Spatially dithered high-resolution

Information

  • Patent Grant
  • 10347168
  • Patent Number
    10,347,168
  • Date Filed
    Thursday, November 9, 2017
    6 years ago
  • Date Issued
    Tuesday, July 9, 2019
    4 years ago
Abstract
A high-resolution display includes a display substrate having an array of light-emitting display pixels disposed thereon for displaying an image comprising an array of image pixels. The total number of display pixels in the array of light-emitting display pixels is less than and evenly divides the total number of image pixels in the image in at least one dimension. An actuator physically moves a display substrate and light-emitting display pixels in one or two dimensions in a direction parallel to a surface of the display substrate. A controller controls the light-emitting operation of display pixels and controls physical location of the display pixels. In some embodiments, a controller controls an actuator to spatially interpolate the spatial location of display pixels at successive times and controls the light-emitting operation of display pixels to display a different subset of the image pixels at each successive time.
Description
FIELD OF THE INVENTION

The present invention relates generally to high-resolution displays.


BACKGROUND OF THE INVENTION

Displays are widely used to present information to viewers. In general, more information can be presented more clearly with displays having greater resolution. Moreover, displays with greater resolution are often more pleasing to viewers.


A variety of techniques have been proposed for presenting lower-resolution imagery on a higher-resolution display, for example using inter-pixel interpolation to increase the number of pixels in the image to match the number of pixels in the higher-resolution display. Other techniques, for example as taught in U.S. Pat. No. 8,179,401 use dither patterns for sequentially displaying groups of pixels, particularly for addressing motion artifacts in color sequential displays, but does not actually improve the apparent resolution of the display.


U.S. Pat. No. 6,574,032 discusses the use of a spatial light modulator to move the apparent location of light emitted by pixels. The spatial light modulator effectively enlarges the apparent pixel size to improve the fill factor. However, this approach does not actually improve the apparent resolution of the display.


U.S. Pat. No. 6,552,740 describes a printer using a spatial light modulator and proposes to duplicate pixel data by imaging the same data at multiple sites. This method can be used to create multiple overlapped images for the purpose of minimizing effects of pixel site defects in the spatial light modulator. Dithering is also proposed as a method for increasing the effective image resolution by printing a first image with the spatial light modulator in a first position, printing a second image with the spatial light modulator in a second position, and so on. This method can be used to increase image resolution by a multiple of two or four, depending on the dither pattern. However, this approach requires moving a relatively large spatial light modulator and requires a backlight.


There is a need, therefore, for devices, systems and methods for improving the apparent resolution of displays.


SUMMARY OF THE INVENTION

In one aspect, the present invention is directed to a high-resolution display, comprising: a display substrate; an array of light-emitting display pixels disposed on the display substrate; at least one actuator for physically moving the display substrate and the array of light-emitting display pixels to different physical locations in at least one dimension in a direction parallel to a surface of the display substrate; a controller for controlling the light-emitting operation of the display pixels and for controlling a spatial location of the display pixels; and wherein the controller controls the at least one actuator to interpolate the spatial location of the display pixels at successive times and controls the light-emitting operation of the display pixels to display a different subset of image pixels in an image at each successive time, wherein a total number of display pixels in the array of light-emitting display pixels is less than and evenly divides a total number of image pixels in the image in at least one dimension (e.g., wherein the number of image pixels is an integral multiple greater than one of the number of display pixels in at least one dimension).


In certain embodiments, the display pixels are color pixels comprising two or more light-emitting sub-pixels and the controller controls the sub-pixels to emit light of different colors. In certain embodiments, each display pixel is a single-color display pixel and adjacent display pixels emit different single-colors of light.


In certain embodiments, each spatial location of the display pixels that the controller controls the at least one actuator to move the display substrate to at a successive time of the successive times corresponds to a relative location of image pixels in the image displayed by the display pixels at the successive time.


In certain embodiments, a total number of spatial locations the controller controls the at least one actuator to move to is the same as the total number of image pixels in the image.


In certain embodiments, the spatial locations are interpolated in one dimension. In certain embodiments, the spatial locations are interpolated in two directions. In certain embodiments, the two directions are two orthogonal directions.


In certain embodiments, the spatial locations at successive times correspond to adjacent image pixels in the image.


In certain embodiments, the controller controls the at least one actuator to move continuously along a dither pattern.


In certain embodiments, each display pixel is separated from a neighboring pixel by a pixel separation distance and each of the at least one actuator has a range of motion for moving the display substrate that is at least equal to the pixel separation distance (e.g., at least equal to twice the pixel separation distance).


In certain embodiments, the display comprises an actuator for physically moving the display substrate and the array of light-emitting display pixels in a direction orthogonal to a surface of the display substrate on which the array of light-emitting display pixels are disposed.


In certain embodiments, the display substrate is substantially transparent and the high-resolution display comprises at least one additional display substrate each comprising an array of light-emitting display pixels disposed thereon and at least one actuator for physically moving the additional display substrate and the array of light-emitting display pixels disposed thereon to different spatial locations at least one dimension parallel to a surface of the display substrate, wherein the display substrate and the at least one additional display substrate form a stack of display substrates.


In certain embodiments, each display pixel is separated from a neighboring display pixel by a pixel separation distance and each of the at least one actuator has a range of motion for moving the display substrate of at least one half (e.g., at least two thirds or at least three quarters) of the pixel separation distance.


In certain embodiments, each display pixel is separated from a neighboring pixel by a pixel separation distance, wherein the display pixels are color pixels comprising two or more light-emitting sub-pixels, and the two or more light-emitting sub-pixels in a color pixel are separated by a distance that is less than or equal to one quarter of the pixel separation distance.


In certain embodiments, the light-emitting pixels comprise inorganic micro-light-emitting diodes comprising at least one of a length, a width, and a thickness that is less than or equal to twenty microns (e.g., less than or equal to ten microns, five microns, two microns, or one micron).


In certain embodiments, each sub-pixel comprises at least one micro-transfer printed micro-light-emitting diode comprising a fractured or separated tether.


In certain embodiments, each light-emitting display pixel in the array of light-emitting display pixels comprises an active-matrix pixel controller.


In certain embodiments, the at least one actuator is (i) one or more piezo actuators disposed to move the display substrate in one dimension; (ii) two or more piezo actuators disposed to move the display substrate in two dimensions (e.g., two orthogonal dimensions); or (iii) three or more piezo actuators disposed to move the display substrate in three dimensions (e.g., three orthogonal dimensions).


In certain embodiments, the display comprises an optical structure disposed over the array of display pixels such that light emitted by the display pixels is optically processed by the optical structure, wherein the at least one actuator is for moving the display substrate relative to the optical structure.


In certain embodiments, the at least one actuator moves the display substrate in at least one of (i) at least a portion of a straight line segment, a curved line segment, a circle, a circular line segment, a sinusoidal line segment, a sine wave, and (ii) a resonant mechanical mode in one or both of a horizontal plane parallel and a vertical plane orthogonal to a surface of the display substrate on which the array of light-emitting display pixels are disposed.


In certain embodiments, the display comprises a head set, wherein at least the display substrate, the array of light-emitting display pixels, and the at least one actuator are mounted to the head set.


In another aspect, the present invention is directed to a method of displaying images on a high-resolution display using spatial dithering, wherein the high-resolution display comprises a display substrate, an array of light-emitting display pixels disposed on the display substrate, at least one actuator for physically moving the display substrate and the array of light-emitting display pixels to different physical locations in at least one dimension in a direction parallel to a surface of the display substrate, and a controller for controlling the light-emitting operation of the display pixels and for controlling a spatial location of the display pixels and the method comprises the steps of: (a) emitting light from the array of display pixels while the display pixels are in an initial spatial location, wherein the emitted light corresponds to a subset of image pixels of an image and a total number of display pixels in the array of light-emitting display pixels is less than and evenly divides a total number of image pixels in the image in at least one dimension (e.g., wherein the number of image pixels is an integral multiple greater than one of the number of display pixels in at least one dimension); (b) controlling, by the controller, movement of one or more of the at least one actuator to move the display substrate such that the array of display pixels are interpolated to a different spatial location along a dither pattern; (c) emitting light from the array of display pixels while the array is in the different spatial location along the dither pattern, wherein the light emitted from the array of display pixels while in the different spatial location corresponds to a different subset of image pixels in the image than the subset of image pixels in the; and (d) repeating step (b) and step (c) until light has been emitted from the array of display pixels in each spatial location, thereby displaying the image.


In certain embodiments, the dither pattern is a 2×2 pattern, a 3×3 pattern, a 4×4 pattern, or a 5×5 pattern. In certain embodiments, spatial locations are interpolated along the dither pattern in one dimension. In certain embodiments, spatial locations are interpolated along the dither pattern in two directions. In certain embodiments, the two directions are two orthogonal directions.


In certain embodiments, each pair of successive spatial locations interpolated along the dither pattern corresponds to adjacent subsets of image pixels in the image.


In certain embodiments, at least one pair of successive spatial locations interpolated along the dither pattern corresponds to non-adjacent subsets of image pixels in the image (e.g., wherein one of the pair of successive spatial locations is the initial spatial location).


