The present invention relates generally to methods for reporting and for visually displaying a fault or anomaly in a distribution system having spatial coordinates.
The algorithms for locating and identifying faults or other anomalies are well known in the art and are used extensively in a variety of distribution systems. Such distribution systems include, but are not limited to, road-based transportation systems, pipeline-based transportation or distribution systems (such as for gas, oil or water), electric power systems (including generation, transmission and distribution of electric power), communication systems (including fiber-optic or wire-based), and the like.
Distribution system faults in electric power systems are commonly detected by a variety of individual fault detection devices. Such devices may operate autonomously or in small groups and are typically spatially distributed throughout the system. However, the large distance spanned by some distribution or transportation systems may be a prominent distinguishing characteristic.
Due to the distance encompassed by the system and number of the fault detection locations or nodes within the system, it is often advantageous to communicate the information about any fault to a central location. Current reporting methods include various supervisory control and data acquisition (SCADA) based alarm collection systems, text messaging, automated telephone-based voice messaging For example, a model SEL 3010 event messenger, which is commercially available from Schweitzer Engineering Laboratories of Pullman, Wash., may be used to report information about a fault in an electrical distribution system.
Currently deployed fault reporting methods often lack the means to communicate the fault information in terms of a geographic location, such as with coordinates that define the geographic location of interest Current methods are also unable to efficiently integrate with the state of the art. Geographic Information Systems (hereafter, “GIS system”). Preferably, the GIS system should be capable of displaying the communicated fault information in the visual form, such as on a map of the terrain, and to correlate such information with multiple data overlays, such as with overlays including roads, hydrology, services and infrastructure.
A general object of the present invention is to therefore provide improved methods and systems for reporting and for visually displaying a fault in a distribution system by using spatial coordinates.
Another object of the present invention is to provide improved systems and methods that utilize the GIS system for displaying the communicated fault information in a visual form, such as on a map of the terrain or as overlying templates.
A further object of the present invention is to provide improved systems and methods for reporting and for visually displaying a fault in a distribution system that correlates the fault information with multiple data overlays, such as with overlays including roads, hydrology, services and/or infrastructure.
The present invention is directed to a method for spatially assisting the reporting of a fault in a distribution system. Typically, a method may include the steps of determining the location of the fault or the distance to the fault, generating and storing a plurality of waypoints representative of the route of the distribution system, processing the plurality of waypoints, determining spatial coordinates of the fault, generating a fault report, and communicating the fault report. Further steps of the method may include subsequently displaying the fault information by using a geographic information system, displaying an automated analysis of information included in the fault report, storing the waypoints in a remote device, pre-calculating the distance between waypoints, and communicating the pre-calculated waypoints to the remote device.
In accordance another aspect of the present invention, the step of communicating the pre-calculated waypoints to the remote device may include sending the fault report via a communication mechanism, such as an email system message or as an email message attachment. The waypoints may be contained within an XML file and the methods may include the additional steps of compressing the XML file with a compression algorithm prior to sending, and decompressing or expanding the compressed XML file prior to use at a receiving end. The compression algorithm may be any lossless compression one, some popular examples being zlib, zip, 7z, rar, arj and bzip2. The distribution system may be an electric power distribution system, a pipeline-based oil or gas distribution system, or the like.
The present invention is further directed to a spatially-assisted fault reporting system for a distribution system. The fault reporting system may include a fault detection device for detecting the fault and for determining the location of the fault, a geographic information system for visually displaying the location of the fault, and a communication system for transmitting information about the fault from the fault detection device to the geographic information system. Preferably, the geographic information system displays an automated analysis of the transmitted fault information. The distribution system may be an electric power distribution system, a pipeline-based oil or gas distribution system, or the like.
The geographic information system may generate a plurality of waypoints representative of the route of the distribution system. The fault detection device determines the location of the fault or the distance to the fault. The geographic information system processes the plurality of waypoints and determines spatial coordinates of the fault.
The communication system of the fault reporting system may include email messaging for sending the transmitted fault information as an email or as an email attachment. The fault detection device of the fault reporting system stores the plurality of waypoints in an XML file, compresses the XML file with a lossless compression algorithm, such as zlib, zip, 7z, rar, arj, bzip2 or similar, and communicates the XML file to the geographical information system The geographical information system decompresses the XML file with the decompression algorithm which matches the compression algorithm of the file.
The invention, together with its objects and the advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements in the figures, and in which:
It will be understood that the present invention may be embodied in other specific forms without departing from the spirit thereof. The present examples and embodiments, therefore, are to be considered in all respects as illustrative and not restrictive, and the invention is not to be limited to the details presented herein.
The present invention makes it possible for a fault reporting device to identify a location of the fault, such as with Global Positioning System (GPS) coordinates, and to use modern World Wide Web/Internet-based communication methods to send the information about the fault to an interested user. Main technologies used are email, email attachments, XML-based resource topology description and GIS system-based terrain visualization.
The present invention can be deployed in a wide range of autonomous embedded systems, such as in protective relays in electrical power systems The present invention may also be used in other types of distribution systems which have fixed portions at identifiable GPS coordinates, such as in oil or gas distribution systems. Other types of anomalies, malfunctions, disturbances, and the like, may also be reported in addition to, or in lieu of, faults. Moderate computational resources are required to implement the present invention. Moreover, the present invention does not place undue burdens on the embedded system which reports the fault.
