event Processing Network (EPN) assembly file.


The following table identifies attributes that can be specified in a spatial application context according to an embodiment of the present invention. Other attributes not listed below can also be supported.













Attribute
Description







anyinteract-
The default tolerance for contain or inside operator.


tolerance
Default: 0.0000005


rof
Defines the Reciprocal of Flattening (ROF) parameter used



for buffering and projection. Default: 298.257223563


sma
Defines the Semi-Major axis (SMA) parameter used for



buffering and projection. Default: 6378137.0


srid
SRID integer (identifies coordinate system). Valid values



are:



CARTESIAN: for Cartesian coordinate system.



LAT_LNG_WGS84_SRID: for WGS84 coordinate



system.



An integer value from the Oracle Spatial



SDO_COORD_SYS table



COORD_SYS_ID column.



Default: LAT_LNG_WGS84_SRID


Tolerance
The minimum distance to be ignored in geometric



operations including buffering. Default: 0.000000001










FIG. 7 is a simplified block diagram illustrating components of a system environment 700 that can be used in accordance with an embodiment of the present invention. As shown, system environment 700 includes one or more client computing devices 702, 704, 706, 708, which are configured to operate a client application such as a web browser, proprietary client (e.g., Oracle Forms), or the like. In various embodiments, client computing devices 702, 704, 706, and 708 can interact with an event processing system such as system 712.


Client computing devices 702, 704, 706, 708 can be general purpose personal computers (including, by way of example, personal computers and/or laptop computers running various versions of Microsoft Windows and/or Apple Macintosh operating systems), cell phones or PDAs (running software such as Microsoft Windows Mobile and being Internet, e-mail, SMS, Blackberry, or other communication protocol enabled), and/or workstation computers running any of a variety of commercially-available UNIX or UNIX-like operating systems (including without limitation the variety of GNU/Linux operating systems). Alternatively, client computing devices 702, 704, 706, and 708 can be any other electronic device, such as a thin-client computer, Internet-enabled gaming system, and/or personal messaging device, capable of communicating over a network (e.g., network 710 described below). Although exemplary system environment 700 is shown with four client computing devices, any number of client computing devices can be supported.


System environment 700 can include a network 710. Network 710 can be any type of network familiar to those skilled in the art that can support data communications using any of a variety of commercially-available protocols, including without limitation TCP/IP, SNA, IPX, AppleTalk, and the like. Merely by way of example, network 710 can be a local area network (LAN), such as an Ethernet network, a Token-Ring network and/or the like; a wide-area network; a virtual network, including without limitation a virtual private network (VPN); the Internet; an intranet; an extranet; a public switched telephone network (PSTN); an infra-red network; a wireless network (e.g., a network operating under any of the IEEE 802.11 suite of protocols, the Bluetooth protocol known in the art, and/or any other wireless protocol); and/or any combination of these and/or other networks.


Event processing system 712 can comprise one or more server computers which can be general purpose computers, specialized server computers (including, by way of example, PC servers, UNIX servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server farms, server clusters, or any other appropriate arrangement and/or combination. In various embodiments, system 712 can be adapted to run one or more services or software applications described in the foregoing disclosure.


System 712 can run an operating system including any of those discussed above, as well as any commercially available server operating system. System 712 can also run any of a variety of additional server applications and/or mid-tier applications, including HTTP servers, FTP servers, CGI servers, Java servers, database servers, and the like. Exemplary database servers include without limitation those commercially available from Oracle, Microsoft, Sybase, IBM and the like.


System environment 700 can also include one or more databases 714 and 716. Databases 714 and 716 can reside in a variety of locations. By way of example, one or more of databases 714 and 716 can reside on a storage medium local to (and/or resident in) system 712. Alternatively, databases 714 and 716 can be remote from system 712, and in communication with system 712 via a network-based or dedicated connection. In one set of embodiments, databases 714 and 716 can reside in a storage-area network (SAN) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to system 712 can be stored locally on system 712 and/or remotely, as appropriate. In one set of embodiments, databases 714 and 716 can include relational databases, such as Oracle 10g, which are adapted to store, update, and retrieve data in response to SQL-formatted commands.



FIG. 8 is a simplified block diagram of a computer system 800 that can be used in accordance with embodiments of the present invention. For example, system 800 can be used to implement event processing system 102 depicted in FIGS. 1 and 3. Computer system 800 is shown comprising hardware elements that can be electrically coupled via a bus 824. The hardware elements can include one or more central processing units (CPUs) 802, one or more input devices 804 (e.g., a mouse, a keyboard, etc.), and one or more output devices 806 (e.g., a display device, a printer, etc.). Computer system 800 can also include one or more storage devices 808. By way of example, the storage device(s) 808 can include devices such as disk drives, optical storage devices, and solid-state storage devices such as a random access memory (RAM) and/or a read-only memory (ROM), which can be programmable, flash-updateable and/or the like.


Computer system 800 can additionally include a computer-readable storage media reader 812, a communications subsystem 814 (e.g., a modem, a network card (wireless or wired), an infra-red communication device, etc.), and working memory 818, which can include RAM and ROM devices as described above. In some embodiments, computer system 800 can also include a processing acceleration unit 816, which can include a digital signal processor (DSP), a special-purpose processor, and/or the like.


Computer-readable storage media reader 812 can further be connected to a computer-readable storage medium 810, together (and, optionally, in combination with storage device(s) 808) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. Communications subsystem 814 can permit data to be exchanged with network 710 and/or any other computer described above with respect to system environment 700.


Computer system 800 can also comprise software elements, shown as being currently located within working memory 818, including an operating system 820 and/or other code 822, such as an application program (which can be a client application, Web browser, mid-tier application, RDBMS, etc.). In an exemplary embodiment, working memory 818 can include executable code and associated data structures (such as caches) used for processing events and performing data cartridge-related processing as described above. It should be appreciated that alternative embodiments of computer system 800 can have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices can be employed.


Storage media and computer readable media for containing code, or portions of code, can include any appropriate media known or used in the art, including storage media and communication media, such as but not limited to volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage and/or transmission of information such as computer readable instructions, data structures, program modules, or other data, including RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store or transmit the desired information and which can be accessed by a computer.


Although specific embodiments of the invention have been described, various modifications, alterations, alternative constructions, and equivalents are also encompassed within the scope of the invention. Embodiments of the present invention are not restricted to operation within certain specific data processing environments, but are free to operate within a plurality of data processing environments. Additionally, although embodiments of the present invention have been described using a particular series of transactions and steps, it should be apparent to those skilled in the art that the scope of the present invention is not limited to the described series of transactions and steps.


Further, while embodiments of the present invention have been described using a particular combination of hardware and software, it should be recognized that other combinations of hardware and software are also within the scope of the present invention. Embodiments of the present invention can be implemented only in hardware, or only in software, or using combinations thereof.


The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. It will, however, be evident that additions, subtractions, deletions, and other modifications and changes can be made thereunto without departing from the broader spirit and scope as set forth in the claims.

Claims
  • 1. A system comprising: a storage component configured to store a spatial data cartridge including metadata pertaining to a spatial function that is not natively supported by the system and code that implements the spatial function, the spatial function being configured to determine a topological relationship between first spatial data and second spatial data; anda processor configured to: receive a query referencing the spatial data cartridge and the spatial function to be evaluated using the spatial data cartridge, the query being adapted to process one or more data streams;compile the query based on the metadata included in the spatial data cartridge, the metadata comprising a list of arguments for evaluating the spatial function using the spatial data cartridge; andexecute the query based on the code included in the spatial data cartridge;wherein the query includes a link definition that specifies the spatial function and the spatial data cartridge;wherein the processor is configured to identify the spatial data cartridge based on the link definition;wherein the system is an event processing system.
  • 2. A system comprising: a storage component configured to store a spatial data cartridge including metadata pertaining to a spatial function that is not natively supported by the system and code that implements the spatial function, the spatial function being configured to determine a topological relationship between first spatial data and second spatial data; anda processor configured to: receive a query referencing the spatial data cartridge and the spatial function to be evaluated using the spatial data cartridge, the query being adapted to process one or more data streams;compile the query based on the metadata included in the spatial data cartridge, the metadata comprising a list of arguments for evaluating the spatial function using the spatial data cartridge; andexecute the query based on the code included in the spatial data cartridge;wherein executing the query comprises executing the code that implements the spatial function in the spatial data cartridge;wherein executing the code that implements the spatial function comprises: performing a first filter operation with respect to data in a first spatial data stream and data in a second spatial data stream, the first filter operation returning a superset of an exact result set for the spatial function; andperforming a second filter operation with respect to the superset, the second filter operation returning the exact result set for the spatial function.
  • 3. The system of claim 2 wherein performing the first filter operation comprises: comparing geometric approximations of the data in the first spatial data stream and the data in the second spatial data stream; anddetermining likely topological relationships between the data in the first spatial data stream and the data in the second spatial data stream based on the comparing.
  • 4. The system of claim 2 wherein performing the second filter operation comprises: comparing exact geometries of the data in the first spatial data stream and the data in the second spatial data stream; anddetermining exact topological relationships between the data in the first spatial data stream and the data in the second spatial data stream based on the comparing.
  • 5. The system of claim 2 wherein performing the first filter operation comprises performing an index scan of a spatial index created for the first spatial data stream or the second spatial data stream.
  • 6. A non-transitory computer-readable storage medium having stored thereon instructions executable by a processor, the instructions comprising: instructions that cause the processor to register a spatial data cartridge including metadata pertaining to a spatial function that is not natively supported by the system and code that implements the spatial function, the spatial function being configured to determine a topological relationship between first spatial data and second spatial data;instructions that cause the processor to receive a query containing a link definition that references both the spatial function to be evaluated using the spatial data cartridge and the spatial data cartridge, the query being adapted to process one or more data streams;instructions that cause the processor to identify the spatial data cartridge based on the link definition;instructions that cause the processor to compile the query based on the metadata included in the spatial data cartridge, the metadata comprising a list of arguments for evaluating the spatial function using the spatial data cartridge; andinstructions that cause the processor to execute the query based on the code included in the spatial data cartridge;wherein the instructions that cause the processor to execute the query comprise instructions that cause the processor to execute the code that implements the spatial function in the spatial data cartridge.
  • 7. The non-transitory computer-readable storage medium of claim 6 wherein the instructions that cause the processor to execute the code that implements the spatial function comprises: instructions that cause the processor to perform a first filter operation with respect to data in a first spatial data stream and data in a second spatial data stream, the first filter operation returning a superset of an exact result set for the spatial function; andinstructions that cause the processor to perform a second filter operation with respect to the superset, the second filter operation returning the exact result set for the spatial function.
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application claims the benefit and priority under 35 U.S.C. 119(e) of the following provisional applications, the entire contents of which are incorporated herein by reference for all purposes: U.S. Provisional Application No. 61/290,460, filed Dec. 28, 2009, entitled EXTENSIBILITY PLATFORM USING DATA CARTRIDGES; U.S. Provisional Application No. 61/311,175, filed Mar. 5, 2010, entitled EXTENSIBILITY PLATFORM USING DATA CARTRIDGES; U.S. Provisional Application No. 61/327,903, filed Apr. 26, 2010, entitled EXTENSIBLE INDEXING FRAMEWORK USING DATA CARTRIDGES; and U.S. Provisional Application No. 61/355,415, filed Jun. 16, 2010, entitled SPATIAL DATA CARTRIDGE FOR EVENT PROCESSING SYSTEMS.