In certain embodiments, the array of display pixels are interpolated to successive spatial locations along the dither pattern by interpolating along at least a portion of a straight line segment, a curved line segment, a circle, a circular line segment, a sinusoidal line segment, or a sine wave.


In certain embodiments, the method comprises loading a second image to be displayed while moving, in response to the controller actuating the at least one actuator, the array of display pixels to the initial spatial position from a non-adjacent spatial location.


In certain embodiments, the high-resolution display comprises an orthogonal actuator for physically moving the display substrate and the array of light-emitting display pixels in a direction orthogonal to a surface of the display substrate on which the array of light-emitting display pixels are disposed, and the method comprises: controlling, by the controller, movement of the orthogonal actuator to move the display substrate such that the array of display pixels are interpolated to an orthogonal spatial location along the dither pattern, wherein the orthogonal spatial location is a spatial location that lies above or below a plane of the initial spatial location.


Some embodiments of the present invention provide a high-resolution display suitable for small, light-weight display systems at a relatively low cost and in a robust structure.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects, features, and advantages of the present disclosure will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a plan view schematic illustration of a display, according to illustrative embodiments of the present invention;



FIGS. 2A-2D illustrate display pixel locations for a 2×2 spatial dither, according to illustrative embodiments of the present invention;



FIG. 3 is a plan view schematic illustration of the interpolated display pixel locations for the 2×2 dither pattern of FIGS. 2A-2D, according to illustrative embodiments of the present invention;



FIG. 4 is a flow chart of an exemplary method of displaying images on a high-resolution display, according to illustrative embodiments of the present invention;



FIG. 5 is a cross section of a micro-LED, according to illustrative embodiments of the present invention;



FIG. 6 is a plan view schematic illustration of color display pixel comprising a pixel controller (e.g., an active-matrix pixel controller), according to illustrative embodiments of the present invention;



FIG. 7 illustrates dither patterns, according to illustrative embodiments of the present invention;



FIG. 8 illustrates non-rectilinear dither patterns, according to illustrative embodiments of the present invention;



FIG. 9 illustrates one-dimensional dither patterns for single-color pixels, according to illustrative embodiments of the present invention;



FIG. 10 illustrates two-dimensional dither patterns for single-color pixels, according to illustrative embodiments of the present invention;



FIG. 11 is a cross section of a high-resolution display comprising z-direction actuators, according to illustrative embodiments of the present invention;



FIG. 12 is a cross section of a high-resolution display comprising an optical structure incorporating lenslets, according to illustrative embodiments of the present invention;



FIGS. 13A-13C are cross sections of a high-resolution display comprising an optical structure incorporating color filters at different times, according to illustrative embodiments of the present invention;



FIG. 14 is a cross section of a high-resolution display comprising a stack of display substrates, according to illustrative embodiments of the present invention; and



FIG. 15 is a schematic illustration of a head-mounted display, according to illustrative embodiments of the present invention.





The features and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The figures are not drawn to scale since the variation in size of various elements in the Figures is too great to permit depiction to scale.


DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, a high-resolution display 99 in accordance with some embodiments of the present invention includes a display substrate 10 having an array of light-emitting display pixels 20 disposed thereon. The high-resolution display can be used to display an image comprising an array of image pixels. The display substrate 10 can be, for example, a glass substrate or a thin glass substrate having a thickness less than one mm, less than 0.5 mm, or less than 0.25 mm. The display substrate 10 can be rigid or flexible. The light-emitting display pixels 20 can be inorganic micro light-emitting-diodes 50 (as shown in FIG. 5) for example having at least one of a length, a width, and thickness that is less than or equal to twenty microns, ten microns, five microns, two microns, or one micron. The display pixels 20 can have a pixel separation distance of D and a sub-pixel separation distance of P. The micro light-emitting-diodes 50 can be micro-transfer printed LEDs having a fractured or separated tether 52.


The total number of display pixels 20 in the array of light-emitting display pixels is less than and evenly divides the total number of image pixels in the image in at least one dimension. That is, the total number of image pixels in images displayed on the display is an integral multiple of the total number of display pixels 20 in at least one dimension and, in some embodiments, in two orthogonal directions. For example, a display substrate 10 can include a 640×480 array of display pixels 20 and an image can include a 1280×960 array of image pixels so that the image has twice as many image pixels as the display substrate 10 has display pixels 20 in each of two dimensions and the image has four times as many image pixels as the display substrate 10 has display pixels 20.


One or more actuators 40 are disposed to physically move the display substrate 10 and light-emitting display pixels 20 in one or two dimensions in a direction parallel to a surface of the display substrate 10. For example, as shown in FIG. 1, a single actuator 40 can be disposed to press against each of two orthogonal sides of a rectangular display substrate 10 in a direction orthogonal to the corresponding edge of the rectangular display substrate 10 against which the actuators 40 press. Thus, the two actuators 40 together can move the display substrate 10 in two orthogonal directions in a plane horizontal to the display substrate 10 surface. In some embodiments (not shown in FIG. 1), two or more actuators 40 are disposed to move the display substrate 10 in a common direction. Such a multi-actuator 40 arrangement can help to prevent the display substrate 10 from rotating. Useful actuators 40 include piezoelectric actuators.


A display controller 30 controls the light-emitting operation of the display pixels 20 and controls the physical location of the display pixels 20 in space by controlling the one or more actuators 40. A display controller 30 can be, for example, an integrated circuit that is electrically connected to the display pixels 20 with wires 22 and that electrically controls the display pixels 20 to emit light and electrically controls the actuator 40 to move the display substrate 10. In some embodiments, a display controller 30 comprises two or more sub-controllers, for example one sub-controller to control light emission and one sub-controller to control actuator motion (e.g., wherein each sub-controller is an integrated circuit). Sub-controllers of a display controller 30 can be spatially separate. A display controller 30 controls an actuator 40 to spatially interpolate the spatial location of display pixels 20 (e.g., along a dither pattern, as described subsequently) at successive times and controls light-emitting operation of the display pixels 20 to display a different subset of the image pixels at each successive time.


In a simple example, a display substrate 10 includes a 640×480 array of display pixels 20 and an image includes a 1280×960 array of image pixels so that the image has twice as many image pixels as the display substrate 10 has display pixels 20 in each of two dimensions.


Referring to FIG. 2A, at a first time T0 the display pixels 20 and the display substrate 10 are at a first location P00, for example at rest with the actuator 40 in a neutral position. While in this position, the display controller 30 controls the display pixels 20 to emit light corresponding to every other image pixel in each of two orthogonal directions with an offset of zero in both dimensions, for example emitting light corresponding to the first, third, fifth and so on image pixels in each row and column. Thus, the display pixels 20 display a first subset of the image.


Referring to FIG. 2B, at a second time T1 the display pixels 20 and the display substrate 10 are at a second location P10, for example spatially offset in the x direction by a distance that is one half of the pixel separation distance D (i.e., that is midway in the x dimension between the pixels in the neutral position P00). While in this position, the display controller 30 controls the display pixels 20 to emit light corresponding to every other image pixel in each of two orthogonal directions with an offset of one pixel in the x dimension and no offset in the y dimension, for example emitting light corresponding to the second, fourth, sixth and so on image pixels in each row and the first, third, fifth and so on image pixels in each column. Thus, the display pixels 20 display a second subset of the image.


Referring to FIG. 2C, at a third time T2 the display pixels 20 and the display substrate 10 is at a third location P01, for example spatially offset in the y direction by a distance that is one half of the pixel separation distance D, that is midway in the y dimension between the pixels in the neutral position P00. While in this position, the display controller 30 controls the display pixels 20 to emit light corresponding to every other image pixel in each of two orthogonal directions with an offset of zero pixels in the x dimension and an offset of one pixel in the y dimension, for example emitting light corresponding to the first, third, fifth and so on image pixels in each row and the second, fourth, sixth and so on image pixels in each column. Thus, the display pixels 20 display a third subset of the image.


Referring to FIG. 2D, at a fourth time T3 the display pixels 20 and the display substrate 10 is at a fourth location P11, for example spatially offset in the y direction and in the x direction by a distance that is one half of the pixel separation distance D, that is midway in the x and y dimensions between the pixels in the neutral position P00. While in this position, the display controller 30 controls the display pixels 20 to emit light corresponding to every other image pixel in each of two orthogonal directions with an offset of one pixel in the x dimension and an offset of one pixel in the y dimension, for example emitting light corresponding to the second, fourth, sixth and so on image pixels in each row and the second, fourth, sixth and so on image pixels in each column. Thus, the display pixels 20 display a fourth subset of the image and the complete image is displayed at the image resolution in a 2×2 dither pattern over the time taken by times T1, T2, T3, and T4, as shown in FIG. 3.



