The present invention relates to spatial light modulator, and particularly to interferometric silicon spatial light modulator and the array of interferometric silicon spatial light modulators, and more particularly to microdisplays using the array of interferometric silicon spatial light modulators.
Spatial light modulator is an electro-optical element that is electronically controlled to alter either the path or the intensity of an incident light to obtain desired output light signal. One type of the spatial light modulator is an interferometric spatial light modulator built by microelectromechanical systems (MEMS). Such spatial light modulator has two closely placed surfaces. The distance between these two surfaces may be controlled so that the system selectively absorbs or reflects light guided by the principles of optical interference, in regarding to a pre-defined way, or in regarding to commands from a driving system. Further more, with the help of MEMS technology, an array of such spatial light modulators can be integrated onto a small chip or a glass substrate, therefore realize applications in display field.
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. The micro mechanical elements and the actuators may be created using depositing, etching, and other microfabrication processes.
MEMS-built interferometric light modulators are known from U.S. Pat. No. 5,835,255, issued to Miles, U.S. Pat. No. 6,674,562, issued to Miles for interferometric modulators of radiation. In these references, a method is provided making a spatial light modulator and a display apparatus of an array of such spatial light modulators, where the interferometric cavity gap changes spontaneously with external applied electronic signal and therefore modulates the incident light intensity. Such a typical spatial light modulator has two layers to define a cavity. One layer serves as a mirror, and one or both of the layers serve as electrodes. One layer is semitransparent to allow light pass through, to reach the surface of the second layer and get reflected there. One layer is movable relatively to the other through two or more positions upon different electrical signals applied, which causes the cavity to operate interferometrically in these positions. In one position, the movable layer is at relaxation and the spatial light modulator is at bright state; in another position, the movable layer is at actuated state and the spatial light modulator is at dark state. In these references, a type of display apparatus is also claimed, which includes an array of such interferometric modulators formed integrally on a substrate, preferably transparent, and its control circuitry connected to the array for controlling each modulator independently to switch between its bright and dark states. The display apparatus uses passive multiplexing addressing.
It would be desirable to have a compact spatial light modulator with active addressing and high contrast, and to have a display apparatus with an array of such integrated compact spatial light modulators. Such display apparatus, for example but not limited to, microdisplay, would be good for displaying large amount of information.
As easily understood by those skilled in the art, specular reflection is the nature characteristic of interferometric spatial light modulator and the display made of such modulators. This characteristic makes such a display especially favorable for projection display applications.
On the other hand, advance of integrated circuit technology has provided the foundation for active addressing of silicon-based microdisplays. Examples of such microdisplays are shown in U.S. Pat. Nos. 6,023,309 and 6,052,165, where microdisplays of liquid crystal on silicon (LCOS) are made. It is easily understood by those skilled in the art that such active addressing schemes can be adapted to the microdisplays made of spatial light modulators built on silicon substrate.
In general, it is the object of the present invention to provide a spatial light modulator that employs great contrast and active addressing. The invented spatial light modulator is designed to have two cavities, with one to control the electromechanical performance and the other to control the optical performance. They can be adjusted separately for optimal performance without interfering each other.
A further object of the invention is to provide an array of above spatial light modulators.
A further object of the invention is to provide a microdisplay apparatus that uses the array of spatial light modulators.
A further object of the invention is to provide a projection display system that uses the microdisplay apparatus that uses the array of the spatial light modulators.
An additional object of the invention is to provide an electro-optical switch apparatus and an array apparatus of such switches that uses the mentioned spatial light modulators.
In accordance with the above objects, the invention provides structural designs of such spatial light modulator and spatial light modulator array, and processes of making them. The spatial light modulator consists of two functional building blocks. One is of the MEMS electromechanical part, and the other of optical part. They may be built separately, and then join to form the spatial light modulator.