US Referenced Citations (457)
Number Name Date Kind
4996687 Hess et al. Feb 1991 A
5051947 Messenger et al. Sep 1991 A
5339392 Risberg et al. Aug 1994 A
5495600 Terry et al. Feb 1996 A
5706494 Cochrane et al. Jan 1998 A
5802262 Van De Vanter Sep 1998 A
5802523 Jasuja et al. Sep 1998 A
5822750 Jou et al. Oct 1998 A
5826077 Blakeley et al. Oct 1998 A
5850544 Parvathaneny et al. Dec 1998 A
5857182 DeMichiel et al. Jan 1999 A
5918225 White et al. Jun 1999 A
5920716 Johnson et al. Jul 1999 A
5937195 Ju et al. Aug 1999 A
5937401 Hillegas Aug 1999 A
6006235 Macdonald et al. Dec 1999 A
6011916 Moore et al. Jan 2000 A
6041344 Bodamer et al. Mar 2000 A
6081801 Cochrane et al. Jun 2000 A
6092065 Floratos et al. Jul 2000 A
6108666 Floratos et al. Aug 2000 A
6112198 Lohman et al. Aug 2000 A
6128610 Srinivasan et al. Oct 2000 A
6158045 You Dec 2000 A
6212673 House et al. Apr 2001 B1
6219660 Haderle et al. Apr 2001 B1
6263332 Nasr et al. Jul 2001 B1
6278994 Fuh et al. Aug 2001 B1
6282537 Madnick et al. Aug 2001 B1
6341281 MacNicol et al. Jan 2002 B1
6353821 Gray Mar 2002 B1
6367034 Novik et al. Apr 2002 B1
6370537 Gilbert et al. Apr 2002 B1
6389436 Chakrabarti et al. May 2002 B1
6397262 Hayden et al. May 2002 B1
6418448 Sarkar Jul 2002 B1
6438540 Nasr et al. Aug 2002 B2
6438559 White et al. Aug 2002 B1
6439783 Antoshenkov Aug 2002 B1
6449620 Draper et al. Sep 2002 B1
6453314 Chan et al. Sep 2002 B1
6507834 Kabra et al. Jan 2003 B1
6523102 Dye et al. Feb 2003 B1
6546381 Subramanian et al. Apr 2003 B1
6615203 Lin et al. Sep 2003 B1
6681343 Nakabo Jan 2004 B1
6708186 Claborn et al. Mar 2004 B1
6718278 Steggles Apr 2004 B1
6748386 Li Jun 2004 B1
6751619 Rowstron et al. Jun 2004 B1
6766330 Chen et al. Jul 2004 B1
6785677 Fritchman Aug 2004 B1
6826566 Lewak et al. Nov 2004 B2
6836778 Manikutty et al. Dec 2004 B2
6850925 Chaudhuri et al. Feb 2005 B2
6856981 Wyschogrod et al. Feb 2005 B2
6985904 Kaluskar et al. Jan 2006 B1
6996557 Leung et al. Feb 2006 B1
7020696 Perry et al. Mar 2006 B1
7047249 Vincent May 2006 B1
7051034 Ghosh et al. May 2006 B1
7080062 Leung et al. Jul 2006 B1
7093023 Lockwood et al. Aug 2006 B2
7145938 Takeuchi et al. Dec 2006 B2
7146352 Brundage et al. Dec 2006 B2
7167848 Boukouvalas et al. Jan 2007 B2
7203927 Al-Azzawe et al. Apr 2007 B2
7224185 Campbell et al. May 2007 B2
7225188 Gai et al. May 2007 B1
7236972 Lewak et al. Jun 2007 B2
7305391 Wyschogrod et al. Dec 2007 B2
7308561 Cornet et al. Dec 2007 B2
7310638 Blair Dec 2007 B1
7348981 Buck Mar 2008 B1
7376656 Blakeley et al. May 2008 B2
7383253 Tsimelzon et al. Jun 2008 B1
7403959 Nishizawa et al. Jul 2008 B2
7430549 Zane et al. Sep 2008 B2
7451143 Sharangpani et al. Nov 2008 B2
7475058 Kakivaya et al. Jan 2009 B2
7483976 Ross Jan 2009 B2
7516121 Liu et al. Apr 2009 B2
7519577 Brundage et al. Apr 2009 B2
7519962 Aman Apr 2009 B2
7533087 Liu et al. May 2009 B2
7546284 Martinez et al. Jun 2009 B1
7552365 March et al. Jun 2009 B1
7567953 Kadayam et al. Jul 2009 B2
7580946 Mansour et al. Aug 2009 B2
7587383 Koo et al. Sep 2009 B2
7613848 Amini et al. Nov 2009 B2
7620851 Leavy et al. Nov 2009 B1
7630982 Boyce Dec 2009 B2
7634501 Yabloko Dec 2009 B2
7636703 Taylor Dec 2009 B2
7644066 Krishnaprasad et al. Jan 2010 B2
7653645 Stokes Jan 2010 B1
7672964 Yan et al. Mar 2010 B1
7673065 Srinivasan et al. Mar 2010 B2
7676461 Chikodrov et al. Mar 2010 B2
7689622 Liu et al. Mar 2010 B2
7693891 Stokes et al. Apr 2010 B2
7702629 Cytron et al. Apr 2010 B2
7702639 Stanley et al. Apr 2010 B2
7711782 Kim et al. May 2010 B2
7716210 Ozcan et al. May 2010 B2
7739265 Jain et al. Jun 2010 B2
7805445 Boyer et al. Sep 2010 B2
7814111 Levin Oct 2010 B2
7818313 Tsimelzon Oct 2010 B1
7823066 Kuramura Oct 2010 B1
7827146 De Landstheer et al. Nov 2010 B1
7827190 Pandya Nov 2010 B2
7844829 Meenakshisundaram Nov 2010 B2
7870124 Liu et al. Jan 2011 B2
7870167 Lu et al. Jan 2011 B2
7877381 Ewen et al. Jan 2011 B2
7895187 Bowman Feb 2011 B2
7912853 Agrawal Mar 2011 B2
7917299 Buhler et al. Mar 2011 B2
7930322 MacLennan Apr 2011 B2
7945540 Park et al. May 2011 B2
7953728 Hu et al. May 2011 B2
7954109 Durham et al. May 2011 B1
7979420 Jain et al. Jul 2011 B2
7984043 Waas Jul 2011 B1
7987204 Stokes Jul 2011 B2
7988817 Son Aug 2011 B2
7991766 Srinivasan et al. Aug 2011 B2
7996388 Jain et al. Aug 2011 B2
8019747 Srinivasan et al. Sep 2011 B2
8032544 Jing et al. Oct 2011 B2
8073826 Srinivasan et al. Dec 2011 B2
8099400 Haub et al. Jan 2012 B2
8103655 Srinivasan et al. Jan 2012 B2
8134184 Becker et al. Mar 2012 B2
8155880 Patel et al. Apr 2012 B2
8195648 Zabback et al. Jun 2012 B2
8204873 Chavan Jun 2012 B2
8204875 Srinivasan et al. Jun 2012 B2
8260803 Hsu et al. Sep 2012 B2
8290776 Moriwaki et al. Oct 2012 B2
8307343 Chaudhuri et al. Nov 2012 B2
8315990 Barga et al. Nov 2012 B2
8316012 Abouzied et al. Nov 2012 B2
8346511 Schoning et al. Jan 2013 B2
8370812 Feblowitz et al. Feb 2013 B2
8396886 Tsimelzon Mar 2013 B1
8447739 Naibo et al. May 2013 B2
8458175 Stokes Jun 2013 B2
8521867 Srinivasan et al. Aug 2013 B2
8543558 Srinivasan et al. Sep 2013 B2
8572589 Cataldo et al. Oct 2013 B2
8589436 Srinivasan et al. Nov 2013 B2
8676841 Srinivasan et al. Mar 2014 B2
8713049 Jain et al. Apr 2014 B2
8719207 Ratnam et al. May 2014 B2
8745070 Krishnamurthy Jun 2014 B2
8762369 Macho et al. Jun 2014 B2
8775412 Day et al. Jul 2014 B2
9047249 de Castro Alves et al. Jun 2015 B2
9058360 De Castro Alves et al. Jun 2015 B2
9098587 Deshmukh et al. Aug 2015 B2
9110945 Jain Aug 2015 B2
9244978 Alves et al. Jan 2016 B2
9256646 Deshmukh et al. Feb 2016 B2
9262258 Alves et al. Feb 2016 B2
9262479 Deshmukh et al. Feb 2016 B2
20020023211 Roth et al. Feb 2002 A1
20020032804 Hunt Mar 2002 A1
20020038306 Griffin et al. Mar 2002 A1
20020038313 Klein et al. Mar 2002 A1
20020049788 Lipkin et al. Apr 2002 A1
20020056004 Smith et al. May 2002 A1
20020073399 Golden Jun 2002 A1
20020116362 Li et al. Aug 2002 A1
20020116371 Dodds et al. Aug 2002 A1
20020133484 Chau et al. Sep 2002 A1
20020169788 Lee et al. Nov 2002 A1
20030014408 Robertson Jan 2003 A1
20030037048 Kabra et al. Feb 2003 A1
20030046673 Copeland et al. Mar 2003 A1
20030065655 Syeda-Mahmood Apr 2003 A1
20030065659 Agarwal et al. Apr 2003 A1
20030120682 Bestgen et al. Jun 2003 A1
20030135304 Sroub et al. Jul 2003 A1
20030200198 Chandrasekar et al. Oct 2003 A1
20030212664 Breining et al. Nov 2003 A1
20030229652 Bakalash et al. Dec 2003 A1
20030236766 Fortuna et al. Dec 2003 A1
20040010496 Behrendt et al. Jan 2004 A1
20040019592 Crabtree Jan 2004 A1
20040024773 Stoffel et al. Feb 2004 A1
20040064466 Manikutty et al. Apr 2004 A1
20040073534 Robson Apr 2004 A1
20040088404 Aggarwal May 2004 A1
20040117359 Snodgrass et al. Jun 2004 A1
20040136598 Le Leannec et al. Jul 2004 A1
20040151382 Stellenberg et al. Aug 2004 A1
20040153329 Casati et al. Aug 2004 A1
20040167864 Wang et al. Aug 2004 A1
20040168107 Sharp et al. Aug 2004 A1
20040177053 Donoho et al. Sep 2004 A1
20040201612 Hild et al. Oct 2004 A1
20040205082 Fontoura et al. Oct 2004 A1
20040220896 Finlay et al. Nov 2004 A1
20040220912 Manikutty et al. Nov 2004 A1
20040220927 Murthy et al. Nov 2004 A1
20040243590 Gu et al. Dec 2004 A1
20040267760 Brundage et al. Dec 2004 A1
20040268314 Kollman et al. Dec 2004 A1
20050010896 Meliksetian et al. Jan 2005 A1
20050055338 Warner et al. Mar 2005 A1
20050065949 Warner et al. Mar 2005 A1
20050096124 Stronach May 2005 A1
20050097128 Ryan et al. May 2005 A1
20050108368 Mohan May 2005 A1
20050120016 Midgley Jun 2005 A1
20050154740 Day et al. Jul 2005 A1
20050174940 Iny Aug 2005 A1
20050177579 Blakeley et al. Aug 2005 A1
20050192921 Chaudhuri et al. Sep 2005 A1
20050204340 Ruminer et al. Sep 2005 A1
20050229158 Thusoo et al. Oct 2005 A1
20050273352 Moffat et al. Dec 2005 A1
20050273450 McMillen et al. Dec 2005 A1
20060007308 Ide et al. Jan 2006 A1
20060015482 Beyer et al. Jan 2006 A1
20060031204 Liu et al. Feb 2006 A1
20060047696 Larson et al. Mar 2006 A1
20060064487 Ross Mar 2006 A1
20060080646 Aman Apr 2006 A1
20060085592 Ganguly et al. Apr 2006 A1
20060089939 Broda et al. Apr 2006 A1
20060100957 Buttler et al. May 2006 A1
20060100969 Wang et al. May 2006 A1
20060106786 Day et al. May 2006 A1
20060106797 Srinivasa et al. May 2006 A1
20060129554 Suyama et al. Jun 2006 A1
20060155719 Mihaeli et al. Jul 2006 A1
20060167704 Nicholls et al. Jul 2006 A1
20060167856 Angele et al. Jul 2006 A1
20060212441 Tang et al. Sep 2006 A1
20060224576 Liu et al. Oct 2006 A1
20060230029 Yan Oct 2006 A1
20060235840 Manikutty et al. Oct 2006 A1
20060242180 Graf et al. Oct 2006 A1
20060282429 Hernandez-Sherrington et al. Dec 2006 A1
20060294095 Berk et al. Dec 2006 A1
20070016467 John et al. Jan 2007 A1
20070022092 Nishizawa et al. Jan 2007 A1
20070039049 Kupferman et al. Feb 2007 A1
20070050340 von Kaenel et al. Mar 2007 A1
20070076314 Rigney Apr 2007 A1
20070118600 Arora May 2007 A1