FIG. 4 is a flow chart of an exemplary method to display one or more images using a high-resolution display in accordance with some embodiments of the present invention. In a providing step 400, a high-resolution display 99 is provided. For example, a high-resolution display 99 in accordance with FIG. 1 can be provided. In an initial emitting step 402, an array of display pixels 20 emits light (e.g., corresponding to a first subset of image pixels of the image). In a moving step 404, one or more actuators 40 move a display substrate 10 on which the display pixels 20 are disposed. The display pixels 20 are interpolated along a dither pattern as a result of the one or more actuators 40 moving the display substrate 10 in correspondence with the dither pattern (e.g., in accordance with FIGS. 2A-2D and FIG. 3, as described above). In an emitting step 406, light is emitted from light-emitting display pixels 20 disposed on the display substrate 10. For example, light emitted from the display pixels 20 can correspond to image pixels in the image being displayed during the method. In some embodiments, light is continuously emitted from display pixels 20 as the one or more actuators 10 move the display substrate (e.g., step 404 and step 406 occur simultaneously).


In a determining step 408, a determination is made as to whether each spatial location in the dither pattern has been interpolated for the image. If not, then the method repeats the moving step 404 and the emitting step 406 (e.g., multiple times). For example, in some embodiments using a 2×2 dither pattern, a moving step 404 and emitting step 406 are performed three times for each image (e.g., frame of a video). If each spatial location has been interpolated, then a new image is loaded in a loading step 410. In some embodiments, a new image is loaded into the display 99 (e.g., into a controller 30 of the display 99) as the one or more actuators 40 move the array of display pixels 20 back to an initial spatial location. In some embodiments, a new image is loaded after display pixels 20 return to an initial spatial position.


In order to avoid perceptible flicker in a display, it is necessary to display the image pixel subsets at a rate greater than, for example 30 frames per second, the frame rate of the commercial analog NTSC television standard. In some embodiments of the present invention, a high-resolution display 99 is a relatively small display, for example having a diagonal size of a few centimeters, that can be disposed in a head-mounted display. However, users viewing near-to-eye head-mounted displays have a high expectation for display resolution and image quality. In certain embodiments, micro-transfer printed micro-LEDs 50 having a size, for example, of ten or 20 microns in a dimension are used in a high-resolution micro-display.


For example, in some embodiments, a high-resolution display 99 has a pixel separation of 50 microns for a native resolution of 20 pixels per millimeter. In some embodiments, a high-resolution display 99 has a pixel separation of 25 microns and an effective resolution of 40 pixels per millimeter in both row and column directions. If such a display is used with a 4×4 dither pattern to display an image with four times as many image pixels as display pixels 20 on the display substrate 10 in each dimension, the entire image can be displayed in 16 time periods with an effective resolution of 80 pixels per millimeter, an extremely high resolution.


In some embodiments of the present invention, as illustrated in FIG. 6, display pixels 20 include a pixel controller 24, for example a small integrated circuit that provides active-matrix control to a display pixel 20. A pixel controller 24 can digitally control micro-LEDs 50 with a pulse width modulation scheme and can be addressed using an active-matrix control method from the display controller 30 (which can include, for example, separate row and column drivers). In some embodiments, a display controller 30 and pixel controller 24 together with micro-LEDs 50 can load rows of data at a rate greater than 50 MHz per bit. In some embodiments, rows of eight-bit pixel values can be loaded into the display at 6 MHz. For example, in a display with 640 columns x 480 rows, such a loading rate enables a native frame rate of 12500 frames per second. Using a 4×4 dither pattern, a high-resolution display 99 can operate at one sixteenth that rate or 781 frames per second, well above the required 30 frames per second to avoid flicker. For an image having 1080 rows (such as in, for example, a standard high-definition television) and using a 4×4 dither pattern, thereby achieving an effective 8 k×4 k display resolution, the frame rate is 347 frames per second. Even a 16 k×8 k resolution is readily achievable.


In some embodiments, it is not only necessary to provide data at a rate sufficient to avoid flicker, it is necessary to move a display substrate 10 to a number of positions to display the data at a corresponding rate. For example, a display using a 4×4 dither pattern moves a display substrate to 16 locations to display a single image (e.g., frame of a video). In some embodiments, an actuator 40 moves a display substrate 10 a distance up to the pixel separation distance D, for example up to 50 microns. Commercially available piezoelectric actuators 40 can move distances of a millimeter without difficulty at a rate of 350 mm per second (i.e., one micron in 2.86 microseconds). For example, a high-resolution display 99 with a 50-micron pixel separation distance D using a commercially available piezoelectric actuator capable of 350 mm per second movement and a 4×4 dither pattern requires a maximum movement in each dimension of movement (e.g., x- and y-dimensions) of 37.5 microns, which takes 107 microseconds (i.e., can occur at a rate of 9324 movements per second) using. Sixteen movements (e.g., one to each position of the 4×4 pattern) would therefore require at most about 1712 microseconds and yield a frame rate limited by the piezoelectric actuators 40 of about 584 frames per second. Thus, a piezoelectric actuator 40 can enable useful frame rates. Micro-LED displays having pixel separation distances D less than 100 microns have been built and in accordance with some embodiments using a 4×4 spatial dither pattern can operate at 292 frames per second. Thus, some embodiments of the present invention provide a useful high-resolution display 99.


In some embodiments, display pixels 20 are color pixels having two or more light-emitting sub-pixels and a display controller 30 controls the sub-pixels to emit light of different colors. Referring to FIGS. 1 and 5, in some embodiments, display pixels 20 include red, green, and blue colored sub-pixels, 20R, 20G, 20B. In some embodiments, a color display requires three times as much data communication (i.e., due to the presence of three subpixels per pixel) which reduces the frame rate. However, in an analogous high-resolution display 99 as the example given above, the frame rate remains about 100 frames per second, still well above the threshold necessary to avoid image display flicker.


To ensure that image pixels are displayed at correct locations in a high-resolution display 99 in accordance with some embodiments of the present invention, the location of display pixels 20 at a time can correspond to the relative location of the image pixels in the image displayed by the display pixels 20. That is, the locations moved to by the display pixels 20 in the display 99 correspond to discrete locations of image pixels in an image being displayed. Therefore, in some embodiments, the total number of display pixel spatial locations is the same as the number of image pixels in an image being displayed (e.g., as illustrated in FIG. 3), wherein only a subset of the image pixels are instantaneously displayed at a particular time.


In some embodiments, and as illustrated in the figures, spatial locations are interpolated in two dimensions (e.g., using a two-dimensional dither pattern). In some embodiments, spatial locations are interpolated in only one dimension (e.g., using a one-dimensional dither pattern).


Image pixels in a dither pattern can be displayed in any order (e.g., an arbitrary order). In some embodiments, the number of display substrate 10 movements are reduced by displaying image pixels adjacent in one dimension at successive times. For example, with reference to FIG. 3, a display substrate 10 can be moved from position P00 to P10 to P11 to P01 to P00, so that the display substrate 10 only moves the smallest distance possible for each movement, thus keeping each movement time as short as possible. In some embodiments, all movements are to spatially adjacent locations except one, so that only some of the spatial locations at successive times are adjacent. For example, a one-dimensional dither pattern can be used, wherein each movement moves to a spatially adjacent location progressively further away from an initial position except for a movement to reset a display substrate 10 to the initial position. In some embodiments, a large movement (e.g., relative to the size of movement to spatially adjacent locations) is used a limited number of times (e.g., once per image frame) and overlaps with the time needed to load a new image frame into a display controller 30. Time available for loading scales with magnitude of the large movement (i.e., a larger movement takes a longer time to move). Therefore, moving a display substrate 10 to spatially adjacent locations can reduce time and energy needed to move the display substrate 10, can improve high-resolution display 99 efficiency, and can increase the display frame rate, thereby reducing flicker. In some embodiments, only some movements are to spatially adjacent locations. For example, with reference to FIG. 3, a display substrate 10 can be moved from P00 to P10 to P01 to P11 to P00 from the diagonally opposite corner of the dither pattern to the initial P00 position. The larger spatial movement from P11 to P00 can allow time for a new image frame to be loaded into a display controller 30. In some embodiments, multiple movements (interpolations) along a dither pattern are to non-adjacent spatial locations.


Five different exemplary dither patterns are illustrated in FIG. 7. In the first exemplary dither pattern, four-location dither pattern A, display pixels 20 on a display substrate 10 are moved from an upper-left spatial location P00, to an upper right spatial location P10, to a lower-right spatial location P11, to a lower-left spatial location P01, and then returns to the original, upper-left spatial location P00 at successive times (as shown in FIGS. 2A-2D). The spatial locations of the display pixels 20 at successive times are adjacent.


In the second exemplary dither pattern, nine-location dither pattern B, display pixels 20 on a display substrate 10 are moved from an upper-left spatial location in the horizontal direction to an upper right spatial location and then down to a middle row of spatial locations. The display pixels 20 then move back to the first column, then down to the bottom row and across to the right side of the 3×3 array of spatial locations, and then back to the original spatial location. Spatial locations at successive times are adjacent except for the return to the original spatial location.


In the third exemplary dither pattern, nine-location dither pattern C, display pixels 20 on a display substrate 10 are moved from an upper-left spatial location in the horizontal direction to an upper right spatial location and then down the right-side column of spatial locations to the bottom row of spatial locations. The display pixels 20 then move back to the first column, then up to the middle row, over to the middle column, and then diagonally back to the original spatial location. In this exemplary 3×3 dither pattern, spatial locations at successive times are all adjacent except for the return to the original spatial location.