The invention also provides a wafer-scale assembly process of making the above-mentioned array of the spatial light modulators and the microdisplay apparatus. The wafer-scale assembly process includes two parallel sub-processes to form two functional substrates of the wafer assembly, which are the array substrate and the backplate substrate.
In an example embodiment, the array substrate, one of the two functional building blocks, uses a silicon backplate with integrated MOS devices and integrated routine structures. Upon the silicon backplate, an array of electrodes is made by depositing a conducting layer and patterning it thereafter. A thin layer of dielectric material is formed on the top of the electrode array. After that, a removable sacrificial layer is deposited on the top of the dielectric film. This sacrificial layer is to be removed by means of releasing or etch later. The sacrificial layer is then patterned, and a dielectric layer is deposited on the top and is then patterned to form an array of posts or an array of post walls at the corners of each electrode. A layer of reflective metal film is deposited on the top of the sacrificial layer and the formed post structures. Then, another array of post structure is formed on the top of the metal reflective film while directly sitting on the first array of post structures or walls, by depositing a dielectric layer and then patterning it. After that, the reflective metal layer is patterned to form a plurality of release holes, and through which, the sacrificial layer is then etched away by exposing the array substrate to some gaseous etchant, such as XeF2. After releasing, the functional array substrate is formed. In this process flow, it is understood that, one or more of planarization process steps, such as CMP, may be employed before some certain process steps to ensure optimal flatness.
In this example embodiment, the backplate substrate, the other functional building block, uses a transparent substrate, preferably glass, with the same shape and size as the array substrate. A thin layer of partially reflective layer, such as metal, is deposited on the top of the transparent substrate. Then, a thin layer of dielectric layer is deposited on the top of this partially reflective metal layer. After that, the functional backplate substrate is formed.
In this example embodiment, the functional array substrate and the functional backplate substrate are sealed together by a sealant material, such as epoxy, solder, in a low-pressure environment. After the environment pressure is brought back to the atmosphere, the back substrate and the array substrate will be naturally pressed against each other by the air pressure to form the spatial light modulator arrays.
The following detailed description is directed to certain specific embodiments of the invention. In the description, reference is made to the drawings wherein like parts may be assigned with like numerals throughout.
The present invention provides a spatial light modulator that modulates incident light to get desired out-going light signal, according to the pre-determined settings. In one situation, the spatial light modulator reflects a large portion of incident light to the viewer therefore forms the bright state; in another situation, it reflects effectively very little incident light and forms the dark state. Depending on the design of a spatial light modulator, its bright state can be at relaxation state or at actuated state; wherein, the relaxation state means the actuation voltage is zero or low, yet the actuated state means the actuation voltage is non-zero or high.
In one embodiment, for example, a modulator comprises of a pair of reflective layers positioned at a variable and controllable distance from each other to form a resonant optical cavity, wherein one reflective layer is highly reflective and the other is partially reflective. The highly reflective layer may be moved between two positions. In the first position, referred to herein as the relaxation position, the movable reflective layer is positioned at a relative small distance from the other partially reflective layer. In the second position, referred as the actuated position, the movable reflective layer is positioned in a relatively big distance from the partially reflective layer. Incident light gets to the partially reflective layer first, and then reaches the movable reflective layer. The light reflected from the two layers interferes constructively or destructively depending on the position of the movable layer, i.e., the gap between the two layers, producing either an allover reflective or an allover absorbing state for each modulator.
In another embodiment, a display apparatus comprises of an array of spatial light modulators. There, each spatial light modulator is treated as a display pixel element. For ease of description, two terminology terms are used below regarding the spatial light modulator. While the structure of the spatial light modulator is concerned, the term “spatial light modulator” may be used; while the spatial light modulator is treated as a display pixel element, then the term “pixel” may be used.