20070136239 Lee et al. Jun 2007 A1
20070136254 Choi et al. Jun 2007 A1
20070156787 MacGregor Jul 2007 A1
20070156964 Sistla Jul 2007 A1
20070192301 Posner Aug 2007 A1
20070198479 Cai et al. Aug 2007 A1
20070214171 Behnen Sep 2007 A1
20070226188 Johnson et al. Sep 2007 A1
20070226239 Johnson et al. Sep 2007 A1
20070271280 Chandasekaran Nov 2007 A1
20070294217 Chen et al. Dec 2007 A1
20080005093 Liu et al. Jan 2008 A1
20080010093 LaPlante et al. Jan 2008 A1
20080010241 McGoveran Jan 2008 A1
20080016095 Bhatnagar et al. Jan 2008 A1
20080028095 Lang et al. Jan 2008 A1
20080033914 Cherniack et al. Feb 2008 A1
20080034427 Cadambi et al. Feb 2008 A1
20080046401 Lee et al. Feb 2008 A1
20080071904 Schuba et al. Mar 2008 A1
20080077570 Tang et al. Mar 2008 A1
20080077587 Wyschogrod et al. Mar 2008 A1
20080077780 Zingher Mar 2008 A1
20080082484 Averbuch et al. Apr 2008 A1
20080082514 Khorlin et al. Apr 2008 A1
20080086321 Walton Apr 2008 A1
20080098359 Ivanov et al. Apr 2008 A1
20080110397 Son May 2008 A1
20080114787 Kashiyama et al. May 2008 A1
20080120283 Liu et al. May 2008 A1
20080120321 Liu et al. May 2008 A1
20080162583 Brown et al. Jul 2008 A1
20080195577 Fan et al. Aug 2008 A1
20080235298 Lin et al. Sep 2008 A1
20080243451 Feblowitz et al. Oct 2008 A1
20080243675 Parsons et al. Oct 2008 A1
20080250073 Nori et al. Oct 2008 A1
20080255847 Moriwaki et al. Oct 2008 A1
20080263039 Van Lunteren Oct 2008 A1
20080270764 McMillen et al. Oct 2008 A1
20080281782 Agrawal Nov 2008 A1
20080301124 Alves et al. Dec 2008 A1
20080301125 Alves et al. Dec 2008 A1
20080301135 Alves et al. Dec 2008 A1
20080301256 McWilliams et al. Dec 2008 A1
20080313131 Friedman et al. Dec 2008 A1
20090006320 Ding et al. Jan 2009 A1
20090006346 C N et al. Jan 2009 A1
20090007098 Chevrette et al. Jan 2009 A1
20090019045 Amir et al. Jan 2009 A1
20090024622 Chkodrov et al. Jan 2009 A1
20090043729 Liu et al. Feb 2009 A1
20090070355 Cadarette et al. Mar 2009 A1
20090070785 Alvez et al. Mar 2009 A1
20090070786 Alves et al. Mar 2009 A1
20090076899 Gbodimowo Mar 2009 A1
20090088962 Jones Apr 2009 A1
20090100029 Jain et al. Apr 2009 A1
20090106189 Jain et al. Apr 2009 A1
20090106190 Srinivasan et al. Apr 2009 A1
20090106198 Srinivasan et al. Apr 2009 A1
20090106214 Jain et al. Apr 2009 A1
20090106215 Jain et al. Apr 2009 A1
20090106218 Srinivasan et al. Apr 2009 A1
20090106321 Das et al. Apr 2009 A1
20090106440 Srinivasan et al. Apr 2009 A1
20090112802 Srinivasan et al. Apr 2009 A1
20090112803 Srinivasan et al. Apr 2009 A1
20090112853 Nishizawa et al. Apr 2009 A1
20090125550 Barga et al. May 2009 A1
20090125916 Lu et al. May 2009 A1
20090132503 Sun May 2009 A1
20090133041 Rahman et al. May 2009 A1
20090144696 Andersen Jun 2009 A1
20090172014 Huetter Jul 2009 A1
20090182779 Johnson Jul 2009 A1
20090187584 Johnson et al. Jul 2009 A1
20090192981 Papaemmanouil et al. Jul 2009 A1
20090216747 Li et al. Aug 2009 A1
20090216860 Li et al. Aug 2009 A1
20090222730 Wixson et al. Sep 2009 A1
20090228431 Dunagan et al. Sep 2009 A1
20090228434 Krishnamurthy et al. Sep 2009 A1
20090245236 Scott et al. Oct 2009 A1
20090248749 Gu et al. Oct 2009 A1
20090254522 Chaudhuri et al. Oct 2009 A1
20090257314 Davis et al. Oct 2009 A1
20090265324 Mordvinov et al. Oct 2009 A1
20090271529 Kashiyama et al. Oct 2009 A1
20090282021 Bennet et al. Nov 2009 A1
20090293046 Cheriton Nov 2009 A1
20090300093 Griffiths et al. Dec 2009 A1
20090300181 Marques Dec 2009 A1
20090300580 Heyhoe et al. Dec 2009 A1
20090300615 Andrade et al. Dec 2009 A1
20090313198 Kudo et al. Dec 2009 A1
20090319501 Goldstein et al. Dec 2009 A1
20090327102 Maniar et al. Dec 2009 A1
20090327257 Abouzeid et al. Dec 2009 A1
20100017379 Naibo et al. Jan 2010 A1
20100017380 Naibo et al. Jan 2010 A1
20100023498 Dettinger et al. Jan 2010 A1
20100036803 Vemuri et al. Feb 2010 A1
20100036831 Vemuri Feb 2010 A1
20100049710 Young, Jr. et al. Feb 2010 A1
20100057663 Srinivasan et al. Mar 2010 A1
20100057727 Srinivasan et al. Mar 2010 A1
20100057735 Srinivasan et al. Mar 2010 A1
20100057736 Srinivasan et al. Mar 2010 A1
20100057737 Srinivasan et al. Mar 2010 A1
20100094838 Kozak Apr 2010 A1
20100106946 Imaki et al. Apr 2010 A1
20100125574 Navas May 2010 A1
20100125584 Navas May 2010 A1
20100138405 Mihaila Jun 2010 A1
20100161589 Nica et al. Jun 2010 A1
20100223305 Park et al. Sep 2010 A1
20100223437 Park et al. Sep 2010 A1
20100223606 Park et al. Sep 2010 A1
20100250572 Chen et al. Sep 2010 A1
20100293135 Candea et al. Nov 2010 A1
20100312756 Zhang et al. Dec 2010 A1
20100318652 Samba Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20110004621 Kelley et al. Jan 2011 A1
20110016160 Zhang et al. Jan 2011 A1
20110022618 Thatte et al. Jan 2011 A1
20110023055 Thatte et al. Jan 2011 A1
20110029484 Park et al. Feb 2011 A1
20110029485 Park et al. Feb 2011 A1
20110040746 Handa et al. Feb 2011 A1
20110055192 Tang et al. Mar 2011 A1
20110055197 Chavan Mar 2011 A1
20110093162 Nielsen et al. Apr 2011 A1
20110105857 Zhang et al. May 2011 A1
20110161321 de Castro Alves et al. Jun 2011 A1
20110161328 Park et al. Jun 2011 A1
20110161352 de Castro Alves et al. Jun 2011 A1
20110161356 de Castro Alves et al. Jun 2011 A1
20110161397 Bekiares et al. Jun 2011 A1
20110173231 Drissi et al. Jul 2011 A1
20110173235 Aman et al. Jul 2011 A1
20110196839 Smith et al. Aug 2011 A1
20110196891 de Castro Alves et al. Aug 2011 A1
20110246445 Mishra Oct 2011 A1
20110270879 Srinivasan et al. Nov 2011 A1
20110282812 Chandramouli et al. Nov 2011 A1
20110302164 Krishnamurthy et al. Dec 2011 A1
20110313844 Chandramouli et al. Dec 2011 A1
20110314019 Jimenez Peris et al. Dec 2011 A1
20110321057 Mejdrich et al. Dec 2011 A1
20120016866 Dunagan Jan 2012 A1
20120041934 Srinivasan et al. Feb 2012 A1
20120130963 Luo et al. May 2012 A1
20120131139 Siripurapu et al. May 2012 A1
20120166417 Chandramouli et al. Jun 2012 A1
20120166421 Cammert et al. Jun 2012 A1
20120166469 Cammert et al. Jun 2012 A1
20120191697 Sherman et al. Jul 2012 A1
20120233107 Roesch et al. Sep 2012 A1
20120259910 Andrade et al. Oct 2012 A1
20120278473 Griffiths Nov 2012 A1
20120290715 Dinger et al. Nov 2012 A1
20120324453 Chandramouli et al. Dec 2012 A1
20130031567 Nano et al. Jan 2013 A1
20130046725 Cammert et al. Feb 2013 A1
20130117317 Wolf May 2013 A1
20130144866 Jerzak et al. Jun 2013 A1
20130191370 Chen et al. Jul 2013 A1
20130332240 Patri et al. Dec 2013 A1
20140082013 Wolf et al. Mar 2014 A1
20140095444 Deshmukh et al. Apr 2014 A1
20140095445 Deshmukh et al. Apr 2014 A1
20140095446 Deshmukh et al. Apr 2014 A1
20140095447 Deshmukh et al. Apr 2014 A1
20140095462 Park et al. Apr 2014 A1
20140095471 Deshmukh et al. Apr 2014 A1
20140095473 Srinivasan et al. Apr 2014 A1
20140095483 Toillion et al. Apr 2014 A1
20140095525 Hsiao et al. Apr 2014 A1
20140095529 Deshmukh et al. Apr 2014 A1
20140095533 Shukla et al. Apr 2014 A1
20140095535 Deshmukh et al. Apr 2014 A1
20140095537 Park et al. Apr 2014 A1
20140095540 Hsiao et al. Apr 2014 A1
20140095541 Herwadkar et al. Apr 2014 A1
20140095543 Hsiao et al. Apr 2014 A1
20140136514 Jain et al. May 2014 A1
20140156683 de Castro Alves Jun 2014 A1
20140172506 Parsell et al. Jun 2014 A1
20140172914 Elnikety et al. Jun 2014 A1
20140201355 Bishnoi et al. Jul 2014 A1
20140236983 Alves et al. Aug 2014 A1
20140237289 de Castro Alves et al. Aug 2014 A1
20140358959 Bishnoi et al. Dec 2014 A1
20140379712 Lafuente Alvarez Dec 2014 A1
20150156241 Shukla et al. Jun 2015 A1
20150161214 Kali et al. Jun 2015 A1
20150227415 Alves et al. Aug 2015 A1
20150363464 Alves et al. Dec 2015 A1
20150381712 De Castro Alves et al. Dec 2015 A1
20160034311 Park et al. Feb 2016 A1
Foreign Referenced Citations (18)
Number Date Country
104885077 Sep 2015 CN
104937591 Sep 2015 CN
1241589 Sep 2002 EP
2474922 Jul 2012 EP
2946314 Nov 2015 EP
2946527 Nov 2015 EP
2959408 Dec 2015 EP
2015536001 Dec 2015 JP
2016500167 Jan 2016 JP
WO0049533 Aug 2000 WO
WO 0049533 Aug 2000 WO
0118712 Mar 2001 WO
WO 0159602 Aug 2001 WO
WO 0165418 Sep 2001 WO
WO 03030031 Apr 2003 WO
2007122347 Nov 2007 WO
2012050582 Apr 2012 WO
2015191120 Dec 2015 WO
Non-Patent Literature Citations (412)
Entry
Hao et al. “Achieving high performance web applications by service and database replications at edge servers,” proceedings of IPCCC 2009, IEEE 28th International Performance Computing and Communications Conference, pp. 153-160 (Dec. 2009).
International Search Report dated for PCT/US2011/052019 (Nov. 17, 2011).
Office Action for U.S. Appl. No. 12/396,008 (Nov. 16, 2011).
Office Action for U.S. Appl. No. 12/506,891 (Dec. 14, 2011).
Office Action for U.S. Appl. No. 12/534,398 (Nov. 11, 2011).
Office Action for U.S. Appl. No. 11/601,415 (Dec. 9, 2011).
Abadi, et al., “Aurora: A Data Stream Management System,” International Conference on Management of Data, Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, ACM Press, 2003, 4 pages.