In the fourth exemplary dither pattern, sixteen-location dither pattern D, display pixels 20 on a display substrate 10 are moved from an upper-left spatial location in the horizontal direction to an upper right spatial location and then down the right-side column of spatial locations to the bottom row of spatial locations. The display pixels 20 then move back one column, then up to the second row, over another column, and then back to the bottom row of spatial locations. The display pixels 20 then move back to the first column and then to the original spatial location. In this exemplary 4×4 dithered pattern, spatial locations at successive times are all adjacent.


In the fifth exemplary dither pattern, twenty-five-location dither pattern E, display pixels 20 on a display substrate 10 are moved from an upper-left spatial location in the horizontal direction to an upper right spatial location and then down the right-side column of spatial locations to the bottom row of spatial locations. The display pixels 20 then move left one column, up to the second row, left another column, down to the bottom row, and then back and forth up to the original spatial location with alternating row and column movements. In this exemplary 5×5 dither pattern, spatial locations at successive times are all adjacent except for the return to the original spatial location.


The dither patterns of FIG. 7 define rectilinear arrays of display pixel locations. In some embodiments of the present invention, dither patterns can have other shapes, for example diamond shapes, circular shapes, or sinusoidal shapes. Referring to the FIG. 8, patterns A and B, display pixels 20 are spatially interpolated over time to form a diamond pattern alphabetically labeled in the order in which the interpolation occurs (PA, PB, PC, PD). In pattern C, two adjacent diamond patterns are formed in the order (PA, PB, PC, PD, PE, PF, PG, PH), with the central location (PC, PG), repeated. Motion of display pixels 20 need not be straight lines as in FIG. 8 pattern A. As shown in FIG. 8 patterns B and C, the display pixels 20 can trace out a circular pattern or a sinusoidal pattern (not shown). Thus, in some embodiments of the present invention, piezo actuators move a display substrate in all or a part of a straight line segment, a curved line segment, a circular line segment, a circle, a sinusoidal line segment, or a sine wave.


In some embodiments of the present invention, and as illustrated in FIG. 9, each display pixel 20 on a display substrate 10 is a single-color display pixel 20 and adjacent display pixels 20 are different single-color display pixels 20 (i.e., that each emit a different single color). The display substrate 10 then moves a distance at least equal to the separation distance D to display different colors at the different pixel display locations. Hence, in such embodiments, a display 99 is a color sequential high-resolution display 99, but each different color is out of phase with the other colors at different neighboring spatial locations. Such a display can display an image in accordance with the exemplary method shown in FIG. 4. For example, with reference to FIG. 9, at time 0 (T0) the first display pixel 20R emits red light at a first spatial location, the second display pixel 20G at a second spatial location adjacent to the first spatial location emits green light, and the third display pixel 20B adjacent to the second spatial location emits blue light. At a successive time T1, the display substrate 10 is moved so that each of the single-color display pixels 20 is moved to an adjacent spatial location so that red display pixel 20R is moved to the second spatial location and emits red light, green display pixel 20G is moved to the third spatial location and emits green light, and blue display pixel 20B is moved to a fourth spatial location to emit blue light. At a second successive time T2, the display substrate 10 is moved so that each of the single-color display pixels 20 is moved to another adjacent spatial location so that red display pixel 20R is moved to the third spatial location and emits red light, green display pixel 20G is moved to the fourth spatial location and emits green light, and blue display pixel 20B is moved to a fifth spatial location and emits blue light. The display substrate 10 is then moved back to its original position and the process is repeated for a second image frame. Thus, at the first spatial location red light is emitted, then green light, then blue light, corresponding to the different colors of the image pixel at the first spatial location. At the second spatial location green light is emitted, then red light, then blue light, corresponding to the different colors of the image pixel at the second spatial location. At the third spatial location blue light is emitted, then green light, then red light, corresponding to the different colors of the image pixel at the third spatial location.


Referring to FIG. 10, a similar process as described above can be used for a two-dimensional dither pattern if the dither pattern is arranged so that each color is emitted at each spatial location, for example by locating different single-color display pixels 20 spatially out of phase in adjacent rows (or columns) of the high-resolution display 99. As shown in FIG. 10, the display pixels 20 on the display substrate 10 first emit light at the initial spatial location at time T0, then move to the right to emit light at the first spatial location at time T1, then move down to emit light at the second spatial location at time T2, then move back to the initial spatial location at time T3, so that a different color of light is sequentially emitted at each spatial location. Alternatively, the display pixels 20 on the display substrate 10 can move left at time T3 and emit light in the fourth spatial location and then return to the initial spatial location. Such a process will order the colors at each spatial location differently for successive time frames.


In some embodiments of the present invention, spatial locations between single-color display pixels 20 can also be interpolated in one or two dimensions (e.g., in accordance with FIGS. 2A-2D), to further increase the resolution of a high-resolution display 99.


Referring to FIG. 11, in some embodiments of the present invention, an actuator 40 is located beneath (or above) a display substrate 10 to provide motion in the z direction orthogonally to the surface of the display substrate 10 on which an array of light-emitting display pixels 20 are disposed. In some embodiments, a three-dimensional image can be represented by emitting light at different depth directions at different times.


In some embodiments, if actuators 40 are controlled by a display controller 30 to operate out of phase, a surface of a display substrate 10 can be oriented in different directions (tilted). In some embodiments, if display pixels 20 comprise light-emitting lasers, for example laser diodes, then light can be emitted in different directions, for example providing different images to different viewers or to the different eyes of a single viewer.


In some embodiments of the present invention, piezo actuators move a display substrate in a resonant mechanical mode in one or both of a horizontal plane parallel to or a vertical plane orthogonal to a surface of the display substrate on which an array of light-emitting display pixels are disposed. Resonant mechanical motion at resonant frequencies of a display substrate 10 can enable a reduced power and a higher frame rate of display substrate 20 motion. Furthermore, in some embodiments, a display substrate 10 is tilted by operating actuators 40 out of phase or by providing actuators 40 at only some of the sides or edges of a display substrate 10, the display substrate itself can vibrate, bending in response to actuator 40 mechanical impulse. Vibration can be mechanically resonant and can cause display pixels 20 to emit light in different directions over time, reducing brightness in one direction while increasing the volume of space into which light is emitted by the display pixels 20.


Referring to FIG. 12, in some embodiments of the present invention, a high-resolution display 99 comprises an optical structure 70 disposed in combination with an array of display pixels 20 so that light emitted by the display pixels 20 is optically processed by the optical structure 70 and piezo actuators 40 move the display substrate 10 relative to the optical structure 70. The optical structure 70 can have its own actuators 40 or not (as shown). An optical structure 70 can be any one or more of a variety of optical elements, for example a lenslet array having a lenslet 72 disposed on an optical substrate 76 and disposed in combination with each display pixel 20, as shown in FIG. 12. In some embodiments, as an actuator moves display pixels 20 relative to the lenslets 72, light 80 emitted from the display pixels 20 can be optically processed in different ways, for example refracted in different directions.


Referring to FIGS. 13A-13C, in some embodiments, an optical structure is a color-filter array 74 disposed on a transparent optical substrate 76. In some embodiments, for example, display pixels 20 can be single-emitter pixels that emit white light. As an actuator 40 moves a color-filter array 74 relative to the display pixels 20, white light emitted from the display pixels is successively processed by filtering the emitted white light with a red (FIG. 13A), green (FIG. 13B), and blue (FIG. 13C) color filter.


Referring to FIG. 14, in some embodiments, a plurality of display substrates 10 can be substantially transparent (within the limits of the materials and manufacturing processes, for example, greater than 50%, 60%, 70%, 80% or 90% transparent) and stacked to form a multi-layer high-resolution display 99. If the display substrates 10 are controlled by a display controller 30 to locate display pixels 20 in different layers at different locations, light from the different display pixels 20 can be emitted from each layer at the same time, providing a higher resolution and frame rate, and, if desired, a three-dimensional display. In some embodiments, for example in accordance with FIGS. 10 and 11, each layer can provide a three-dimensional image at successive times, and the combination of layers at the successive times forms a high-resolution three-dimensional display 99 with an increased depth.


In some embodiments, an actuator 40 never fully stops in a specific position but continues moving as image pixels are displayed. This will blur the displayed pixels but for such short times and distances that the effect is not noticeable.


In some embodiments, using a 2×2 dither pattern, an actuator 40 has a range of motion for moving a display substrate 10 of at least one half of a pixel separation distance D in size. In some embodiments, using a 3×3 dither pattern, an actuator 40 has a range of motion for moving a display substrate 10 of at least two thirds of a pixel separation distance D in size. In some embodiments, using a 4×4 dither pattern, an actuator 40 has a range of motion for moving a display substrate 10 of at least three quarters of a pixel separation distance D or at least the pixel separation distance D in size. In some embodiments, an actuator 40 moves a display substrate 10 a distance equal to a pixel separation distance D or a distance twice the pixel separation distance D (for example if three different single-color display pixels 20 are used).


