The disclosure pertains to fiber optic beam delivery systems and fibers for use in such systems.
Optical fibers permit convenient delivery of optical beams in a variety of applications. The flexibility of optical fibers enables access to difficult locations, and fiber optic connectors permit fiber replacement without complex optical system realignments that are especially challenging in installed equipment. Optical fibers are inexpensive, and many different fiber designs are commercially available.
Optical fiber-based beam delivery systems tend to produce output beam variations such an unstable beam size, divergence angle, beam position, or beam power.
In many applications, output power from an optical fiber must be focused to a particular diameter at a particular location with a particular beam divergence. Variation in diameter, power, or position can result in unacceptable power losses or power variations. In high power applications, such variability can result in optically induced damage to one or more optical components. For these reasons, improved beam delivery methods and apparatus are needed.
Optical fibers are configured to provide reduced variation in output beam spot size in response to offset errors at a fiber input surface. In some examples, optical fibers comprise a core having a refractive index that decreases from a maximum value at a core radial coordinate rmax to a core center and to a core radius rcore, and a cladding is situated about the core. A refractive index difference associated with the radial coordinate rmax and the core center is less than about 0.01, and rmax is between 0.25 rcore and 0.75 rcore. In typical examples, a refractive index difference associated with the radial coordinate rmax and the core center is less than about 0.007, and rmax is between 0.5 rcore and 0.65 rcore. According to some examples, the refractive index difference associated with the radial coordinate rmax and the core center is less than about 0.005, and the core radius is between 12.5 μm and 500 μm or between 150 μm and 250 μm. In other embodiments, an absolute value of a refractive index gradient at a core/cladding interface is greater than 0.05/rcore or 0.2/rcore. In yet other examples, a refractive index in a central core cross sectional area having a radius of at least ¼ or ½ of the core radius is less than a maximum core refractive index.
Solid optical waveguides comprise a core and a cladding surrounding the core, wherein a core refractive index decreases non-monotonically from a core center to a core/cladding interface. In some examples, the core has a rectangular cross section having a length to width ratio of between 1 and 5. In representative examples, the core refractive index decreases non-monotonically from the core center to the core/cladding interface along a direction parallel to a length or width of the rectangular cross section. In some examples, a total variation in core refractive index is less than 0.05. In some examples, the core and cladding are silica, and the core refractive index decreases monotonically from a core center to a maximum at between 0.5 and 0.75 times a width or length of the rectangular cross-section. In other examples, the core refractive index decreases non-monotonically from the core center to a core/cladding interface so as to form a spot-stabilized waveguide with respect to input beam displacements along at least one axis.
Diode pumped solid state lasers comprise a pump laser array configured to produce a pump beam and a spot-stabilized fiber configured to receive the pump beam and direct the pump beam to a solid state laser material. According to some examples, a beam shaping optical system is configured to receive the pump beam from the spot-stabilized fiber and direct the shaped pump beam to the solid state laser material. In further examples, at least one fiber optic connector is configured to retain the spot-stabilized fiber so as to receive the pump beam or couple the pump beam to the beam shaping optical system. In still further examples, the spot-stabilized fiber has a core diameter of 125 μm to 500 μm, and a refractive index difference associated with a radial coordinate rmax and the core center is less than about 0.01, and rmax is between 0.25 rcore and 0.75 rcore, wherein rcore is a core radius. In other examples, the spot-stabilized fiber has a cladding surrounding a core, and a core refractive index decreases non-monotonically from a core center to a core/cladding interface.
The foregoing and other objects, features, and advantages of the disclosed technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The following disclosure is presented in the context of representative embodiments that are not to be construed as being limiting in any way. This disclosure is directed toward all novel and non-obvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The disclosed methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Although the operations of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement of the operations, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed systems, methods, and apparatus can be used in conjunction with other things and methods.
This disclosure sometimes uses terms like “produce,” “generate,” “select,” “receive,” “exhibit,” and “provide” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.
The singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. The term “includes” means “comprises.” Unless the context dictates otherwise, the term “coupled” means mechanically, electrically, or electromagnetically connected or linked and includes both direct connections or direct links and indirect connections or indirect links through one or more intermediate elements not affecting the intended operation of the described system.
Certain terms may be used such as “up,” “down,” “upper,” “lower,” and the like. These terms are used, where applicable, to provide some clarity of description when dealing with relative relationships. But, these terms are not intended to imply absolute relationships, positions, and/or orientations.
The term “or” refers to a single element of stated alternative elements or a combination of two or more elements, unless the context clearly indicates otherwise.
Unless explained otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described below. The materials, methods, and examples are illustrative only and not intended to be limiting. Other features of the disclosure are apparent from the following detailed description and the claims.