Aho, et al., “Efficient String Matching: An Aid to Bibliographic Search,” Communications of the ACM, Jun. 1975, vol. 18, No. 6, pp. 333-340, Copyright 1975, Association for Computing Machinery, Inc.
Arasu, “CQL: A language for Continuous Queries over Streams and Relations,” Lecture Notes in Computer Science, 2004, vol. 2921/2004, pp. 1-19.
Arasu, et al., “The CQL Continuous Query Language: Semantic Foundations and Query Execution,” Stanford University, The VLDB Journal—The International Journal on Very Large Data Bases, Jun. 2006, vol. 15, issue 2, pp. 1-32, Springer-Verlag New York, Inc.
Arasu, et al., “An Abstract Semantics and Concrete Language for Continuous Queries over Streams and Relations,” 9th International Workshop on Database programming languages, Sep. 2003, 11 pages.
Arasu, et al., “STREAM: The Stanford Data Stream Management System,” Department of Computer Science, Stanford University, 2004, p. 21.
Avnur, et al., “Eddies: Continuously Adaptive Query Processing,” In Proceedings of the 2000 ACM SIGMOD International Conference on Data, Dallas TX, May 2000, 12 pages.
Avnur, et al., “Eddies: Continuously Adaptive Query Processing,” slide show, believed to be prior to Oct. 17, 2007, 4 pages.
Babu, et al., “Continuous Queries over Data Streams,” SIGMOD Record, Sep. 2001, vol. 30, No. 3, pp. 109-120.
Bai, et al., “A Data Stream Language and System Designed for Power and Extensibility,” Conference on Information and Knowledge Management, Proceedings of the 15th ACM International Conference on Information and Knowledge Management, Arlington, Virginia, Nov. 5-11, 2006, 10 pages, Copyright 2006, ACM Press.
Bose, et al., “A Query Algebra for Fragmented XML Stream Data”, 9th International Conference on Data Base Programming Languages (DBPL), Sep. 6-8, 2003, Potsdam, Germany, at URL: http://lambda,uta.edu/dbp103.pdf, 11 pages.
Buza, “Extension of CQL over Dynamic Databases,” Journal of Universal Computer Science, 2006, vol. 12, No. 9, pp. 1165-1176.
Carpenter, “User Defined Functions,” Oct. 12, 2000, at URL: http://www.sqlteam.com/itemprint.asp?ItemID=979, 4 pages.
Chan, et al., “Efficient Filtering of XML documents with Xpath expressions,” VLDB Journal, 2002, pp. 354-379.
Chandrasekaran, et al., “TelegraphCQ: Continuous Dataflow Processing for an Uncertain World,” Proceedings of CIDR 2003, 12 pages.
Chen, et al., “NiagaraCQ: A Scalable Continuous Query System for Internet Databases,” Proceedings of the 2000 SIGMOD International Conference on Management of Data, May 2000, pp. 379-390.
Colyer, et al., “Spring Dynamic Modules Reference Guide,” Copyright 2006-2008, ver. 1.0.3, 73 pages.
Colyer, et al., “Spring Dynamic Modules Reference Guide,” Copyright 2006-2008, ver. 1.1.3, 96 pages.
“Complex Event Processing in the Real World,” an Oracle White Paper, Sep. 2007, 13 pages.
Conway, “An Introduction to Data Stream Query Processing,” Truviso, Inc., May 24, 2007, at URL: http://neilconway.org/talks/stream—intro.pdf, 71 pages.
“Coral8 Complex Event Processing Technology Overview,” Coral8, Inc., Make it Continuous, pp. 1-8, Copyright 2007, Coral8, Inc.
“Creating WebLogic Domains Using the Configuration Wizard,” BEA Products, Dec. 2007, ver. 10.0, 78 pages.
“Creating Weblogic Event Server Applications,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 90 pages.
Demers, et al., “Towards Expressive Publish/Subscribe Systems,” Proceedings of the 10th International Conference on Extending Database Technology (EDBT 2006), Munich, Germany, Mar. 2006, pp. 1-18.
DeMichiel, et al., “JSR 220: Enterprise JavaBeans™, EJB 3.0 Simplified API,” EJB 3.0 Expert Group, Sun Microsystems, May 2, 2006, ver. 3.0, 59 pages.
“Dependency Injection,” Wikipedia, Dec. 30, 2008, printed on Apr. 29, 2011, at URL: http:en.wikipedia.org/w/index.php?title=Dependency—injection&oldid=260831402, pp. 1-7.
“Deploying Applications to WebLogic Server,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 164 pages.
Deshpande, et al., “Adaptive Query Processing,” slide show believed to be prior to Oct. 17, 2007, 27 pages.
“Developing Applications with Weblogic Server,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 254 pages.
Diao, “Query Processing for Large-Scale XML Message Brokering,” 2005, University of California Berkeley, 226 pages.
Diao, et al. “Query Processing for High-Volume XML Message Brokering”, Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003, 12 pages.
Dindar, et al., “Event Processing Support for Cross-Reality Environments,” Pervasive Computing, IEEE CS, Jul.-Sep. 2009, pp. 2-9, Copyright 2009, IEEE.
“EPL Reference,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 82 pages.
Esper Reference Documentation, Copyright 2007, ver. 1.12.0, 158 pages.
Esper Reference Documentation, Copyright 2008, ver. 2.0.0, 202 pages.
“Fast Track Deployment and Administrator Guide for BEA WebLogic Server,” BEA WebLogic Server 10.0 Documentation, printed on May 10, 2010, at URL: http://download.oracle.com/docs/cd/E13222—01/w1s/docs100/quickstart/quick—start.html, 1 page.
Fernandez, et al., “Build your own XQuery processor”, slide show, at URL: http://www.galaxquery.org/slides/edbt-summer-school2004.pdf, 2004, 116 pages.
Fernandez, et al., Implementing XQuery 1.0: The Galax Experience:, Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003, 4 pages.
Florescu, et al., “The BEA/XQRL Streaming XQuery Processor,” Proceedings of the 29th VLDB Conference, 2003, Berlin, Germany, 12 pages.
“Getting Started with WebLogic Event Server,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 66 pages.
Gilani, “Design and implementation of stream operators, query instantiator and stream buffer manager,” Dec. 2003, 137 pages.
Golab, “Sliding Window Query Processing Over Data Streams,” University of Waterloo, Waterloo, Ont. Canada, Aug. 2006, 182 pages.
Golab, et al., “Issues in Data Stream Management,” ACM SIGMOD Record, vol. 32, issue 2, Jun. 2003, ACM Press, pp. 5-14.
Gosling, et al., “The Java Language Specification,” Book, copyright 1996-2005, 3rd edition, 684 pages, Sun Microsystems USA. (due to size, reference will be uploaded in two parts).
Hopcroft, “Introduction to Automata Theory, Languages, and Computation,” Second Edition, Addison-Wesley, Copyright 2001, 524 pages. (due to size, reference will be uploaded in two parts).
“Installing Weblogic Real Time,” BEA WebLogic Real Time, Jul. 2007, ver. 2.0, 64 pages.
“Introduction to BEA WebLogic Server and BEA WebLogic Express,” BEA WebLogic Server, Mar. 2007, ver. 10.0, 34 pages.
“Introduction to WebLogic Real Time,” BEA WebLogic Real Time, Jul. 2007, ver. 2.0, 20 pages.
“Jboss Enterprise Application Platform 4.3 Getting Started Guide CP03, for Use with Jboss Enterprise Application Platform 4.3 Cumulative Patch 3,” Jboss a division of Red Hat, Red Hat Documentation Group, Publication date Sep. 2007, Copyright 2008, 68 pages, Red Hat, Inc.
Jin, et al. “ARGUS: Efficient Scalable Continuous Query Optimization for Large-Volume Data Streams” 10th International Database Engineering and Applications Symposium (IDEAS'06), 2006, 7 pages.
Kawaguchi, “Java Architecture for XML Binding —(JAXB) 2.0,” Sun Microsystems, Inc., Apr. 19, 2006, 384 pages.
Knuth, et al., “Fast Pattern Matching in Strings,” Siam J. Comput., vol. 6, No. 2, Jun. 1977, pp. 323-350.
Lakshmanan, et al., “On efficient matching of streaming XML documents and queries,” 2002, 18 pages.
Lindholm, et al., “Java Virtual Machine Specification, 2nd Edition”, Prentice Hall, Apr. 1999, 484 pages. (due to size, reference will be uploaded in two parts).
Liu, et al., “Efficient XSLT Processing in Relational Database System,” Proceeding of the 32nd. International Conference on Very Large Data Bases (VLDB), Sep. 2006, 1106-1116, 11 pages.
Luckham, “What's the Difference Between ESP and CEP?” Complex Event Processing, downloaded Apr. 29, 2011, at URL: http://complexevents.com/?p=103, 5 pages.
Madden, et al., “Continuously Adaptive Continuous Queries (CACQ) over Streams,” SIGMOD 2002, Jun. 4-6, 2002, 12 pages.
“Managing Server Startup and Shutdown,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 134 pages.
“Matching Behavior,” .NET Framework Developer's Guide, Copyright 2008 Microsoft Corporation, downloaded Jul. 1, 2008 from URL: http://msdn.microsoft.com/en-us/library/0yzc2yb0(printer).aspx, pp. 1-2.
Motwani, et al., “Models and Issues in Data Streams,” Proceedings of the 21st ACM SIGMOD-SIGACT-SIDART symposium on Principles of database systems, 2002, 30 pages.
Motwani, et al., “Query Processing Resource Management, and Approximation in a Data Stream Management System,” Proceedings of CIDR 2003, Jan. 2003, 12 pages.
Munagala, et al., “Optimization of Continuous Queries with Shared Expensive Filters,” Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, believed to be prior to Oct. 17, 2007, p. 14.