In detail, the spatial light modulator in the depicted portion of the array in
The partially reflective layer 5 is coated on a transparent substrate 4, through which incident light passes in. The dielectric layer 7 is coated on an electrode 9, and is intended to prevent electric shorting while the movable reflective layer 6 is at actuated state. In this embodiment, the electrode 9 is separated from the surrounding electrodes, which means the electrodes are pixelized. Their sizes may be of 1 um to 500 um depending on the applications, preferably around 15 um in the microdisplay applications. The electrodes are connected to the gate and source electrodes of MOS transistors (not shown in
The movable reflective layer 6 comprises of typically metal layer or layers with thickness ranging from 0.05 um to 1 um, preferably around 0.2 um, and typically is of tensile stress ranging from 100 MPa to 1000 MPa, preferably around 500 MPa. The tensile stress is favored so that, at relaxed state, the reflective layer maintains flat. This is important for obtaining optima darkness at dark state. The tensile stress also provides driving force for the movable reflective layer to bounce back from its deformed state while the electrostatic force is removed. The top of the reflective layer is of highly reflective material, typically metal such as Al.
The partially reflective layer 5 is semi-transparent. It absorbs light. It may be of metal or dielectric material. Its thickness may be of 1 nm to 50 nm, preferably around 10 nm. In one embodiment, it is metal film, such as Cr, Ni, etc.
The interferometric modulator can be formed by a number of depositions and a number of selectively material removals, such as wet etch and/or dry etch, and release of some sacrificial layer.
In one embodiment, the interferometric modulator 100 shown in
In some embodiments, cavity 13 is formed by sealing the backplate and the array plate together within a low-pressure environment. The low-pressure environment ensures that, while the sealed assembly is brought to atmosphere, the external atmosphere pressure would press these two substrates against each other, to form the cavity with the gap precisely controlled by the second post structures 11.
In some embodiments, the cavity 14 is formed by depositing a sacrificial layer (not shown in
In some embodiments, the movable reflective layer 6 is used as common electrode, which may be biased to a fixed voltage. While the electrode 9 of the spatial light modulator is charged to a high voltage and the potential between the electrode 9 and the movable reflective layer 6 exceeds some threshold, then the portion of the removable reflective layer 6 directly above the electrode 9 comes down to relay on the dielectric layer 7. The gap between the movable reflective layer 6 and the partial reflective layer 5 is increased and forms cavity 12. While this high voltage is removed, the movable reflective layer 6 bounces back to the flat state where the movable reflective layer is in relaxed state.
As above stated, with no voltage applied, the movable reflective layer remains at the mechanically relaxed state, and both cavities 13 and 14 remain as illustrated in
The spatial light modulator apparatus 200 comprise a silicon substrate 110, on which are successively provided an insulating layer 114, a cavity gap 122, a movable reflective layer 124, a second cavity gap 126, a partially reflective layer 128 and a transparent layer 130. A first metal layer 120 is provided under a layer 114b, which is a portion of the insulating layer 114. The first metal layer includes a plurality of individual electrodes. Between the individual electrodes, small light transmissive regions exist, therefore, small portion of light may leak into the MOS structures (not shown here in
A plurality of integrated spacers and/or walls 156 is provided between the movable reflective layer 124 and the dielectric layer 114b. The height of the integrated spacers and/or walls 156 determines the gap of the cavity 122. Another plurality of integrated spacers and/or walls 158 is provided between the movable reflective layer 124 and the partially reflective layer 128. This plurality of integrated spacers and/or walls is built on the movable reflective layer on the direct top of the integrated spacers and/or walls 156. The height of the integrated spacers and/or walls 158 determines the gap of the cavity 126 while the movable reflective layer 124 is at relaxed state.
The spatial light modulator apparatus may be generally divided into two functional blocks: functional block 200a and functional block 200b, as depicted in
With references to
The process 300 illustrated in
The process 300 illustrated in
The process 300 illustrated in
The process 300 illustrated in
The process 300 illustrated in
In one embodiment, the second supporting post structure is sitting on the movable reflective layer.