A system for reporting faults is generally illustrated in
As described in more detail herein, the fault detection device 504 may include information, such as geographical coordinates, for waypoints 512-526 along the route of the distribution system 530. The waypoints 512-526 may include, for example, power transmission line towers, pumping stations on pipeline-based distribution systems, and the like.
The communication system 506, as described in more detail herein, may communicate fault information via a network 510, such as via the internet or any other suitable medium. In one preferred embodiment, the fault information is communicated by email.
In the illustrated embodiment shown in
In accordance with one aspect of the present invention, methods and systems for spatially-assisted fault reporting utilize a short XML file. XML is an acronym for Extensive Markup Language, which is an open standard developed by the World Wide Web Consortium. In the present invention, this XML file may contain absolute coordinates, which may also be referred to as waypoints, describing distribution system topology, information about the fault and the location of the fault. Location of the fault may further include tolerance or uncertainty bands and other information of interest, such as altitude and the like.
For example, information about the fault may further include reporting device identification, reporting device location, fault characteristics, and the time of the fault. Prior to sending the fault information to the GIS system, the fault reporting device may compress the XML file with a lossless compression algorithm, such as with a zlib, zip, 7z, rar, arj, bzip2 or similar. Such lossless compression algorithms are well known in the art.
The XML file is preferably self contained and can be communicated through a variety of communications systems. It can be sent in the form of attachment to other fault reporting methods, such as by electronic mail, commonly known as email. The XML file may contain additional links to other resources, such as a web-based link back to the reporting device, device manufacturer website, transportation system operator or other support links of interest.
In one embodiment, the described XML attachment may be compliant with Keyhole Markup Language (KML). KML is an XML grammar and file format for modeling and storing geographic features such as points, lines, images, and polygons for display in Google Earth™ mapping service. A KML file is processed by Google Earth™ mapping service in a similar manner to the processing of HTML files by web browsers. Like HTML, KML has a tag-based structure with names and attributes used for specific display purposes. For example, icons or labels may be used to identify locations on the surface of the Earth. Thus, Google Earth™ mapping service acts as a browser of KML files.
One example of such a fault reporting system could be a distance relay equipped with the XML-based data template. Such templates may contain all of the information necessary for creation of the fault report, including the GPS coordinates of the transmission line corridor, the GPS location of the distance relay protecting the line, the distance vector describing the length of the line and the incremental distance vector. For example, the distance vector may be calculated ahead of time and stored either in incremental or in cumulative form, or calculated locally by the fault reporting device when and as needed.
In view of the foregoing general description, a specific example using the present invention will now be considered.
Another visual template 200 in
In order for the reporting device 102 in
Most of the above GPS information can be contained in a single XML file template. This template will be prepared ahead of time, and will be created specifically for every relay, thus containing only parameters pertinent to the particular relay location including the line protected by the relay. Template files could be created by the customer or supplied by the vendor as a separate service Additional enhancements such as aerial photograph inserts, GPS coordinate imports and the like can be accommodated as desired or required.
As shown in the above example
The displays 100 and 200 shown in
The waypoint list 301 in
The present invention thus provides an email attachment based visualization method capable of displaying the approximate geographic location of a power system fault. GIS database visualization is accomplished by using Google Earth™ mapping service and an XML file attachment. The XML file attachment may be largely created ahead of time and used as a template, thereby making it possible for the relay, or associated fault reporting device, to determine GPS coordinates of the fault, to modify pertinent file sections, such as about 10 percent of the file, and to send the resulting file as an email attachment The system may then create the visualization examples which are shown in
The present invention also contemplates reporting multiple faults occurring in a distribution line over an extended period of time.
In another embodiment of the present invention, a template file can be used to construct a web-based hyperlink for displaying the fault location on a web-based GIS system, such as with a Google Maps™ Application Program Interface (API).
An apparatus for fault reporting 600 in accordance with an embodiment of the present invention is illustrated in FIG, 6 As illustrated, the apparatus 600 includes an input 602 configured to receive data relating to the distribution system. The data is transmitted to the microcontroller 604. The microcontroller 604 may include a CPU or microprocessor 608 and a memory 610. As will be appreciated by those skilled in the art, other suitable microcontroller configurations may be utilized. Further, although discussed in terms of a microcontroller, it should be noted that the embodiments presented and claimed herein may be practiced using an FPGA (field programmable gate array) or other equivalent.
The memory 610 may include information such as the locations of the waypoints, distances between the waypoints, the template XML file, and the like. The CPU or microprocessor 608 identifies the fault and generates the fault report to be communicated via the communication channel 620. These processes may correspond with any of the previously described processes. Accordingly, the communication channel may include a serial port, an Ethernet port, a fiber optic port, radio transmission, infrared transmission, and the like.
It is understood that a person skilled in the art may separate the template file into multiple files or multiple templates. Such multiple files or multiple templates may be assembled together during the fault report creation process Such modifications are considered to be included within the scope of this invention.
While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made therein without departing from the invention in its broader aspects.