“New Project Proposal for Row Pattern Recognition—Amendment to SQL with Application to Streaming Data Queries,” H2-2008-027, H2 Teleconference Meeting, Jan. 9, 2008, pp. 1-6.
Novick, “Creating a User Defined Aggregate with SQL Server 2005,” at URL: http://novicksoftware.com/Articles/sql-2005-product-user-defined-aggregate.html, 2005, 6 pages.
Oracle Database, SQL Language Reference, 11g Release 1 (11.1), B28286-02, Sep. 2007, 1496 pages, Oracle.
Oracle Application Server 10g, Release 2 and 3, New Features Overview, An Oracle White Paper, Oct. 2005, 48 pages, Oracle.
Oracle Application Server, Administrator's Guide, 10g Release 3 (10.1.3.2.0), B32196-01, Jan. 2007, 376 pages, Oracle.
Oracle Application Server, Enterprise Deployment Guide, 10g Release 3 (10.1.3.2.0), B32125-02, Apr. 2007, 120 pages, Oracle.
Oracle Application Server, High Availability Guide, 10g Release 3 (10.1.3.2.0), B32201-01, Jan. 2007, 314 pages, Oracle.
“Oracle CEP Getting Started,” Release 11gR1 (11.1.1) E14476-01, May 2009, 172 pages.
Oracle Database Data Cartridge Developer's Guide, B28425-03, 11g Release 1 (11.1), Oracle, Mar. 2008, 372 pages, Oracle.
Oracle Database, SQL Reference, 10g Release 1 (10.1), Part No. B10759-01, Dec. 2003, pp. 7-1 to 7-17; 7-287 to 7-290; 14-61 to 14-74. (due to size, reference will be uploaded in three parts).
“OSGI Service Platform Core Specification, The OSGI Alliance,” Apr. 2007, ver. 4.1, release 4, 288 pages, OSGI Alliance.
Peng, et al., “Xpath Queries on Streaming Data,” 2003, pp. 1-12, ACM Press.
Peterson, “Petri Net Theory and the Modeling of Systems”, Prentice Hall, 1981, 301 pages.
PostgresSQL: Documentation: Manuals: PostgresSQL 8.2: Create Aggregate, believed to be prior to Apr. 21, 2007, 4 pages.
PostgresSQL: Documentation: Manuals: PostgresSQL 8.2: User-Defined Aggregates, believed to be prior to Apr. 21, 2007, 4 pages.
“Release Notes,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 8 pages.
Sadri, et al., “Expressing and Optimizing Sequence Queries in Database Systems,” ACM Transactions on Database Systems, Jun. 2004, vol. 29, No. 2, pp. 282-318, ACM Press, Copyright 2004.
Sadtler, et al., “WebSphere Application Server Installation Problem Determination,” Copyright 2007, pp. 1-48, IBM Corp.
Sharaf, et al., “Efficient Scheduling of Heterogeneous Continuous Queries,” VLDB '06, Sep. 12-15, 2006, pp. 511-522.
Spring Dynamic Modules for OSGi Service Platforms product documentation, SpringSource, Jan. 2008, 71 pages.
“Stanford Stream Data Manager,” at URL: http://infolab.stanford.edu/stream/, last modified Jan. 5, 2006, pp. 1-9.
Stolze, “User-defined Aggregate Functions in DB2 Universal Database,” at URL: http://www.128.ibm.com/developerworks/db2/library/tacharticle/0309stolze/0309stolze.html, Sep. 11, 2003, 11 pages.
Stream Query Repository: Online Auctions (CQL Queries), at URL: http://www-db.stanford.edu/strem/sqr/cql/onauc.html, Dec. 2, 2002, 4 pages.
Stream Query Repository: Online Auctions, at URL: http://www-db.stanford.edu/stream/sqr/onauc.html#queryspecsend, Dec. 2, 2002, 2 pages.
“Stream: The Stanford Stream Data Manager,” IEEE Data Engineering Bulletin, Mar. 2003, pp. 1-8.
Streambase 5.1 product documentation, Streambase Systems, copyright 2004-2010, 878 pages.
Terry, et al., “Continuous queries over append-only database,” Proceedings of 1992 ACM SIGMOD, pp. 321-330.
“Understanding Domain Configuration,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 38 pages.
Vajjhala, et al, “The Java™ Architecture for XML Binding (JAXB) 2.0,” Sun Microsystems, Inc., Final Release Apr. 19, 2006, 384 pages.
W3C, “XML Path Language (Xpath),” W3C Recommendation, Nov. 16, 1999, ver. 1.0, at URL: http://www.w3.org/TR/xpath, 37 pages.
“WebLogic Event Server Administration and Configuration Guide,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 108 pages.
“WebLogic Event Server Reference,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 52 pages.
“Weblogic Server Performance and Tuning,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 180 pages.
“WebSphere Application Server V6.1 Problem Determination: IBM Redpaper Collection,” WebSphere Software, IBM/Redbooks, Dec. 2007, 634 pages.
White, et al., “WebLogic Event Server: A Lightweight, Modular Application Server for Event Processing,” 2nd International Conference on Distributed Event-Based Systems, Jul. 2-4, 2008, Rome, Italy, 8 pages, ACM Press, Copyright 2004.
Widom, et al., “CQL: A Language for Continuous Queries over Streams and Relations,” believed to be prior to Oct. 17, 2007, 62 pages.
Widom, et al., “The Stanford Data Stream Management System,” PowerPoint Presentation, believed to be prior to Oct. 17, 2007, 110 pages.
Zemke,“XML Query,” Mar. 14, 2004, 29 pages.
De Castro Alves; et al, “Extensible Indexing Framework Using Data Cartridges,” U.S. Appl. No. 12/913,636, filed Oct. 27, 2010.
Park, et al., “Spatial Data Cartridge for Event Processing Systems,” U.S. Appl. No. 12/949,081, filed Nov. 18, 2010.
De Castro Alves; et al, “Extensibility Platform Using Data Cartridges,” U.S. Appl. No. 12/957,194, filed Nov. 30, 2010.
De Castro Alves; et al, “Class Loading Using Java Data Cartridges,” U.S. Appl. No. 13/089,556, filed Apr. 19, 2011.
De Castro Alves; et al, “Extensible Language Framework Using Data Cartridges,” U.S. Appl. No. 12/957,201, filed Nov. 30, 2010.
Non-Final Office Action for U.S. Appl. No. 12/396,008, mailed on Jun. 8, 2011, 10 pages.
Non-Final Office Action for U.S. Appl. No. 12/395,871, mailed on May 27, 2011, 7 pages.
Non-Final Office Action for U.S. Appl. No. 11/874,202, mailed on Dec. 3, 2009, 20 pages.
Final Office Action for U.S. Appl. No. 11/874,202, mailed on Jun. 8, 2010, 200 pages.
Notice of Allowance for U.S. Appl. No. 11/874,202, mailed on Dec. 22, 2010, 29 pages.
Notice of Allowance for U.S. Appl. No. 11/874,202, mailed on Mar. 31, 2011, 12 pages.
Notice of Allowance for U.S. Appl. No. 11/874,850, mailed on Nov. 24, 2009, 17 pages.
Supplemental Notice of Allowance for U.S. Appl. No. 11/874,850, mailed on Dec. 11, 2009, 5 pages.
Supplemental Notice of Allowance for U.S. Appl. No. 11/874,850, mailed on Jan. 27, 2010, 11 pages.
Non-Final Office Action for U.S. Appl. No. 11/874,896, mailed on Dec. 8, 2009, 19 pages.
Final Office Action for U.S. Appl. No. 11/874,896, mailed on Jul. 23, 2010, 28 pages.
Non-Final Office Action for U.S. Appl. No. 11/874,896, mailed on Nov. 22, 2010, 25 pages.
Non-Final Office Action for U.S. Appl. No. 11/977,439, mailed on Apr. 13, 2010, 7 pages.
Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Aug. 18, 2010, 11 pages.
Supplemental Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Sep. 28, 2010, 6 pages.
Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Nov. 24, 2010, 8 pages.
Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Mar. 16, 2011, 10 pages.
Non-Final Office Action for U.S. Appl. No. 11/977,437, mailed on Oct. 13, 2009, 9 pages.
Final Office Action for U.S. Appl. No. 11/977,437, mailed on Apr. 8, 2010, 18 pages.
Notice of Allowance for U.S. Appl. No. 11/977,440, mailed on Oct. 7, 2009, 6 pages.
Office Action for U.S. Appl. No. 11/874,197, mailed on Nov. 10, 2009, 14 pages.
Final Office Action for U.S. Appl. No. 11/874,197, mailed on Jun. 29, 2010, 17 pages.
Non-Final Office Action for U.S. Appl. No. 11/874,197, mailed on Dec. 22, 2010, 22 pages.
Non-Final Office Action for U.S. Appl. No. 11/873,407, mailed on Nov. 13, 2009, 7 pages.
Final Office Action for U.S. Appl. No. 11/873,407, mailed on Apr. 26, 2010, 11 pages.
Notice of Allowance for U.S. Appl. No. 11/873,407, mailed on Nov. 10, 2010, 14 pages.
Notice of Allowance for U.S. Appl. No. 11/873,407, mailed on Mar. 7, 2011, 8 pages.
Non-Final Office Action for U.S. Appl. No. 11/601,415, mailed on Sep. 17, 2008, 10 pages.
Final Office Action for U.S. Appl. No. 11/601,415, mailed on May 27, 2009, 26 pages.
Advisory Action for U.S. Appl. No. 11/601,415, mailed on Aug. 18, 2009, 3 pages.
Non-Final Office Action for U.S. Appl. No. 11/601,415, mailed on Nov. 30, 2009, 32 pages.
Final Office Action for U.S. Appl. No. 11/601,415, mailed on Jun. 30, 2010, 45 pages.
Non-Final Office Action for U.S. Appl. No. 11/927,681, mailed on Mar. 24, 2011, 17 pages.
Non-Final Office Action for U.S. Appl. No. 11/927,683, mailed on Mar. 24, 2011, 13 pages.
Non-Final Office Action for U.S. Appl. No. 10/948,523, mailed on Jan. 22, 2007, 31 pages.
Final Office Action for U.S. Appl. No. 10/948,523, mailed on Jul. 6, 2007, 37 pages.
Non-Final Office Action for U.S. Appl. No. 10/948,523, mailed Dec. 11, 2007, 47 pages.
Notice of Allowance for U.S. Appl. No. 10/948,523, mailed on Jul. 8, 2008, 30 pages.
Supplemental Notice of Allowance for U.S. Appl. No. 10/948,523, mailed on Jul. 17, 2008, 4 pages.
Notice of Allowance for U.S. Appl. No. 10/948,523, mailed on Dec. 1, 2010, 17 pages.
International Search Report dated Sep. 12, 2012 for PCT/US2012/036353.