In another embodiment, the second supporting post structure is directly sitting on the first post structure. This is made by forming a plurality of holes or trenches in the movable reflective layer directly on the top of the first post structure, then depositing the dielectric post material on the movable reflective layer and the holes and the trenches, and then patterning the dielectric post material layer to form the post structure. This way, the second post structure is directly sitting on the first post structures, therefore assures optima hardness of the post structures.
In another embodiment, the second supporting post structure is one part of the movable reflective layer. This is made by having the height of the first supporting post structure larger than the thickness of the sacrificial layer, so, while the movable reflective layer is deposited on the top of the sacrificial layer, the removable reflective layer is higher at the first supporting post structure than else where, and that high portion of the movable reflective layer serves as the second supporting post structure.
The process 300 illustrated in
The process 300 illustrated in
The process 300 illustrated in
While the above brief description tells a preferred process of forming a spatial light modulator apparatus, one or more of planarization steps, such as chemical-mechanical-polishing (CMP), in-between the processing steps may be required, to ensure optimal flatness of the substrate surface before or after some process. It is also understood that various omissions, substitutions and changes to the diagraph process illustrated above may be made by those skilled in the art without departing from the spirit of the invention.
To further describe the details of the step 345 in
To simplify the drawing, the array plate 400A and the backplate 400B are not shown in detail to the extent that 400A includes typical IC circuit elements such as pixel electrodes, pixel-addressing conductors, switching transistor elements etc., and typical mechanical elements of the spatial light modulators such as movable reflective layers and the supporting post structures etc, and 400B includes a transparent substrate and a partially reflective film and potentially a dielectric layer film, etc. It is important to note, that all the spatial light modulators in the array share the same movable reflective layer, which is continuous except some releasing holes.
The illustrated circuits 505 are circuitry for row and column electrode selection and circuitry for converting image signals to an electric signal recognizable by the spatial light modulator array. Typically, the circuits 505 are formed as multi layer integrated circuits and are interconnected by conductive tracks or plugs (not shown here) in the silicon substrate of array plate 400A.
The illustrated posts 520 are sitting in the periphery of the array of spatial light modulators. They may be of different shape and density of those of 510, and they are of the same height. They help to keep uniform gap between the array plate and the backplate while both plates are pressed together.
In one embodiment, the spatial light modulator apparatus shown in
In another embodiment, the spatial light modulator apparatus shown in
In another embodiment, the spatial light modulator apparatus shown in
In another embodiment, the spatial light modulator apparatus shown in
The array plate 800A and backplate 800B are brought into contact with each other in an environment of lower pressure than atmosphere. The substrates are pressed against each other so that the posts 510 and 520, referred in
In another embodiment, both glass and silicon substrates may be partially sawed prior to die separation, and then the wafer assembly is singulated. In another embodiment, both glass and silicon substrates may be scribed prior to singulation, and then the wafer assembly is singulated. In both embodiments, the scribing or sawing lines can be of the similar configuration as shown in
While the above detailed descriptions have shown novel features of the invention in various embodiments, it is understood that various omissions, substitutions, and changes may be made to the forms and details of the illustrated devices or processes by those skilled in the art without departing from the spirit of the invention. Many variations in light of the described embodiments herein will be appreciated by those skilled in the art.