Unless otherwise indicated, all numbers expressing quantities of components, percentages, temperatures, times, and so forth, as used in the specification or claims are to be understood as being modified by the term “about” or “approximately.” Accordingly, unless otherwise indicated, implicitly or explicitly, the numerical parameters set forth are approximations that may depend on the desired properties sought and/or limits of detection under standard test conditions/methods. When directly and explicitly distinguishing embodiments from discussed prior art, the embodiment numbers are not approximates unless the word “about” is recited.
Disclosed herein are fiber beam delivery systems based on spot-stabilized fibers in which beam shape and size at a fiber output tend to be more stable than designs such as shown in
Representative refractive index profiles (DB001-DG003) for spot-stabilized fibers having 400 μm core diameters are illustrated in
The refractive index profiles of
As shown in
For convenient assembly and service, the spot-stabilized fiber 504 is coupled to the laser diode pump array 502 and the lens 508 with fiber optic connectors 512, 514. With fiber designs other than spot-stabilized designs, pump power coupling can vary unacceptably with fiber replacement, and fiber connectors generally do not provide acceptably repeatable coupling. In addition, some portions of a high power, miscoupled pump beam can produce damage in one or more components. Typical spot-stabilized fibers for use in the DPSSL 500 have core diameters that range from 25 μm to 1 mm, and a 400 μm core diameter is typical. Fiber length can be selected as convenient, but typically is less than 10 m.
In other examples, solid waveguides having other cross sections can be used, such as rectangular, ovoid, elliptical, or polygonal. Refractive index variations such as shown in
In view of the many possible embodiments to which the principles of the disclosure may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. We therefore claim as our invention all that comes within the scope and spirit of the appended claims.
This application claims the benefit of U.S. Provisional Patent Application 61/747,812, filed Dec. 31, 2012, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3505046 | Phaneuf | Apr 1970 | A |
4046537 | Deserno et al. | Sep 1977 | A |
4072399 | Love | Feb 1978 | A |
4087159 | Ulrich | May 1978 | A |
4179185 | Hawk | Dec 1979 | A |
4773924 | Berkey | Sep 1988 | A |
4818062 | Scifres et al. | Apr 1989 | A |
4871487 | Laursen | Oct 1989 | A |
5011251 | Miller et al. | Apr 1991 | A |
5017206 | Miller et al. | May 1991 | A |
5153932 | Blyler, Jr. et al. | Oct 1992 | A |
5239176 | Stevenson | Aug 1993 | A |
5259046 | DiGiovanni et al. | Nov 1993 | A |
5295210 | Nolan et al. | Mar 1994 | A |
5295211 | Weidman | Mar 1994 | A |
5305414 | Higby et al. | Apr 1994 | A |
5408554 | Cryan et al. | Apr 1995 | A |
5448673 | Murphy et al. | Sep 1995 | A |
5461692 | Nagel | Oct 1995 | A |
5568318 | Leger et al. | Oct 1996 | A |
5579422 | Head et al. | Nov 1996 | A |
5629997 | Hardy | May 1997 | A |
5664037 | Weidman | Sep 1997 | A |
5668903 | Neuberger et al. | Sep 1997 | A |
5715270 | Zediker | Feb 1998 | A |
5729643 | Hmelar et al. | Mar 1998 | A |
5734766 | Flint | Mar 1998 | A |
5745284 | Goldberg et al. | Apr 1998 | A |
5818630 | Fermann et al. | Oct 1998 | A |
5825803 | Labranche | Oct 1998 | A |
5864644 | DiGiovanni et al. | Jan 1999 | A |
5867305 | Waarts et al. | Feb 1999 | A |
5873923 | DiGiovanni | Feb 1999 | A |
5887097 | Henry et al. | Mar 1999 | A |
5935288 | DiGiovanni et al. | Aug 1999 | A |
5949932 | Lawrenz-Stolz | Sep 1999 | A |