Office Action for U.S. Appl. No. 13/396,464 dated Sep. 7, 2012.
Office Action for U.S. Appl. No. 13/244,272 dated Oct. 14, 2012.
Notice of Allowance for U.S. Appl. No. 12/548,209 dated Oct. 24, 2012.
Nah et al. “A Cluster-Based THO-Structured Scalable Approach for Location Information Systems,” The Ninth IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS' 03), pp. 225-233 (Jan. 1, 2003).
Hulton et al. “Mining Time-Changing Data Streams,” Proceedings of the Seventh ACM SIGKDD, pp. 10 (Aug. 2001).
Stump et al. (ed.) Proceedings of IJCAR '06 Workshop “PLPV '06: Programming Languages meets Program Verification,” pp. 1-113 (Aug. 21, 2006).
Vijayalakshmi et al. “Processing location dependent continuous queries in distributed mobile databases using mobile agents,” IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), pp. 1023-1030 (Dec. 22, 2007).
Wang et al. “Distributed Continuous Range Query Processing on Moving Objects,” Proceedings of the 17th international Conference on Database and Expert Systems Applications (DEXA'06), Berlin, DE, pp. 655-665 (Jan. 1, 2006).
Wu et al.“Dynamic Data Management for Location Based Services in Mobile Environments,” IEEE Proceedings of the Seventh International Database Engineering and Applications Symposium 2003 Piscataway. NJ. USA., pp. 172-181 (Jul. 16, 2003).
“StreamBase New and Noteworthy,” StreamBase, dated Jan. 12, 2010, 878 pages.
Non-Final Office Action for U.S. Appl. No. 12/548,187, mailed on Sep. 27, 2011, 19 pages.
Final Office Action for U.S. Appl. No. 12/395,871, mailed on Oct. 19, 2011, 33 pages.
Non-Final Office Action for U.S. Appl. No. 12/548,222, mailed on Oct. 19, 2011, 27 pages.
Non-Final Office Action for U.S. Appl. No. 12/548,281, mailed on Oct. 3, 2011, 37 pages.
Non-Final Office Action for U.S. Appl. No. 12/548,290, mailed on Oct. 3, 2011, 34 pages.
Notice of Allowance for U.S. Appl. No. 11/874,896, mailed on Jun. 23, 2011, 30 pages.
Final Office Action for U.S. Appl. No. 11/874,197, mailed on Aug. 12, 2011, 26 pages.
Notice of Allowance for U.S. Appl. No. 11/927,681, mailed on Jul. 1, 2011, 8 pages.
Final Office Action for U.S. Appl. No. 11/927,683, mailed on Sep. 1, 2011, 18 pages.
Sansoterra “Empower SOL with Java User-Defined Functions,” IT Jungle.com (Oct. 9, 2003).
Ullman et al., “Introduction to JDBC,” Stanford University (2005).
Non-Final Office Action for U.S. Appl. No. 12/957,194 dated Dec. 7, 2012.
Non-Final Office Action for U.S. Appl. No. 13/089,556 dated Nov. 6, 2012.
Notice of Allowance for U.S. Appl. No. 12/534,398 dated Nov. 27, 2012.
Notice of Allowance for U.S. Appl. No. 12/506,905 dated Dec. 14, 2012.
Non-Final Office Action for U.S. Appl. No. 12/957,201 dated Dec. 19, 2012.
“Oracle Complex Event Processing CQL Language Reference,” 11g Release 1 (11.1.1) E12048-01, Apr. 2010, 540 pages
Martin et al “Finding application errors and security flaws using PQL: a program query language,” Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications 40:1-19 (Oct. 2005).
Office Action for U.S. Appl. No. 12/534,384 (Feb. 28, 2012).
Office Action for U.S. Appl. No. 12/506,905 (Mar. 26, 2012).
Office Action for U.S. Appl. No. 12/548,209 (Apr. 16, 2012).
Notice of Allowance for U.S. Appl. No. 13/184,528 (Mar. 1, 2012).
Esper Reference Documentation, Copyright 2009, ver. 3.1.0, 293 pages.
International Search Report dated Jul. 16, 2012 for PCT/US2012/034970.
Final Office Action for U.S. Appl. No. 12/548,290 dated Jul. 30, 2012.
Office Action for U.S. Appl. No. 13/193,377 dated Aug. 23, 2012.
Office Action for U.S. Appl. No. 11/977,437 dated Aug. 3, 2012.
Final Office Action for U.S. Appl. No. 11/601,415 dated Jul. 2, 2012.
Notice of Allowance for U.S. Appl. No. 12/506,891 dated Jul. 25, 2012.
Final Office Action for U.S. Appl. No. 12/506,905 dated Aug. 9, 2012.
Office Action for U.S. Appl. No. 12/548,187 (Jun. 20, 2012).
Notice of Allowance for U.S. Appl. No. 12/395,871 (May 4, 2012).
Office Action for U.S. Appl. No. 12/548,222 (Jun. 20, 2012).
Office Action for U.S. Appl. No. 12/534,398 (Jun. 5, 2012).
Office Action for U.S. Appl. No. 12/548,281 (Jun. 20, 2012).
Office Action for U.S. Appl. No. 12/913,636 (Jun. 7, 2012).
Notice of Allowance for U.S. Appl. No. 12/874,197 (Jun. 22, 2012).
Final Office Action for U.S. Appl. No. 12/396,464 dated Jan. 16, 2013, 16 pages.
Final Office Action for U.S. Appl. No. 12/913,636 dated Jan. 8, 2013, 20 pages.
Final Office Action for U.S. Appl. No. 12/193,377 dated Jan. 17, 2013, 24 pages.
Final Office Action for U.S. Appl. No. 12/534,384 dated Feb. 12, 2013, 13 pages.
Final Office Action for U.S. Appl. No. 13/107,742 dated Feb. 14, 2013, 15 pages.
Non-Final Office Action for U.S. Appl. No. 13/102,665 dated Feb. 1, 2013, 11 pages.
Notice of Allowance for U.S. Appl. No. 11/977,437 dated Mar. 4, 2013. 9 pages.
Final Office Action for U.S. Appl. No. 13/244,272 dated Mar. 28, 2013, 29 pages.
Notice of Allowance for U.S. Appl. No. 12/957,194 dated Mar. 20, 2013. 9 pages.
U.S. Appl. No. 12/534,384, Notice of Allowance mailed on May 7, 2013, 12 pages.
U.S. Appl. No. 12/548,187, Non-Final Office Action mailed on Apr. 9, 2013, 17 pages.
U.S. Appl. No. 12/548,222, Non-Final Office Action mailed on Apr. 10, 2013, 16 pages.
U.S. Appl. No. 12/548,281, Non-Final Office Action mailed on Apr. 12, 2013, 16 pages.
U.S. Appl. No. 12/548,290, Non-Final Office Action mailed on Apr. 15, 2013, 17 pages.
U.S. Appl. No. 12/957,201, Final Office Action mailed on Apr. 25, 2013, 11 pages.
U.S. Appl. No. 13/089,556, Non-Final Office Action mailed on Apr. 10, 2013, 10 pages.
Bottom-up parsing, Wikipedia, downloaded from: http://en.wikipedia.org/wiki/Bottom-up—parsing, Sep. 8, 2014, pp. 1-2.
Branch Predication, Wikipedia, downloaded from: http://en.wikipedia.org/wiki/Branch—predication, Sep. 8, 2014, pp. 1-4.
Microsoft Computer Dictionary, 5th Edition, Microsoft Press, Redmond, WA, 2002, pp. 238-239 and 529.
U.S. Appl. No. 12/396,464, Notice of Allowance mailed on Sep. 3, 2014, 7 pages.
U.S. Appl. No. 12/548,187, Advisory Action mailed on Sep. 26, 2014, 6 pages.
U.S. Appl. No. 12/548,281, Final Office Action, mailed on Aug. 13, 2014, 19 pages.
U.S. Appl. No. 12/957,201, Non-Final Office Action mailed on Jul. 30, 2014, 12 pages.
U.S. Appl. No. 13/764,560, Non-Final Office Action mailed on Sep. 12, 2014, 23 pages.
U.S. Appl. No. 13/770,969, Non-Final Office Action mailed on Aug. 7, 2014, 9 pages.
U.S. Appl. No. 14/302,031, Non-Final Office Action mailed on Aug. 27, 2014, 19 pages.
Abadi et al., Aurora: a new model and architecture for data stream management, The VLDB Journal The International Journal on Very Large Data Bases, vol. 12, No. 2, Aug. 1, 2003, pp. 120-139.
Balkesen et al., Scalable Data Partitioning Techniques for Parallel Sliding Window Processing over Data Streams, 8th International Workshop on Data Management for Sensor Networks, Aug. 29, 2011, pp. 1-6.
Chandrasekaran et al., PSoup: a system for streaming queries over streaming data, The VLDB Journal The International Journal on Very Large Data Bases, vol. 12, No. 2, Aug. 1, 2003, pp. 140-156.
Dewson, Beginning SOL Server 2008 for Developers: From Novice to Professional, A Press, Berkeley, CA, 2008, pp. 337-349 and 418-438.
Harish D et al., Identifying robust plans through plan diagram reduction, PVLDB '08, Auckland, New Zealand, Aug. 23-28, pp. 1124-1140.
Krämer, Continuous Queries Over Data Streams—Semantics and Implementation, Fachbereich Mathematik und Informatik der Philipps-Universitat, Marburg, Germany, Retrieved from the Internet: URL:http://archiv.ub.uni-marburg.de/dissjz007/0671/pdfjdjk.pdf, Jan. 1, 2007; 313 pages.
International Application No. PCT/US2013/062047, International Search Report and Written Opinion mailed on Jul. 16, 2014, 12 pages.
International Application No. PCT/US2013/062050, International Search Report & Written Opinion mailed on Jul. 2, 2014, 13 pages.
International Application No. PCT/US2013/062052, International Search Report & Written Opinion mailed on Jul. 3, 2014, 12 pages.
International Application No. PCT/US2013/073086, International Search Report and Written Opinion mailed on Mar. 14, 2014.
International Application No. PCT/US2014/017061, International Search Report mailed on Sep. 9, 2014, 4 pages.
Rao et al., Compiled Query Execution Engine using JVM, ICDE '06, Atlanta, GA, Apr. 3-7, 2006, 12 pages.
Ray et al., Optimizing complex sequence pattern extraction using caching, data engineering workshops (ICDEW)˜ 2011 IEEE 27th international conference on IEEE, Apr. 11, 2011, pp. 243-248.
Shah et al., Flux: an adaptive partitioning operator for continuous query systems, Proceedings of the 19th International Conference on Data Engineering, Mar. 5-8, 2003, pp. 25-36.
Stillger et al., LEO—DB2's LEarning Optimizer, Proc. of the VLDB, Roma, Italy, Sep. 2001, pp. 19-28.
Call User Defined Functions from Pig, Amazon Elastic MapReduce, Mar. 2009, 2 pages.