Number | Name | Date | Kind |
---|---|---|---|
3728030 | Hawes | Apr 1973 | A |
3955190 | Teraishi | May 1976 | A |
4087810 | Hung et al. | May 1978 | A |
4403248 | te Velde | Sep 1983 | A |
4441791 | Hornbeck | Apr 1984 | A |
4786128 | Birnbach | Nov 1988 | A |
4859060 | Katagiri et al. | Aug 1989 | A |
4954789 | Sampsell | Sep 1990 | A |
4956619 | Hornbeck | Sep 1990 | A |
4982184 | Kirkwood | Jan 1991 | A |
5014259 | Goldberg et al. | May 1991 | A |
5022745 | Zayhowski et al. | Jun 1991 | A |
5028939 | Hornbeck et al. | Jul 1991 | A |
5091983 | Lukosz | Feb 1992 | A |
5096279 | Hornbeck et al. | Mar 1992 | A |
5170283 | O'Brien et al. | Dec 1992 | A |
5315370 | Bulow | May 1994 | A |
5381232 | Van Wijk | Jan 1995 | A |
5471341 | Warde et al. | Nov 1995 | A |
5526172 | Kanack | Jun 1996 | A |
5559358 | Burns et al. | Sep 1996 | A |
5636052 | Arney et al. | Jun 1997 | A |
5646729 | Koskinen et al. | Jul 1997 | A |
5646768 | Kaeiyama | Jul 1997 | A |
5661592 | Bornstein et al. | Aug 1997 | A |
5665997 | Weaver et al. | Sep 1997 | A |
5710656 | Goosen | Jan 1998 | A |
5786927 | Greywall | Jul 1998 | A |
5808781 | Arney et al. | Sep 1998 | A |
5818095 | Sampsell | Oct 1998 | A |
5825528 | Goosen | Oct 1998 | A |
5838484 | Goossen | Nov 1998 | A |
5867302 | Fleming | Feb 1999 | A |
5920418 | Shiono et al. | Jul 1999 | A |
6002661 | Abe et al. | Dec 1999 | A |
6028689 | Michalicek et al. | Feb 2000 | A |
6040937 | Miles | Mar 2000 | A |
6055090 | Miles | Apr 2000 | A |
6262697 | Stephenson | Jul 2001 | B1 |
6327071 | Kimura | Dec 2001 | B1 |
6356378 | Huibers | Mar 2002 | B1 |
6384952 | Clark et al. | May 2002 | B1 |
6433917 | Mei et al. | Aug 2002 | B1 |
6438282 | Takeda et al. | Aug 2002 | B1 |
6452712 | Atobe et al. | Sep 2002 | B2 |
6466354 | Gudeman | Oct 2002 | B1 |
6556338 | Han et al. | Apr 2003 | B2 |
6574033 | Chui et al. | Jun 2003 | B1 |
6597490 | Tayebati | Jul 2003 | B2 |
6608268 | Goldsmith | Aug 2003 | B1 |
6632698 | Ives | Oct 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6657832 | Williams et al. | Dec 2003 | B2 |
6661561 | Fitzpatrick et al. | Dec 2003 | B2 |
6674562 | Miles | Jan 2004 | B1 |
6680792 | Miles | Jan 2004 | B2 |
6698295 | Sherrer | Mar 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6794119 | Miles | Sep 2004 | B2 |
6813059 | Hunter et al. | Nov 2004 | B2 |
6841081 | Chang et al. | Jan 2005 | B2 |
6844959 | Huibers et al. | Jan 2005 | B2 |
6867896 | Miles | Mar 2005 | B2 |
6870654 | Lin et al. | Mar 2005 | B2 |
6882458 | Lin et al. | Apr 2005 | B2 |
6882461 | Tsai et al. | Apr 2005 | B1 |
6912022 | Lin et al. | Jun 2005 | B2 |
6940630 | Xie | Sep 2005 | B2 |
6947200 | Huibers | Sep 2005 | B2 |
6952303 | Lin et al. | Oct 2005 | B2 |
6958847 | Lin | Oct 2005 | B2 |
6980350 | Hung et al. | Dec 2005 | B2 |
6983820 | Tsai | Jan 2006 | B2 |