In some embodiments, in which display pixels 20 include multiple sub-pixels, light-emitting sub-pixels are separated by a distance P that is less than or equal to one quarter of the separation distance. In some embodiments, this helps to avoid blur and ensure that sub-pixels are not moved to a location that overlaps a different sub-pixel in a different display pixel 20.


In some embodiments, as shown in FIG. 15, a high-resolution display 99 includes a head set 60 (for example a head-mounted display with a strap 62 and a visor 64) to which a display substrate 10 is mounted to make an augmented or virtual reality display. In some embodiments, at least a display substrate, an array of light-emitting display pixels, and at least one actuator are mounted to a head set. In some embodiments, a controller is also mounted to the headset. In some embodiments, a head set 60 includes two high-resolution displays 99, each comprising an array of light-emitting display pixels 20.


Micro-LEDs 50 used in high-resolution displays 99 can comprise semiconductor structures such as silicon, or semiconductor structures that are compound semiconductor structures, for example GaN. Different micro-LEDs 50 that emit different colors of light can be made using different semiconductors, such as different compound semiconductors. Micro-LEDs 50 can be inorganic LEDs and can include dielectric materials, for example silicon dioxide or nitride to protect the micro-LEDs 50 and provide tethers 52 (e.g., that can be fractured) for use in transfer printing (e.g., micro-transfer printing). Micro-LEDs 50 having various structures can be made using, for example, doped or undoped semiconductor materials and can be made using photolithographic techniques. A display pixel 20 can comprise one or more inorganic LEDs (iLED) such as micro-LEDs 50. In some embodiments, solid-state lasers (e.g., diode lasers such as micro diode lasers) are used as light emitters in a display pixel 20. It is understood that where reference is made to an LED in a display pixel 20, a comparably sized diode laser can be used in place of the LED or micro-LED. Micro-LEDs 50 can be relatively small, for example in embodiments each micro-LED 50 has at least one of a width from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm, a length from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm, and a height from 2 to 5 μm, 4 to 10 μm, 10 to 20 μm, or 20 to 50 μm. In some embodiments, micro-LEDs 50 are formed in substrates or on supports separate, distinct, and independent from a display substrate 10.


According to some embodiments of the present invention, display pixels 20 incorporate micro-elements, such as micro-inorganic-light-emitting diodes and micro-controllers (e.g., pixel controllers 24 as shown in FIG. 6) having micron-sized dimensions. In some embodiments, because such micro-elements are so small, they take very little space and have very little mass, such that actuators 40 can reliably and repeatably move a display substrate 10 to form images on a high-resolution display 99. In some embodiments, small size enables a small aperture ratio (fill factor) of a display substrate 10 and provides space for the different spatial locations between the display pixels 20. Small mass can enable rapid movement and high frame rates, thereby increasing temporal resolution and reducing image flicker. In some embodiments, small size and mass of micro-controllers in display pixels 20 also enables an active-matrix control structure for a high-resolution display 99, thereby improving brightness.


Methods of forming micro-transfer printable structures are described, for example, in the paper AMOLED Displays using Transfer-Printed Integrated Circuits (Journal of the Society for Information Display, 2011, DOI #10.1889/JSID19.4.335, 1071-0922/11/1904-0335, pages 335-341) and U.S. Pat. No. 8,889,485, referenced above. For a discussion of micro-transfer printing techniques see, U.S. Pat. Nos. 8,722,458, 7,622,367 and 8,506,867, the disclosure of each of which is hereby incorporated by reference in its entirety. Micro-transfer printing using compound micro-assembly structures and methods can also be used with the present invention, for example, as described in U.S. patent application Ser. No. 14/822,868, filed Aug. 10, 2015, entitled Compound Micro-Assembly Strategies and Devices, which is hereby incorporated by reference in its entirety. In some embodiments, a high-resolution display 99 (e.g., a display substrate 10 thereof) is a compound micro-assembled device. In some embodiments, display pixels 20 are micro-transfer printed onto a display substrate 10 [e.g., wherein the printed display pixels 20 comprise broken (e.g., fractured) tethers resulting from the micro-transfer printing process]. In some embodiments, light emitters such as micro-LEDs or laser diodes are micro-transfer printed onto a display substrate 10 [e.g., wherein the printed light emitters comprise broken (e.g., fractured) tethers resulting from the micro-transfer printing process]. In some embodiments, micro-controllers used in active matrix control of a pixel are micro-transfer printed onto a display substrate 10 [e.g., wherein printed micro-controllers comprise broken (e.g., fractured) tethers resulting from the micro-transfer printing process]. In some embodiments, components such as light emitters and, optionally, micro-controllers are micro-transfer printed onto an intermediate substrate in order to form a display pixel 20, and the display pixel 20 is then micro-transfer printed onto a display substrate. Additional details useful in some embodiments are described in U.S. patent application Ser. No. 14/743,981, filed Jun. 18, 2015, entitled Micro Assembled LED Displays and Lighting Elements, the disclosure of which is hereby incorporated by reference in its entirety.


As is understood by those skilled in the art, the terms “over”, “under”, “above”, “below”, “beneath”, and “on” are relative terms and can be interchanged in reference to different orientations of the layers, elements, and substrates included in the present invention. For example, a first layer on a second layer, in some embodiments means a first layer directly on and in contact with a second layer. In other embodiments, a first layer on a second layer can include another layer there between. Additionally, “on” can mean “on” or “in.”


Having described certain embodiments, it will now become apparent to one of skill in the art that other embodiments incorporating the concepts of the disclosure may be used. Therefore, the invention should not be limited to the described embodiments, but rather should be limited only by the spirit and scope of the following claims.


Throughout the description, where apparatus and systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are apparatus, and systems of the disclosed technology that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the disclosed technology that consist essentially of, or consist of, the recited processing steps.


It should be understood that the order of steps or order for performing certain action is immaterial so long as the disclosed technology remains operable. Moreover, two or more steps or actions in some circumstances can be conducted simultaneously. The invention has been described in detail with particular reference to certain embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.