Strings in C, retrieved from the internet: <URL: https://web.archive.org/web/20070612231205/http:l/web.cs.swarthmore.edu/-newhall/unixhelp/C—strings.html> [retrieved on May 13, 2014], Swarthmore College, Jun. 12, 2007, 3 pages.
Non-Final Office Action for U.S. Appl. No. 12/913,636 dated Jul. 24, 2014, 21 pages.
U.S. Appl. No. 11/874,197, Notice of Allowance mailed on Jun. 22, 2012, 20 pages.
U.S. Appl. No. 12/396,464, Final Office Action mailed on May 16, 2014, 16 pages.
U.S. Appl. No. 12/396,464, Non-Final Office Action mailed on Sep. 7, 2012, 18 pages.
U.S. Appl. No. 12/548,187, Final Office Action mailed on Jun. 4, 2014, 64 pages.
U.S. Appl. No. 13/089,556, Final Office Action mailed on Jun. 13, 2014, 14 pages.
U.S. Appl. No. 13/107,742, Non-Final Office Action mailed on Jun. 19, 2014, 20 pages.
U.S. Appl. No. 13/244,272, Notice of Allowance mailed on Aug. 12, 2013, 12 pages.
International Application No. PCT/US2011/052019, International Preliminary Report on Patentability mailed on Mar. 28, 2013, 6 pages.
International Application No. PCT/US2012/034970, International Preliminary Report on Patentability mailed on Nov. 21, 2013, 7 pages.
International Application No. PCT/US2012/036353, International Preliminary Report on Patentability mailed on Nov. 28, 2013, 6 pages.
Babu et al., “Exploiting k-Constraints to Reduce Memory Overhead in Continuous Queries Over Data Streams”, ACM Transactions on Database Systems (TODS) vol. 29 Issue 3, Sep. 2004, 36 pages.
Tho et al. “Zero-latency data warehousing for heterogeneous data sources and continuous data streams,” 5th International Conference on Information Integrationand Web-based Applications Services (Sep. 2003) 12 pages.
“SQL Subqueries”—Dec. 3, 2011, 2 pages.
“Caching Data with SqiDataSource Control”—Jul. 4, 2011, 3 pages.
“SCD—Slowing Changing Dimensions in a Data Warehouse”—Aug. 7, 2011, one page.
Non-Final Office Action for U.S. Appl. No. 13/838,259 dated Oct. 24, 2014, 21 pages.
Notice of Allowance for U.S. Appl. No. 13/102,665 dated Nov. 24, 2014, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/827,631 dated Nov. 13, 2014, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/827,987 dated Nov. 6, 2014, 9 pages.
Non-Final Office Action for U.S. Appl. No. 11/601,415 dated Oct. 6, 2014, 18 pages.
Non-Final Office Action for U.S. Appl. No. 14/077,230 dated Dec. 4, 2014, 30 pages.
Non-Final Office Action for U.S. Appl. No. 13/828,640 dated Dec. 2, 2014, 11 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,428 dated Dec. 5, 2014, 23 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,502 dated Nov. 20, 2014, 25 pages.
Non-Final Office Action for U.S. Appl. No. 13/839,288 dated Dec. 4, 2014, 30 pages.
U.S. Appl. No. 12/548,281, Non-Final Office Action mailed on Feb. 13, 2014, 16 pages.
U.S. Appl. No. 13/177,748, Final Office Action mailed on Mar. 20, 2014, 23 pages.
International Search Report dated Apr. 3, 2014 for PCT/US2014/010832, 9 pages.
Cadonna et al. “Efficient event pattern matching with match windows,” Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 471-479 (Aug. 2012).
Nichols et al. “A faster closure algorithm for pattern matching in partial-order event data,” IEEE International Conference on Parallel and Distributed Systems, pp. 1-9 (Dec. 2007).
Oracle™ Fusion Middleware CQL Language Reference, 11g Release 1 (11.1.1.6.3) E12048-10, Aug. 2012, pp. 6-1 to 6-12.
Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1.4.0) E12048-04, Jan. 2011, pp. 6.1 to 6.12.
Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1) E12048-03, Apr. 2010, sections 18-4 to 18.4.2.
Business Process Management (BPM), Datasheet [online]. IBM, [retrieved on Jan. 28, 2013]. Retrieved from the Internet: <URL: http://www-142.ibm.com/software/products/us/en/category/BPM-SOFTWARE>, No Date Given.
Pattern Recognition With Match—Recognize, Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1) E12048-01, May 2009, pp. 15.1 to 15.20.
Supply Chain Event Management: Real-Time Supply Chain Event Management, product information Manhattan Associates, 2009-2012.
What is BPM?, Datasheet [online]. IBM, [retrieved on Jan. 28, 2013]. Retrieved from the Internet: <URL: http://www-01.ibm.com/software/info/bpm/whatis-bpm/>, No Date Given.
U.S. Appl. No. 11/601,415, Non-Final Office Action mailed on Dec. 11, 2013, 58 pages.
U.S. Appl. No. 12/396,464, Non Final Office Action mailed on Dec. 31, 2013, 16 pages.
U.S. Appl. No. 13/089,556, Non-Final Office Action mailed on Jan. 9, 2014, 14 pages.
Non-Final Office Action for U.S. Appl. No. 12/548,187 dated Feb. 6, 2014, 53 pages.
Agrawal et al. “Efficient pattern matching over event streams,” Proceedings of The 2008 ACM SIGMOD international conference on Management of data, pp. 147-160 (Jun. 2008).
Chandramouli et al., High-Performance Dynamic Pattern Matching over Disordered Streams, Proceedings of the VLDB Endowment, vol. 3, Issue 1-2, Sep. 2010, pp. 220-231.
Chapple “Combining Query Results with the UNION Command,” ask.com Computing Databases, downloaded from: http://databases.about.com/od/sql/a/union.htm (no date, printed on Oct. 14, 2013).
Fantozzi, A Strategic Approach to Supply Chain Event Management, student submission for Masters Degree, Massachusetts Institute of Technology, Jun. 2003.
Komazec et al., Towards Efficient Schema-Enhanced Pattern Matching over RDF Data Streams, Proceedings of the 1st International Workshop on Ordering and Reasoning (OrdRing 2011), Bonn, Germany, Oct. 2011.
Ogrodnek, Custom UDFs and hive, Bizo development blog http://dev.bizo.com, Jun. 23, 2009, 2 pages.
Pradhan, Implementing and Configuring SAP® Event Management, Galileo Press, 2010, pp. 17-21.
Wilson et al., SAP Event Management, an Overview, Q Data USA, Inc., 2009.
U.S. Appl. No. 12/548,281, Final Office Action mailed on Oct. 10, 2013, 21 pages.
U.S. Appl. No. 12/548,290, Notice of Allowance mailed on Sep. 11, 2013, 6 pages.
U.S. Appl. No. 13/089,556, Final Office Action mailed on Aug. 29, 2013, 10 pages.
U.S. Appl. No. 13/177,748, Non-Final Office Action mailed on Aug. 30, 2013, 24 pages.
U.S. Appl. No. 13/193,377, Notice of Allowance mailed on Aug. 30, 2013, 19 pages.
U.S. Appl. No. 12/548,187, Final Office Action mailed on Jun. 10, 2013, 18 pages.
U.S. Appl. No. 12/548,222, Notice of Allowance mailed on Jul. 18, 2013, 12 pages.
U.S. Appl. No. 13/102,665, Final Office Action mailed on Jul. 9, 2013, 17 pages.
U.S. Appl. No. 13/107,742, Final Office Action mailed on Jul. 3, 2013, 19 pages.
Notice of Allowance for U.S. Appl. No. 11/977,437 dated Jul. 10, 2013, 10 pages.
SQL Tutorial-In, Tizag.com, http://web.archive.org/web/20090216215219/http://www.tizag.com/sgiTutorial/sqlin.php, Feb. 16, 2009, pp. 1-3.
Japan Patent Office office actions JPO patent application JP2013-529376 (Aug. 18, 2015).
Final Office Action for U.S. Appl. No. 13/177,748 dated Aug. 21, 2015, 24 pages.
Non-Final Office Action for U.S. Appl. No. 14/036,500 dated Aug. 14, 2015, 26 pages.
Notice of Allowance for U.S. Appl. No. 13/830,129 dated Sep. 22, 2015, 9 pages.
Final Office Action for U.S. Appl. No. 13/770,961 dated Aug. 31, 2015, 28 pages.
Non-Final Office Action for U.S. Appl. No. 13/764,560 dated Oct. 6, 2015, 18 pages.
Non-Final Office Action for U.S. Appl. No. 14/621,098 dated Oct. 15, 2015, 21 pages.
Notice of Allowance for U.S. Appl. No. 14/692,674 dated Oct. 15, 2015, 10 pages.
Notice of Allowance for U.S. Appl. No. 14/037,171 dated Oct. 15, 2015, 14 pages.
“Oracle Complex Event Processing Exalogic Performance Study” an Oracle White Paper, Sep. 2011, 16 pages.
“Data stream management system”, Wikipedia, downloaded from en.wikipedia.org/wiki/Data—stream—management—system on Sep. 23, 2015, pp. 1-5.
Josifovsky, Vanja, et al., “Querying XML Streams”, The VLDB Journal, vol. 14, © 2005, pp. 197-210.
Purvee, Edwin Ralph, “Optimizing SPARQLeR Using Short Circuit Evaluation of Filter Clauses”, Master of Science Thesis, Univ. of Georgia, Athens, GA, © 2009, 66 pages.
Weidong, Yang, et al., “LeoXSS: An Efficient XML Stream System for Processing Complex XPaths”, CIT 2006, Seoul, Korea, © 2006, 6 pages.
Non-Final Office Action for U.S. Appl. No. 14/079,538 dated Oct. 22, 2015, 34 pages.
Non-Final Office Action for U.S. Appl. No. 13/906,162 dated Oct. 28, 2015, 11 pages.
Notice of Allowance for U.S. Appl. No. 14/302,031 dated Nov. 3, 2015, 18 pages.
Notice of Allowance for U.S. Appl. No. 12/913,636 dated Oct. 27, 2015, 22 pages.
Final Office Action for U.S. Appl. No. 13/830,378 dated Nov. 5, 2015, 28 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,502 dated Dec. 11, 2015, 25 pages.
Non-Final Office Action for U.S. Appl. No. 11/601,415 dated Nov. 13, 2015, 18 pages.
China Patent Office office actions for patent application CN201180053021.4 (Oct. 28, 2015).
China Patent Office office actions for patent application CN201280022008.7 (Dec. 3, 2015).