7006272 | Tsai | Feb 2006 | B2 |
7046422 | Kimura et al. | May 2006 | B2 |
7119945 | Kothari et al. | Oct 2006 | B2 |
7123216 | Miles | Oct 2006 | B1 |
7126738 | Miles | Oct 2006 | B2 |
7130104 | Cummings | Oct 2006 | B2 |
7184195 | Yang | Feb 2007 | B2 |
7184202 | Miles et al. | Feb 2007 | B2 |
7198873 | Lin et al. | Apr 2007 | B2 |
7221495 | Miles et al. | May 2007 | B2 |
7236284 | Miles | Jun 2007 | B2 |
7256922 | Chui et al. | Aug 2007 | B2 |
7289259 | Chui et at. | Oct 2007 | B2 |
7302157 | Chui | Nov 2007 | B2 |
7304784 | Chui et al. | Dec 2007 | B2 |
7321456 | Cummings | Jan 2008 | B2 |
7321457 | Heald | Jan 2008 | B2 |
7327510 | Cummings et al. | Feb 2008 | B2 |
7372613 | Chui et al. | May 2008 | B2 |
7372619 | Miles | May 2008 | B2 |
7385744 | Kogut et al. | Jun 2008 | B2 |
7385762 | Cummings | Jun 2008 | B2 |
7420725 | Kothari | Sep 2008 | B2 |
7460291 | Sampsell et al. | Dec 2008 | B2 |
7460292 | Chou | Dec 2008 | B2 |
7476327 | Tung et al. | Jan 2009 | B2 |
7492503 | Chui | Feb 2009 | B2 |
7527995 | Sampsell | May 2009 | B2 |
7527998 | Tung et al. | May 2009 | B2 |
7561323 | Gally et al. | Jul 2009 | B2 |
7564612 | Chui | Jul 2009 | B2 |
20010003487 | Miles | Jun 2001 | A1 |
20010028503 | Flanders et al. | Oct 2001 | A1 |
20010043171 | Van Gorkom et al. | Nov 2001 | A1 |
20020054424 | Miles | May 2002 | A1 |
20020070931 | Ishikawa | Jun 2002 | A1 |
20020075555 | Miles | Jun 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020146200 | Kurdle et al. | Oct 2002 | A1 |
20020149828 | Miles | Oct 2002 | A1 |
20030016428 | Kato et al. | Jan 2003 | A1 |
20030035196 | Walker | Feb 2003 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030053078 | Missey et al. | Mar 2003 | A1 |
20030202265 | Reboa et al. | Oct 2003 | A1 |
20030202266 | Ring et al. | Oct 2003 | A1 |
20040008396 | Stappaerts | Jan 2004 | A1 |
20040008438 | Sato | Jan 2004 | A1 |
20040027671 | Wu et al. | Feb 2004 | A1 |
20040027701 | Ishikawa | Feb 2004 | A1 |
20040043552 | Strumpell et al. | Mar 2004 | A1 |
20040058532 | Miles et al. | Mar 2004 | A1 |
20040075967 | Lynch et al. | Apr 2004 | A1 |
20040080035 | Delapierre | Apr 2004 | A1 |
20040100594 | Huibers et al. | May 2004 | A1 |
20040100677 | Huibers et al. | May 2004 | A1 |
20040125281 | Lin et al. | Jul 2004 | A1 |
20040125282 | Lin et al. | Jul 2004 | A1 |
20040145811 | Lin et al. | Jul 2004 | A1 |
20040147198 | Lin et al. | Jul 2004 | A1 |
20040175577 | Lin et al. | Sep 2004 | A1 |
20040184134 | Makigaki | Sep 2004 | A1 |
20040207897 | Lin | Oct 2004 | A1 |
20040209195 | Lin | Oct 2004 | A1 |
20040217919 | Pichl et al. | Nov 2004 | A1 |
20040218251 | Piehl et al. | Nov 2004 | A1 |
20040240032 | Miles | Dec 2004 | A1 |
20050002082 | Miles | Jan 2005 | A1 |
20050003667 | Lin et al. | Jan 2005 | A1 |
20050024557 | Lin | Feb 2005 | A1 |