PARTS LIST



  • D pixel separation distance

  • P sub-pixel separation distance

  • P00 position 00

  • P01 position 01

  • P10 position 10

  • P11 position 11

  • PA, PB, PC, PD, PE, PF, PG, PH display pixel position


  • 10 display substrate


  • 20 display pixel


  • 20R red pixel/sub-pixel


  • 20G green pixel/sub-pixel


  • 20B blue pixel/sub-pixel


  • 22 wires


  • 24 pixel controller


  • 30 display controller


  • 40 actuator


  • 50 inorganic micro-light-emitting diode


  • 52 tether


  • 60 headset


  • 62 strap


  • 64 visor


  • 70 optical structure


  • 72 lenslet


  • 74 color-filter array


  • 74R red color filter


  • 74G green color filter


  • 74B blue color filter


  • 76 optical substrate


  • 80 light


  • 99 high-resolution display


  • 400 providing display step


  • 402 initial emitting light step


  • 404 moving display step


  • 406 emitting light step


  • 408 determine progress in dither pattern step


  • 410 load new image step


Claims
  • 1. A high-resolution display, comprising: a display substrate;an array of light-emitting display pixels disposed on the display substrate;at least one actuator for physically moving the display substrate and the array of light-emitting display pixels to different physical locations in at least one dimension in a direction parallel to a surface of the display substrate;a controller for controlling the light-emitting operation of the display pixels and for controlling a spatial location of the display pixels; andwherein the controller controls the at least one actuator to interpolate the spatial location of the display pixels at successive times and controls the light-emitting operation of the display pixels to display a different subset of image pixels in an image at each successive time, wherein a total number of display pixels in the array of light-emitting display pixels is less than and evenly divides a total number of image pixels in the image in at least one dimension,wherein the light-emitting display pixels comprise inorganic micro-light-emitting diodes having at least one of a length, a width, and a thickness that is less than or equal to twenty microns, wherein each of the micro-light-emitting diodes comprises a semiconductor material and a dielectric material that protects the micro-light-emitting diode, and wherein each of the display pixels comprises two or more sub-pixels comprising at least one of the micro-light-emitting diodes, wherein each of the at least one of the micro-light-emitting diodes is a micro-transfer printed micro-light-emitting diode comprising a fractured or separated tether laterally extending from the dielectric material.
  • 2. The high-resolution display of claim 1, wherein the display pixels are color pixels comprising two or more light-emitting sub-pixels and the controller controls the sub-pixels to emit light of different colors.
  • 3. The high-resolution display of claim 1, wherein each spatial location of the display pixels that the controller controls the at least one actuator to move the display substrate to at a successive time of the successive times corresponds to a relative location of image pixels in the image displayed by the display pixels at the successive time.
  • 4. The high-resolution display of claim 1, wherein a total number of spatial locations the controller controls the at least one actuator to move to is the same as the total number of image pixels in the image.
  • 5. The high-resolution display of claim 1, wherein the spatial locations are interpolated in one dimension.
  • 6. The high resolution display of claim 1, wherein the spatial locations are interpolated in two directions.
  • 7. The high-resolution display of claim 6, wherein the two directions are two orthogonal directions.
  • 8. The high-resolution display of claim 1, wherein the spatial locations at successive times correspond to adjacent image pixels in the image.
  • 9. The high-resolution display of claim 1, wherein the controller controls the at least one actuator to move continuously along a dither pattern.
  • 10. The high-resolution display of claim 1, wherein each display pixel is separated from a neighboring pixel by a pixel separation distance and each of the at least one actuator has a range of motion for moving the display substrate that is at least equal to the pixel separation distance.
  • 11. The high-resolution display of claim 10, wherein each display pixel is a single-color display pixel and adjacent display pixels emit different single-colors of light.
  • 12. The high-resolution display of claim 1, comprising an actuator for physically moving the display substrate and the array of light-emitting display pixels in a direction orthogonal to a surface of the display substrate on which the array of light-emitting display pixels are disposed.
  • 13. The high-resolution display of claim 1, wherein the display substrate is substantially transparent and the high-resolution display comprises at least one additional display substrate each comprising an array of light-emitting display pixels disposed thereon and at least one actuator for physically moving the additional display substrate and the array of light-emitting display pixels disposed thereon to different spatial locations at least one dimension parallel to a surface of the display substrate, wherein the display substrate and the at least one additional display substrate form a stack of display substrates.
  • 14. The high-resolution display of claim 1, wherein each display pixel is separated from a neighboring display pixel by a pixel separation distance and each of the at least one actuator has a range of motion for moving the display substrate of at least one half of the pixel separation distance.
  • 15. The high-resolution display of claim 1, wherein each display pixel is separated from a neighboring pixel by a pixel separation distance, wherein the display pixels are color pixels comprising two or more light-emitting sub-pixels, and the two or more light-emitting sub-pixels in a color pixel are separated by a distance that is less than or equal to one quarter of the pixel separation distance.
  • 16. The high-resolution display of claim 1, wherein each light-emitting display pixel in the array of light-emitting display pixels comprises an active-matrix pixel controller.
  • 17. The high-resolution display of claim 1, wherein the at least one actuator is (i) one or more piezo actuators disposed to move the display substrate in one dimension; (ii) two or more piezo actuators disposed to move the display substrate in two dimensions; or (iii) three or more piezo actuators disposed to move the display substrate in three dimensions.
  • 18. The high-resolution display of claim 1, comprising an optical structure disposed over the array of display pixels such that light emitted by the display pixels is optically processed by the optical structure, wherein the at least one actuator is for moving the display substrate relative to the optical structure.
  • 19. The high-resolution display of claim 18, wherein the at least one actuator moves the display substrate in at least one of (i) at least a portion of a straight line segment, a curved line segment, a circle, a circular line segment, a sinusoidal line segment, a sine wave, and (ii) a resonant mechanical mode in one or both of a horizontal plane parallel and a vertical plane orthogonal to a surface of the display substrate on which the array of light-emitting display pixels are disposed.
  • 20. The high-resolution display of claim 1, comprising a head set, wherein at least the display substrate, the array of light-emitting display pixels, and the at least one actuator are mounted to the head set.
PRIORITY APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 62/420,529, filed Nov. 10, 2016, entitled “Spatially Dithered High-Resolution Display”, the disclosure of which is incorporated by reference herein in its entirety.