European Application No. 12783063.6, Office Action mailed on Nov. 11, 2015, 8 pages.
Notice of Allowance for U.S. Appl. No. 12/548,187, dated Feb. 2, 2016, 15 pages.
Notice of Allowance for U.S. Appl. No. 14/037,072 dated Feb. 16, 2016, 17 pages.
Final Office Action for U.S. Appl. No. 13/830,735 dated Dec. 21, 2015, 20 pages.
Notice of Allowance for U.S. Appl. No. 13/827,987 dated Jan. 4, 2016, 16 pages.
Notice of Allowance for U.S. Appl. No. 13/177,748 dated Jan. 6, 2016, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/828,640 dated Jan. 6, 2016, 16 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,428 dated Jan. 15, 2016, 25 pages.
Final Office Action for U.S. Appl. No. 14/037,153 dated Jan. 21, 2016, 31 pages.
Non-Final Office Action for U.S. Appl. No. 13/829,958 dated Feb. 1, 2016, 20 pages.
Non-Final Office Action for U.S. Appl. No. 13/827,631 dated Feb. 11, 2016, 12 pages.
Ghazal et al., Dynamic plan generation for parameterized queries, Jul. 2009, 7 pages.
Chaudhuri et al., Variance aware optimization of parameterized queries, Jun. 2010, 12 pages.
Seshadri et al., SmartCQL: Semantics to Handle Complex Queries over Data Streams, 2010, 5 pages.
International Search Report and Written Opinion dated Dec. 15, 2015 for PCT/US2015/051268, 17 pages.
“11 Oracle Event Processing NoSQL 1-20 Database Data Cartridge—11g Release 1 (11.1.1.7) 11,” Oracle Fusion Middleware CQL Language Reference for Oracle Event Processing 11g Release 1 (11.1.1.7), 4 pages (Sep. 25, 2013).
Oracle Event Processing Hadoop Data Cartridge—11g Release 1(11.1.1.7), Oracle Fusion Middleware CQL LanguageReference for Oracle Event Processing 11g Release 1 (11.1.1.7) 4 pages (Sep. 25, 2013).
Liu “Hbase Con 2014: HBase Design Patterns @Yahoo!” (May 5, 2014), 20 pages.
Hasan et al. “Towards unified and native enrichment in event processing systems,” Proceedings of the 7th ACM international conference on Distributed event-based systems, pp. 171-182 (Jun. 29, 2013).
Katsov “In-Stream Big Data Processing : Highly Scalable Blog” 20 pages (Aug. 20, 2013).
Katsov “In-Stream Big Data Processing : Highly Scalable Blog” 19 pages (Aug. 29, 2014).
Notice of Allowance for U.S. Appl. No. 12/548,187 dated Aug. 17, 2015, 18 pages.
Notice of Allowance for U.S. Appl. No. 13/107,742 dated Jul. 8, 2015, 9 pages.
Non-Final Office Actio for U.S. Appl. No. 14/037,072 dated Jul. 9, 2015, 12 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,781,502 dated Jun. 30, 2015, 25 pages.
Non-Final Office Action for U.S. Appl. No. 14/036,659 dated Aug. 13, 2015, 33 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,759 dated Aug. 7, 2015, 23 pages.
International Preliminary Report on Patentability dated Jul. 29, 2015 for PCT/US2014/010920, 30 pages.
International Preliminary Report on Patentability dated Jul. 29, 2015 for PCT/US2014/039771, 24 pages.
Final Office Action for U.S. Appl. No. 14/302,031 dated Apr. 22, 2015, 23 pages.
Non-Final Office Action for U.S. Appl. No. 14/692,674 dated Jun. 5, 2015, 22 pages.
Non-Final Office Action for U.S. Appl. No. 14/037,171 dated Jun. 3, 2015, 15 pages.
Non-Final Office Action for U.S. Appl. No. 14/830,735 dated May 26, 2015, 19 pages.
Final Office Action for U.S. Appl. No. 13/830,428 dated Jun. 4, 2015, 21 pages.
Non-Final Office Action for U.S. Appl. No. 14/838,259 dated Jun. 9, 2015, 37 pages.
Final Office Action for U.S. Appl. No. 14/906,162 dated Jun. 10, 2015, 10 pages.
Non-Final Office Action for U.S. Appl. No. 14/037,153 dated Jun. 19, 2015, 23 pages.
Final Office Action for U.S. Appl. No. 13/829,958 dated Jun. 19, 2015, 17 pages.
Final Office Action for U.S. Appl. No. 13/827,987 dated Jun. 19, 2015, 10 pages.
Final Office Action for U.S. Appl. No. 13/828,640 dated Jun. 17, 2015, 11 pages.
International Application No. PCT/US2014/039771, International Search Report and Written Opinion mailed on Apr. 29, 2015 6 pages.
International Application No. PCT/US2015/016346, International Search Report and Written Opinion mailed on May 4, 2015, 9 pages.
International Preliminary Report on Patentability dated Apr. 9, 2015 for PCT/US2013/062047, 10 pages.
International Preliminary Report on Patentability dated Apr. 9, 2015 for PCT/US2013/062052, 18 pages.
International Preliminary Report on Patentability dated May 28, 2015 for PCT/US2014/017061, 31 pages.
International Preliminary Report on Patentability dated Jun. 18, 2015 for PCT/US2013/073086, 7 pages.
U.S. Appl. No. 12/957,201, Notice of Allowance mailed on Jan. 21, 2015, 5 pages.
U.S. Appl. No. 13/089,556, Notice of Allowance mailed on Oct. 6, 2014, 7 pages.
U.S. Appl. No. 13/107,742, Final Office Action mailed on Jan. 21, 2015, 23 pages.
U.S. Appl. No. 13/177,748, Non-Final Office Action mailed on Feb. 3, 2015, 22 pages.
U.S. Appl. No. 13/770,961, Non-Final Office Action mailed on Feb. 4, 2015, 22 pages.
U.S. Appl. No. 13/770,969, Notice of Allowance mailed on Jan. 22, 2015, 5 pages.
U.S. Appl. No. 13/829,958, Non-Final Office Action mailed on Dec. 11, 2014, 15 pages.
U.S. Appl. No. 13/906,162, Non-Final Office Action mailed on Dec. 29, 2014, 10 pages.
International Application No. PCT/US2014/010832, Written Opinion mailed on Dec. 15, 2014, 5 pages.
International Application No. PCT/US2014/010920, International Search Report and Written Opinion mailed on Dec. 15, 2014, 10 pages.
International Application No. PCT/US2014/017061, Written Opinion mailed on Feb. 3, 2015, 6 pages.
International Application No. PCT/US2014/039771, International Search Report and Written Opinion mailed on Sep. 24, 2014, 12 pages.
Cranor et al. “Gigascope: a stream database for network applications,” Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pp. 647-651 (Jun. 2003).
Oracle® Complex Event Processing EPL Language Reference 11g Release 1 (11.1.1.4.0), E14304-02, Jan. 2011, 80 pages.
De Castro Alves, A General Extension System for Event Processing Languages, DEBS '11, New York, NY, USA, Jul. 11-15, 2011, pp. 1-9.
Takenaka et al., A scalable complex event processing framework for combination of SQL-based continuous queries and C/C++ functions, FPL 2012, Oslo, Norway, Aug. 29-31, 2012, pp. 237-242.
Tomàs et al., RoSeS: A Continuous Content-Based Query Engine for RSS Feeds, DEXA 2011, Toulouse, France, Sep. 2, 2011, pp. 203-218.
Non-Final Office Action for U.S. Appl. No. 13/830,378 dated Feb. 25, 2015, 23 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,129 dated Feb. 27, 2015, 19 pages.
International Application No. PCT/US2014/068641, International Search Report and Written Opinion mailed on Feb. 26, 2015, 11 pages.
European Patent Application No. 12783063.6, Extended Search Report mailed Mar. 24, 2015, 6 pages.
Non-Final Office Action for U.S. Appl. No. 12/913,636 dated Apr. 1, 2015, 22 pages.
Final Office Action for U.S. Appl. No. 13/827,631 dated Apr. 3, 2015, 11 pages.
Notice of Allowance for U.S. Appl. No. 13/839,288 dated Apr. 3, 2015, 12 pages.
Notice of Allowance for U.S. Appl. No. 14/077,230 dated Apr. 16, 2015, 16 pages.
Final Office Action for U.S. Appl. No. 13/764,560 dated Apr. 15, 2015, 19 pages.
China Patent Office office action for patent application CN201180053021.4 (May 27, 2016).
cooperativesystems: “Combined WLAN and Inertial Indoor Pedestrian Positioning System” URL:https://www.youtube.com/watch?v=mEt88WaHZvU.
Frank et al “Development and Evaluation of a Combined WLAN & Inertial Indoor Pedestrian Positioning System” Proceedings of the 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2009). (Sep. 25, 2009) pp. 538-546.
International Application No. PCT/RU2015/000468, International Search Report and Written Opinion mailed on Apr. 25, 2016, 9 pages.
International Application No. PCT/US2015/016346, International Search Report and Written Opinion mailed on May 24, 2016, 5 pages.
International Preliminary Report on Patentabiilty dated Jun. 16, 2016 for PCT/US2014/068641, 7 pages.
Bestehorn Fault-tolerant query processing in structured P2P-systems, Springer Science+Business Media LLC Distrib Parallel Databases 28:33-66 (May 8, 2010).
Kramer “Semantics and Implementation of Continuous Sliding Window Queries over Data Streams” ACM Transactions on Database Systems, vol. 34, pp. 4:1 to 4:49 (Apr. 2009).
Final Office Action for U.S. Appl. No. 11/601,415 dated May 17, 2016, 17 pages.
Final Office Action for U.S. Appl. No. 13/829,958 dated Jun. 30, 2016, 19 pages.
Final Office Action for U.S. Appl. No. 13/830,428 dated May 26, 2016, 26 pages.
Final Office Action for U.S. Appl. No. 13/830,502 dated Jul. 6, 2016, 28 pages.
Final Office Action for U.S. Appl. No. 14/036,659 dated Apr. 22, 2016, 38 pages.
Non-Final Office Action for U.S. Appl. No. 14/883,815 dated May 10, 2016, 32 pages.
Related Publications (1)
Number Date Country
20110161328 A1 Jun 2011 US
Provisional Applications (4)
Number Date Country
61355415 Jun 2010 US
61327903 Apr 2010 US
61311175 Mar 2010 US
61290460 Dec 2009 US