20050035699 | Tsai | Feb 2005 | A1 |
20050036095 | Yeh et al. | Feb 2005 | A1 |
20050046919 | Taguchi et al. | Mar 2005 | A1 |
20050046922 | Lin et al. | Mar 2005 | A1 |
20050046948 | Lin | Mar 2005 | A1 |
20050078348 | Lin | Apr 2005 | A1 |
20050168849 | Lin | Aug 2005 | A1 |
20050179378 | Oooka et al. | Aug 2005 | A1 |
20050195462 | Lin | Sep 2005 | A1 |
20060007517 | Tsai | Jan 2006 | A1 |
20060017379 | Su et al. | Jan 2006 | A1 |
20060017689 | Faase et al. | Jan 2006 | A1 |
20060024880 | Chui et al. | Feb 2006 | A1 |
20060065940 | Kothari | Mar 2006 | A1 |
20060066599 | Chui | Mar 2006 | A1 |
20060066640 | Kothari et al. | Mar 2006 | A1 |
20060066641 | Gally et al. | Mar 2006 | A1 |
20060066936 | Chui et al. | Mar 2006 | A1 |
20060067649 | Tung et al. | Mar 2006 | A1 |
20060067650 | Chui | Mar 2006 | A1 |
20060067651 | Chui | Mar 2006 | A1 |
20060077152 | Chui et al. | Apr 2006 | A1 |
20060077155 | Chui et al. | Apr 2006 | A1 |
20060077156 | Chui et al. | Apr 2006 | A1 |
20060079048 | Sampsell | Apr 2006 | A1 |
20060220160 | Miles | Oct 2006 | A1 |
20060262380 | Miles | Nov 2006 | A1 |
20060268388 | Miles | Nov 2006 | A1 |
20070020948 | Piehl et al. | Jan 2007 | A1 |
20070086078 | Hagood et al. | Apr 2007 | A1 |
20070121118 | Gally et al. | May 2007 | A1 |
20070177247 | Miles | Aug 2007 | A1 |
20070189654 | Lasiter | Aug 2007 | A1 |
20070194630 | Mignard et al. | Aug 2007 | A1 |
20070216987 | Hagood et al. | Sep 2007 | A1 |
20070279729 | Kothari et al. | Dec 2007 | A1 |
20080013144 | Chui et al. | Jan 2008 | A1 |
20080013145 | Chui et al. | Jan 2008 | A1 |
20080037093 | Miles | Feb 2008 | A1 |
20080055705 | Kothari | Mar 2008 | A1 |
20080055706 | Chui et al. | Mar 2008 | A1 |
20080055707 | Kogut et al. | Mar 2008 | A1 |
20080080043 | Chui et al. | Apr 2008 | A1 |
20080088904 | Miles | Apr 2008 | A1 |
20080088910 | Miles | Apr 2008 | A1 |
20080088911 | Miles | Apr 2008 | A1 |
20080088912 | Miles | Apr 2008 | A1 |
20080094690 | Luo et al. | Apr 2008 | A1 |
20080106782 | Miles | May 2008 | A1 |
20080110855 | Cummings | May 2008 | A1 |
20080112035 | Cummings | May 2008 | A1 |
20080112036 | Cummings | May 2008 | A1 |
20080186581 | Bita et al. | Aug 2008 | A1 |
20080239455 | Kogut et al. | Oct 2008 | A1 |
20080247028 | Chui et al. | Oct 2008 | A1 |
20090068781 | Tung et al. | Mar 2009 | A1 |
20090080060 | Sampsell et al. | Mar 2009 | A1 |
20090135465 | Chui | May 2009 | A1 |
Number | Date | Country |
---|---|---|
1 122 577 | Aug 2001 | EP |
1 275 997 | Jan 2003 | EP |
1 473 581 | Nov 2004 | EP |
11211999 | Aug 1999 | JP |
2001-221913 | Aug 2001 | JP |
2002-062490 | Feb 2002 | JP |
2002-221678 | Aug 2002 | JP |
2003-340795 | Feb 2003 | JP |
2004-212638 | Jul 2004 | JP |
2004-212680 | Jul 2004 | JP |
2005 279831 | Oct 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20080094690 A1 | Apr 2008 | US |