6031953 | Rekow et al. | Feb 2000 | A |
6044096 | Wolak et al. | Mar 2000 | A |
6078716 | Huang et al. | Jun 2000 | A |
6101199 | Wang et al. | Aug 2000 | A |
6134362 | Au-Yeung et al. | Oct 2000 | A |
6198858 | Pan et al. | Mar 2001 | B1 |
6272268 | Miller et al. | Aug 2001 | B1 |
6278816 | Keur et al. | Aug 2001 | B1 |
6292608 | Toh | Sep 2001 | B1 |
6373868 | Zhang | Apr 2002 | B1 |
6385371 | Li | May 2002 | B1 |
6397636 | DiGiovanni et al. | Jun 2002 | B1 |
6404954 | Zhu et al. | Jun 2002 | B1 |
6421489 | Berkey et al. | Jul 2002 | B1 |
6434295 | MacCormack et al. | Aug 2002 | B1 |
6434302 | Fidric et al. | Aug 2002 | B1 |
6477295 | Lang et al. | Nov 2002 | B1 |
6496301 | Koplow et al. | Dec 2002 | B1 |
6516124 | Po | Feb 2003 | B2 |
6532244 | Dewey et al. | Mar 2003 | B1 |
6608951 | Goldberg et al. | Aug 2003 | B1 |
6666590 | Brosnan | Dec 2003 | B2 |
6668112 | Kaneda | Dec 2003 | B1 |
6700709 | Fermann | Mar 2004 | B1 |
6731837 | Goldberg et al. | May 2004 | B2 |
6778732 | Fermann | Aug 2004 | B1 |
6816652 | Lin et al. | Nov 2004 | B1 |
6868236 | Wiltsey et al. | Mar 2005 | B2 |
6907163 | Lewis | Jun 2005 | B2 |
6956876 | Aquaro et al. | Oct 2005 | B1 |
6970624 | DiGiovanni et al. | Nov 2005 | B2 |
6990278 | Vakili et al. | Jan 2006 | B2 |
7016573 | Dong et al. | Mar 2006 | B2 |
7046432 | Starodoumov | May 2006 | B2 |
7046875 | Gonthier et al. | May 2006 | B2 |
7209615 | Fishteyn | Apr 2007 | B2 |
7221822 | Grudinin et al. | May 2007 | B2 |
7236671 | Rasmussen | Jun 2007 | B2 |
7272956 | Anikitchev et al. | Sep 2007 | B1 |
7327920 | Dong et al. | Feb 2008 | B2 |
7336872 | Malo | Feb 2008 | B1 |
7343074 | Gallagher et al. | Mar 2008 | B1 |
7420996 | Schulte et al. | Sep 2008 | B2 |
7436868 | Schulte et al. | Oct 2008 | B2 |
7437046 | DiGiovanni et al. | Oct 2008 | B2 |
7443895 | Schulte et al. | Oct 2008 | B2 |
7526165 | Nielsen et al. | Apr 2009 | B2 |
7532792 | Skovaard et al. | May 2009 | B2 |
7539377 | Gonthier | May 2009 | B2 |
7561769 | Fujimoto et al. | Jul 2009 | B2 |
7574087 | Inoue et al. | Aug 2009 | B2 |
7586963 | Schulte et al. | Sep 2009 | B2 |
7606452 | Bilodeau et al. | Oct 2009 | B2 |
7637126 | Koeppler et al. | Dec 2009 | B2 |
7729574 | Moriarty | Jun 2010 | B2 |
7746545 | Okuno | Jun 2010 | B2 |
7760978 | DiGiovanni et al. | Jul 2010 | B2 |
7787733 | DiGiovanni et al. | Aug 2010 | B2 |
7957432 | Seo et al. | Jun 2011 | B2 |
7991255 | Salokative | Aug 2011 | B2 |
8068705 | Gapontsev et al. | Nov 2011 | B2 |
8213070 | Koplow | Jul 2012 | B2 |
8248688 | Baird et al. | Aug 2012 | B2 |
8346038 | Gonthier | Jan 2013 | B2 |
8433168 | Filippov et al. | Apr 2013 | B2 |
RE44262 | Gonthier et al. | Jun 2013 | E |
8457456 | Kopp et al. | Jun 2013 | B2 |
8472765 | Holland et al. | Jun 2013 | B2 |
8483533 | Mehl | Jul 2013 | B1 |
8498046 | Dong et al. | Jul 2013 | B2 |
8711471 | Liu et al. | Apr 2014 | B2 |
20020172486 | Fermann | Nov 2002 | A1 |
20030021530 | Li | Jan 2003 | A1 |
20030031442 | Siegman | Feb 2003 | A1 |
20040228593 | Sun et al. | Nov 2004 | A1 |
20050008044 | Fermann et al. | Jan 2005 | A1 |
20050041702 | Fermann et al. | Feb 2005 | A1 |
20050226286 | Liu et al. | Oct 2005 | A1 |
20050265653 | Cai et al. | Dec 2005 | A1 |
20050265678 | Manyam et al. | Dec 2005 | A1 |
20050276556 | Williams et al. | Dec 2005 | A1 |
20060215976 | Singh et al. | Sep 2006 | A1 |
20070062222 | Janka et al. | Mar 2007 | A1 |
20070086501 | Karlsen | Apr 2007 | A1 |
20070116071 | Schulte et al. | May 2007 | A1 |
20070116077 | Farmer et al. | May 2007 | A1 |
20070196062 | Inoue et al. | Aug 2007 | A1 |
20070237453 | Nielsen et al. | Oct 2007 | A1 |
20070266738 | Gallagher et al. | Nov 2007 | A1 |
20070280597 | Nakai et al. | Dec 2007 | A1 |