US Referenced Citations (376)
Number Name Date Kind
4746202 Perilloux et al. May 1988 A
5060027 Hart et al. Oct 1991 A
5550066 Tang et al. Aug 1996 A
5621555 Park Apr 1997 A
5625202 Chai Apr 1997 A
5748161 Lebby et al. May 1998 A
5815303 Berlin Sep 1998 A
5886401 Liu Mar 1999 A
5994722 Averbeck et al. Nov 1999 A
6025730 Akram et al. Feb 2000 A
6084579 Hirano Jul 2000 A
6087680 Gramann et al. Jul 2000 A
6142358 Cohn et al. Nov 2000 A
6143672 Ngo et al. Nov 2000 A
6169294 Biing-Jye et al. Jan 2001 B1
6184477 Tanahashi Feb 2001 B1
6278242 Cok et al. Aug 2001 B1
6288824 Kastalsky Sep 2001 B1
6340999 Masuda et al. Jan 2002 B1
6392340 Yoneda et al. May 2002 B2
6403985 Fan et al. Jun 2002 B1
6410942 Thibeault et al. Jun 2002 B1
6466281 Huang et al. Oct 2002 B1
6504180 Heremans et al. Jan 2003 B1
6552740 Wong et al. Apr 2003 B1
6574032 Roddy et al. Jun 2003 B1
6577367 Kim Jun 2003 B2
6650382 Sumida et al. Nov 2003 B1
6660457 Imai et al. Dec 2003 B1
6703780 Shiang et al. Mar 2004 B2
6717560 Cok et al. Apr 2004 B2
6756576 McElroy et al. Jun 2004 B1
6812637 Cok et al. Nov 2004 B2
6828724 Burroughes Dec 2004 B2
6933532 Arnold et al. Aug 2005 B2
6969624 Iwafuchi et al. Nov 2005 B2
6975369 Burkholder Dec 2005 B1
7009220 Oohata Mar 2006 B2
7012382 Cheang et al. Mar 2006 B2
7091523 Cok et al. Aug 2006 B2
7098589 Erchak et al. Aug 2006 B2
7127810 Kasuga et al. Oct 2006 B2
7129457 McElroy et al. Oct 2006 B2
7195733 Rogers et al. Mar 2007 B2
7259391 Liu et al. Aug 2007 B2
7288753 Cok Oct 2007 B2
7402951 Cok Jul 2008 B2
7417648 Credelle Aug 2008 B2
7420221 Nagai Sep 2008 B2
7466075 Cok et al. Dec 2008 B2
7521292 Rogers et al. Apr 2009 B2
7557367 Rogers et al. Jul 2009 B2
7586497 Boroson et al. Sep 2009 B2
7605053 Couillard et al. Oct 2009 B2
7614757 Nesterenko et al. Nov 2009 B2
7622367 Nuzzo et al. Nov 2009 B1
7629955 Asao et al. Dec 2009 B2
7662545 Nuzzo et al. Feb 2010 B2
7687812 Louwsma et al. Mar 2010 B2
7704684 Rogers et al. Apr 2010 B2
7791271 Cok et al. Sep 2010 B2
7799699 Nuzzo et al. Sep 2010 B2
7816856 Cok et al. Oct 2010 B2
7834541 Cok Nov 2010 B2
7872722 Kimura Jan 2011 B2
7893612 Cok Feb 2011 B2
7898734 Coleman et al. Mar 2011 B2
7919342 Cok Apr 2011 B2
7927976 Menard Apr 2011 B2
7932123 Rogers et al. Apr 2011 B2
7943491 Nuzzo et al. May 2011 B2
7948172 Cok et al. May 2011 B2
7969085 Cok Jun 2011 B2
7972875 Rogers et al. Jul 2011 B2
7982296 Nuzzo et al. Jul 2011 B2
7990058 Cok et al. Aug 2011 B2
7999454 Winters et al. Aug 2011 B2
8004758 Coleman et al. Aug 2011 B2
8029139 Ellinger et al. Oct 2011 B2
8039847 Nuzzo et al. Oct 2011 B2
8058663 Fan et al. Nov 2011 B2
8179401 Ishii May 2012 B2
8198621 Rogers et al. Jun 2012 B2
8207547 Lin Jun 2012 B2
8243027 Hotelling et al. Aug 2012 B2
8261660 Menard Sep 2012 B2
8288843 Kojima et al. Oct 2012 B2
8334545 Levermore et al. Dec 2012 B2
8394706 Nuzzo et al. Mar 2013 B2
8440546 Nuzzo et al. May 2013 B2
8450927 Lenk et al. May 2013 B2
8470701 Rogers et al. Jun 2013 B2
8502192 Kwak et al. Aug 2013 B2
8506867 Menard Aug 2013 B2
8536584 Yao Sep 2013 B2
8581827 Park et al. Nov 2013 B2
8596846 Yankov et al. Dec 2013 B2
8599118 Cok Dec 2013 B2
8619011 Kimura Dec 2013 B2
8664699 Nuzzo et al. Mar 2014 B2
8686447 Tomoda et al. Apr 2014 B2
8722458 Rogers et al. May 2014 B2
8735932 Kim et al. May 2014 B2
8754396 Rogers et al. Jun 2014 B2
8766970 Chien et al. Jul 2014 B2
8791474 Bibl et al. Jul 2014 B1
8794501 Bibl et al. Aug 2014 B2
8803857 Cok Aug 2014 B2
8817369 Daiku Aug 2014 B2
8829663 Pohl et al. Sep 2014 B2
8835940 Hu et al. Sep 2014 B2
8836624 Roberts et al. Sep 2014 B2
8854294 Sakariya Oct 2014 B2
8860051 Fellows et al. Oct 2014 B2
8877648 Bower et al. Nov 2014 B2
8884844 Yang et al. Nov 2014 B2
8889485 Bower Nov 2014 B2
8895406 Rogers et al. Nov 2014 B2
8896505 Cok et al. Nov 2014 B2
8901578 Kobayakawa et al. Dec 2014 B2
8902152 Bai et al. Dec 2014 B2
8912020 Bedell et al. Dec 2014 B2
8946760 Kim Feb 2015 B2
8987765 Bibl et al. Mar 2015 B2
9022632 Kim et al. May 2015 B2
9048449 Kim et al. Jun 2015 B2
9105714 Hu et al. Aug 2015 B2
9105813 Chang Aug 2015 B1
9153171 Sakariya et al. Oct 2015 B2
9161448 Menard et al. Oct 2015 B2
9178123 Sakariya et al. Nov 2015 B2
9202996 Orsley et al. Dec 2015 B2
9226361 Toth Dec 2015 B2
9277618 Odnoblyudov et al. Mar 2016 B2
9293422 Parsa et al. Mar 2016 B1
9308649 Golda et al. Apr 2016 B2
9329430 Erinjippurath et al. May 2016 B2
9343042 Miller et al. May 2016 B2
9358775 Bower et al. Jun 2016 B2
9362348 Lowenthal et al. Jun 2016 B2
9368683 Meitl et al. Jun 2016 B1
9412977 Rohatgi Aug 2016 B2
9437782 Bower et al. Sep 2016 B2
9444015 Bower et al. Sep 2016 B2
9520537 Bower et al. Dec 2016 B2
9537069 Bower et al. Jan 2017 B1
9601356 Bower et al. Mar 2017 B2
9626908 Sakariya et al. Apr 2017 B2
9640715 Bower et al. May 2017 B2
9698308 Bower et al. Jul 2017 B2
9705042 Bower et al. Jul 2017 B2
9716082 Bower et al. Jul 2017 B2
9741785 Bower et al. Aug 2017 B2
9818725 Bower et al. Nov 2017 B2
9847047 Wu et al. Dec 2017 B2
9860955 Kim et al. Jan 2018 B2
9871345 Bower et al. Jan 2018 B2
9929053 Bower et al. Mar 2018 B2
9980341 Bower et al. May 2018 B2
9997501 Bower et al. Jun 2018 B2
10066819 Cok Sep 2018 B2
10078239 Sugita et al. Sep 2018 B2
20010022564 Youngquist et al. Sep 2001 A1
20020096994 Iwafuchi et al. Jul 2002 A1
20040080483 Chosa Apr 2004 A1
20040135160 Cok Jul 2004 A1
20040180476 Kazlas et al. Sep 2004 A1
20040212296 Nakamura et al. Oct 2004 A1
20040227704 Wang et al. Nov 2004 A1
20040252933 Sylvester et al. Dec 2004 A1
20050006657 Terashita Jan 2005 A1
20050012076 Morioka Jan 2005 A1
20050116621 Bellmann et al. Jun 2005 A1
20050140275 Park Jun 2005 A1
20050168987 Tamaoki et al. Aug 2005 A1
20050202595 Yonehara et al. Sep 2005 A1
20050264472 Rast Dec 2005 A1
20050275615 Kahen et al. Dec 2005 A1
20050285246 Haba et al. Dec 2005 A1
20060051900 Shizuno Mar 2006 A1
20060063309 Sugiyama et al. Mar 2006 A1
20060246811 Winters et al. Nov 2006 A1
20060273862 Shimmura Dec 2006 A1
20060289972 Nishimura et al. Dec 2006 A1
20070035340 Kimura Feb 2007 A1
20070077349 Newman et al. Apr 2007 A1
20070182809 Yarid et al. Aug 2007 A1
20070201056 Cok et al. Aug 2007 A1
20080108171 Rogers et al. May 2008 A1
20080211734 Huitema et al. Sep 2008 A1
20080296717 Beroz et al. Dec 2008 A1
20090045420 Eng et al. Feb 2009 A1
20090140630 Kijima et al. Jun 2009 A1
20090146921 Takahashi Jun 2009 A1
20090278142 Watanabe et al. Nov 2009 A1
20090295706 Feng Dec 2009 A1
20090315054 Kim et al. Dec 2009 A1
20100038655 Chen et al. Feb 2010 A1
20100060553 Zimmerman et al. Mar 2010 A1
20100078670 Kim et al. Apr 2010 A1
20100123134 Nagata May 2010 A1
20100123268 Menard May 2010 A1
20100148198 Sugizaki et al. Jun 2010 A1
20100149117 Chien et al. Jun 2010 A1
20100186883 Tomoda Jul 2010 A1
20100190293 Maeda et al. Jul 2010 A1
20100201253 Cok et al. Aug 2010 A1
20100207852 Cok Aug 2010 A1
20100214245 Hirota Aug 2010 A1
20100214247 Tang et al. Aug 2010 A1
20100248484 Bower et al. Sep 2010 A1
20100258710 Wiese et al. Oct 2010 A1
20100270912 Ko Oct 2010 A1
20100289115 Akiyama et al. Nov 2010 A1
20100317132 Rogers et al. Dec 2010 A1
20100321414 Muroi et al. Dec 2010 A1
20100328268 Teranishi et al. Dec 2010 A1
20110032277 Lee et al. Feb 2011 A1
20110043435 Hebenstreit et al. Feb 2011 A1
20110069013 Rabenstein et al. Mar 2011 A1
20110108800 Pan May 2011 A1
20110120678 Palm May 2011 A1
20110205448 Takata Aug 2011 A1
20110211348 Kim Sep 2011 A1
20110242027 Chang Oct 2011 A1
20110309378 Lau et al. Dec 2011 A1
20120018745 Liu et al. Jan 2012 A1
20120049222 Yoshizumi et al. Mar 2012 A1
20120056835 Choo et al. Mar 2012 A1
20120062135 Tamaki et al. Mar 2012 A1
20120105518 Kang et al. May 2012 A1
20120119249 Kim et al. May 2012 A1
20120126229 Bower May 2012 A1
20120141799 Kub et al. Jun 2012 A1
20120193652 Horng et al. Aug 2012 A1
20120206428 Cok Aug 2012 A1
20120206499 Cok Aug 2012 A1
20120212465 White et al. Aug 2012 A1
20120223636 Shin et al. Sep 2012 A1
20120223875 Lau et al. Sep 2012 A1
20120228669 Bower et al. Sep 2012 A1
20120236022 Homma et al. Sep 2012 A1
20120256163 Yoon et al. Oct 2012 A1
20120274669 Neal Nov 2012 A1
20120281028 Orlick et al. Nov 2012 A1
20120314388 Bower et al. Dec 2012 A1
20120320566 Namekata Dec 2012 A1
20120320581 Rogers et al. Dec 2012 A1
20130006524 Sasaki et al. Jan 2013 A1
20130010405 Rothkopf et al. Jan 2013 A1
20130015483 Shimokawa et al. Jan 2013 A1
20130016494 Speier et al. Jan 2013 A1
20130036928 Rogers et al. Feb 2013 A1
20130069275 Menard et al. Mar 2013 A1
20130088416 Smith et al. Apr 2013 A1
20130128585 Bibl et al. May 2013 A1
20130153277 Menard et al. Jun 2013 A1
20130153934 Meitl et al. Jun 2013 A1
20130161667 Chen et al. Jun 2013 A1
20130196474 Meitl et al. Aug 2013 A1
20130207964 Fleck et al. Aug 2013 A1
20130221355 Bower et al. Aug 2013 A1
20130248889 Lin Sep 2013 A1
20130257264 Tamaki et al. Oct 2013 A1
20130273695 Menard et al. Oct 2013 A1
20130278513 Jang Oct 2013 A1
20140014960 Yamazaki et al. Jan 2014 A1
20140027709 Higginson et al. Jan 2014 A1
20140082934 Cok Mar 2014 A1
20140084482 Hu et al. Mar 2014 A1
20140085214 Cok Mar 2014 A1
20140094878 Gossler et al. Apr 2014 A1
20140104157 Burns et al. Apr 2014 A1
20140104243 Sakariya et al. Apr 2014 A1
20140111442 Cok et al. Apr 2014 A1
20140146273 Kim et al. May 2014 A1
20140159043 Sakariya et al. Jun 2014 A1
20140159065 Hu et al. Jun 2014 A1
20140175498 Lai Jun 2014 A1
20140183446 Nago et al. Jul 2014 A1
20140192079 Lee et al. Jul 2014 A1
20140197509 Haddad et al. Jul 2014 A1
20140198373 Ray Jul 2014 A1
20140217448 Kim et al. Aug 2014 A1
20140231839 Jeon et al. Aug 2014 A1
20140231851 Tsai et al. Aug 2014 A1
20140240617 Fukutome et al. Aug 2014 A1
20140264763 Meitl et al. Sep 2014 A1
20140267683 Bibl et al. Sep 2014 A1
20140306248 Ahn et al. Oct 2014 A1
20140319486 Hong Oct 2014 A1
20140339495 Bibl et al. Nov 2014 A1
20140340900 Bathurst et al. Nov 2014 A1
20140367633 Bibl et al. Dec 2014 A1
20140367705 Bibl et al. Dec 2014 A1
20150003040 Bessho et al. Jan 2015 A1
20150015517 Zhao Jan 2015 A1
20150021632 Taghizadeh et al. Jan 2015 A1
20150135525 Bower May 2015 A1
20150137153 Bibl et al. May 2015 A1
20150169011 Bibl et al. Jun 2015 A1
20150170602 Kang Jun 2015 A1
20150179453 Cheng et al. Jun 2015 A1
20150255438 Oraw et al. Sep 2015 A1
20150263066 Hu et al. Sep 2015 A1
20150280066 Fujimura et al. Oct 2015 A1
20150280089 Obata et al. Oct 2015 A1
20150296580 Kim et al. Oct 2015 A1
20150308634 van de Ven et al. Oct 2015 A1
20150318328 Bibl et al. Nov 2015 A1
20150327388 Menard et al. Nov 2015 A1
20150362165 Chu et al. Dec 2015 A1
20150370130 Lin Dec 2015 A1
20150371585 Bower et al. Dec 2015 A1
20150371974 Bower et al. Dec 2015 A1
20150372051 Bower et al. Dec 2015 A1
20150372052 Bower et al. Dec 2015 A1
20150372053 Bower et al. Dec 2015 A1
20150372187 Bower et al. Dec 2015 A1
20150373793 Bower et al. Dec 2015 A1
20160004123 Tanabe Jan 2016 A1
20160005721 Bower et al. Jan 2016 A1
20160018094 Bower et al. Jan 2016 A1
20160056725 Kim et al. Feb 2016 A1
20160057822 Chu Feb 2016 A1
20160057827 Miskin Feb 2016 A1
20160057832 Briggs et al. Feb 2016 A1
20160064363 Bower et al. Mar 2016 A1
20160085120 Xu Mar 2016 A1
20160093600 Bower et al. Mar 2016 A1
20160103547 Lu et al. Apr 2016 A1
20160131329 Park et al. May 2016 A1
20160163765 Hu Jun 2016 A1
20160260388 Yata et al. Sep 2016 A1
20160266697 Cheng et al. Sep 2016 A1
20160343772 Bower et al. Nov 2016 A1
20160351539 Bower et al. Dec 2016 A1
20160364030 Peana et al. Dec 2016 A1
20160370855 Lanier Dec 2016 A1
20170005244 Bower et al. Jan 2017 A1
20170025075 Cok et al. Jan 2017 A1
20170025484 Forrest et al. Jan 2017 A1
20170047393 Bower et al. Feb 2017 A1
20170048976 Prevatte et al. Feb 2017 A1
20170061842 Cok et al. Mar 2017 A1
20170068362 Den Boer et al. Mar 2017 A1
20170092863 Bower et al. Mar 2017 A1
20170102797 Cok Apr 2017 A1
20170122502 Cok et al. May 2017 A1
20170133818 Cok May 2017 A1
20170167703 Cok Jun 2017 A1
20170186740 Cok et al. Jun 2017 A1
20170187976 Cok Jun 2017 A1
20170206845 Sakariya et al. Jul 2017 A1
20170221266 Schubert Aug 2017 A1
20170250167 Bower et al. Aug 2017 A1
20170250219 Bower et al. Aug 2017 A1
20170256521 Cok et al. Sep 2017 A1
20170256522 Cok et al. Sep 2017 A1
20170287882 Cok et al. Oct 2017 A1
20170338374 Zou et al. Nov 2017 A1
20170352646 Bower et al. Dec 2017 A1
20170352647 Raymond et al. Dec 2017 A1
20170357127 Cok et al. Dec 2017 A1
20170358717 Cok et al. Dec 2017 A1
20180033853 Bower et al. Feb 2018 A1
20180041005 Bower et al. Feb 2018 A1
20180084614 Bower et al. Mar 2018 A1
20180119931 Bower et al. May 2018 A1
20180174932 Cok et al. Jun 2018 A1
20180197471 Rotzoll et al. Jul 2018 A1
20180211945 Cok et al. Jul 2018 A1
20180226386 Cok Aug 2018 A1
20180277525 Cok et al. Sep 2018 A1
20180323180 Cok Nov 2018 A1
20180340681 Cok Nov 2018 A1
Foreign Referenced Citations (30)
Number Date Country
103677427 Mar 2014 CN
1662301 May 2006 EP
2078978 Jul 2009 EP
2148264 Jan 2010 EP
2 610 314 Jul 2013 EP
2703969 Mar 2014 EP
2 496 183 May 2013 GB
11-142878 May 1999 JP
2002-261335 Sep 2002 JP
2010-103186 May 2010 JP
2013-221965 Oct 2013 JP
WO-2006027730 Mar 2006 WO
WO-2006099741 Sep 2006 WO
WO-2008103931 Aug 2008 WO
WO-2010032603 Mar 2010 WO
WO-2010111601 Sep 2010 WO
WO-2010132552 Nov 2010 WO
WO-2013011415 Jan 2013 WO
WO-2013064800 May 2013 WO
WO-2013165124 Nov 2013 WO
WO-2014121635 Aug 2014 WO
WO-2014149864 Sep 2014 WO
WO-2015088629 Jun 2015 WO
WO-2015193434 Dec 2015 WO
WO-2016030422 Mar 2016 WO
WO-2016046283 Mar 2016 WO
WO-2017042252 Mar 2017 WO
WO-2017060487 Apr 2017 WO
WO-2017149067 Sep 2017 WO
WO-2017174632 Oct 2017 WO
Non-Patent Literature Citations (25)
Entry
Cok, R. S. et al., Inorganic light-emitting diode displays using micro-transfer printing, Journal of the SID, 25(10):589-609, (2017).
Choi, H. W. et al., Efficient GaN-based Micro-LED Arrays, Mat. Res. Soc. Symp. Proc. 743:L6.28.1-L6.28.6 (2003).
Cok, R. S. et al., AMOLED displays with transfer-printed integrated circuits, Journal of SID 19/(4):335-341(2011).
Hamer et al., 63.2: AMOLED Displays Using Transfer-Printed Integrated Circuits, SID 09 Digest, 40(2):947-950 (2009).
Johnson, K. et al., Advances in Red VCSEL Technology, Advances in Optical Technologies, 2012:569379, 13 pages (2012).
Kasahara, D. et al, Nichia reports first room-temperature blue/‘green’ VCSELs with current injection, Appl. Phys. Express, 4(7):3 pages (2011).
Koma, N. et al., 44.2: Novel Front-light System Using Fine-pitch Patterned OLED, SID, 08:655-658 (2008).
Lee, S. H. etal, Laser Lift-Offof GaN Thin Film and its Application to the Flexible Light Emitting Diodes, Proc. of SPIE 8460:846011-1-846011-6 (2012).
Matioli, E. et al., High-brightness polarized light-emitting diodes, Light: Science & Applications, 1:e22:1-7 (2012).
Poher, V. et al., Micro-LED arrays: a tool for two-dimensional neuron stimulation, J. Phys. D: Appl. Phys. 41:094014 (2008).
Roscher, H., VCSEL Arrays with Redundant Pixel Designs for 10Gbits/s 2-D Space-Parallel MMF Transmission, Annual Report, optoelectronics Department, (2005).
Seurin, J.F. et al, High-power red VCSEL arrays, Proc. of SPIE 8639:1-9 (2013).
Yaniv et al., A 640 x 480 Pixel Computer Display Using Pin Diodes with Device Redundancy, 1988 International Display Research Conference, IEEE, CH-2678-1/88:152-154 (1988).
Yoon, J. et al., Heterogeneously Integrated Optoelectronic Devices Enabled by MicroTransfer Printing, Adv. Optical Mater. 3:1313-1335 (2015).
Bower, C. A. et al., Transfer Printing: An Approach for Massively Parallel Assembly of Microscale Devices, IEE, Electronic Components and Technology Conference, (2008).
Cok, R. S. et al., 60.3: AMOLED Displays Using Transfer-Printed Integrated Circuits, Society for Information Display, 10:902-904, (2010).
Feng, X. et al., Competing Fracture in Kinetically Controlled Transfer Printing, Langmuir, 23(25):12555-12560, (2007).
Gent, A.N., Adhesion and Strength of Viscoelastic Solids. Is There a Relationship between Adhesion and Bulk Properties?, American Chemical Society, Langmuir, 12(19):4492-4496, (1996).
Kim, Dae-Hyeong et al., Optimized Structural Designs for Stretchable Silicon Integrated Circuits, Small, 5(24):2841-2847, (2009).
Kim, Dae-Hyeong et al., Stretchable and Foldable Silicon Integrated Circuits, Science, 320:507-511, (2008).
Kim, S. et al., Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing, PNAS, 107(40):17095-17100, (2010).
Kim, T. et al., Kinetically controlled, adhesiveless transfer printing using microstructured stamps, Applied Physics Letters, 94(11):113502-1-113502-3, (2009).
Meitl, M. A. et al., Transfer printing by kinetic control of adhesion to an elastomeric stamp, Nature Material, 5:33-38, (2006).
Michel, B. et al., Printing meets lithography: Soft approaches to high-resolution patterning, J. Res. & Dev. 45(5):697-708, (2001).
Trindade, A.J. et al., Precision transfer printing of ultra-thin AlInGaN micron-size light-emitting diodes, Crown, pp. 217-218, (2012).
Related Publications (1)
Number Date Country
20180130400 A1 May 2018 US
Provisional Applications (1)
Number Date Country
62420529 Nov 2016 US