20080050069 | Skovgaard et al. | Feb 2008 | A1 |
20080063348 | Kumano et al. | Mar 2008 | A1 |
20080118213 | Andrieu | May 2008 | A1 |
20080166094 | Bookbinder et al. | Jul 2008 | A1 |
20080170823 | Gonthier | Jul 2008 | A1 |
20080205840 | Wakabayashi et al. | Aug 2008 | A1 |
20090003788 | Galvanauskas | Jan 2009 | A1 |
20090010286 | Messaddeq et al. | Jan 2009 | A1 |
20090052840 | Kojima et al. | Feb 2009 | A1 |
20090060417 | Bilodeau et al. | Mar 2009 | A1 |
20090092365 | Donlagic | Apr 2009 | A1 |
20090136176 | Kopp et al. | May 2009 | A1 |
20090202204 | Nielsen et al. | Aug 2009 | A1 |
20100111118 | Seo et al. | May 2010 | A1 |
20100142894 | Gonthier | Jun 2010 | A1 |
20100247047 | Filippov et al. | Sep 2010 | A1 |
20100278486 | Holland | Nov 2010 | A1 |
20110032602 | Rothenberg | Feb 2011 | A1 |
20110032603 | Rothenberg | Feb 2011 | A1 |
20110032604 | Rothenberg et al. | Feb 2011 | A1 |
20110058250 | Liu et al. | Mar 2011 | A1 |
20110069723 | Dong et al. | Mar 2011 | A1 |
20110100066 | Bohme et al. | May 2011 | A1 |
20110157671 | Koplow | Jun 2011 | A1 |
20110305250 | Chann et al. | Dec 2011 | A1 |
20120127563 | Farmer et al. | May 2012 | A1 |
20120219026 | Saracco et al. | Aug 2012 | A1 |
20120230352 | Minelly et al. | Sep 2012 | A1 |
20120260781 | Gass et al. | Oct 2012 | A1 |
20130287338 | Majid et al. | Oct 2013 | A1 |
20140119694 | Abedin et al. | May 2014 | A1 |
Number | Date | Country |
---|---|---|
2176840 | Dec 2001 | RU |
WO 9210014 | Jun 1992 | WO |
WO 9742533 | Nov 1997 | WO |
WO 2005022705 | Mar 2005 | WO |
WO 2009043968 | Apr 2009 | WO |
WO 2011066440 | Jun 2011 | WO |
WO 2013102033 | Jul 2013 | WO |
Entry |
---|
Jauregui et al., “All-Fiber Side Pump Combiner for High Power Fiber Lasers and Amplifiers,” Proc. of SPIE, 7580:75801E-1-75801E-8 (2010). |
“Pump and Signal Taper for Airclad Fibers Final Report,” Air Force Research Laboratory, 8 pages (May 1, 2006). |
Eidam et al., “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35:94-96 (2010). |
Geshiro et al., “Analysis of wave modes in slab waveguide with truncate parabolic index,” IEEE Jouranl of Quantum Electronics, 10(9):647-649, 1974. |
Geshiro et al., “Truncated parabolic-index fiber with minimum mode dispersion,” IEEE Transaction on Microwave Theory and Technology, 26(2):115-119, 1978. |
International Search Report from International Application No. PCT/US2013/030569, dated Jul. 4, 2013, 3 pp. |
International Search Report from International Application No. PCT/US2012/072003, dated Apr. 4, 2013, 2 pp. |
Niels Asger Mortensen, “Air-clad fibers: pump absorption assisted by chaotic wave dynamics?,” Optics Express, vol. 15, No. 14, Jul. 9, 2007 (published Jul. 5, 2007). |
nLIGHT Corporation, “nLIGHT Introduces New Line of All Fiber Mode Field Tapers” Jan. 23, 2009 News Release, http://nlight.net/new/releases/92˜nLIGHT-Introduces-New-Line-of-All-Fiber-Mode-Field, downloaded Jan. 18, 2014. |
nLIGHT, spreadsheet listing order dates for tapers. |
Russbueldt et al., “400 W Yb:YAG Innoslab fs-amplifier,” Optics Express, vol. 17(15):12230-12245 (2009). |
Stolzenburg et al., “Picosecond Regenerative Yb:YAG Thin Disk Amplifier at 200 kHz Repetition Rate and 62 W Output Power,” Advanced Solid-State Photonics, OSA Tech Digest, MA6 (2007). |
Written opinion from International Application No. PCT/US2012/072003, dated Apr. 4, 2013, 3 pp. |
Written Opinion from International Application No. PCT/US2013/030569, dated Jul. 4, 2013, 5 pp. |
International Search Report from PCT Publication No. PCT/US2013/077242, 2pp. (dated May 22, 2014). |
International Search Report from PCT Publication No. PCT/US2013/077243, 2pp. (dated Apr. 17, 2014). |
Written Opinion from PCT Publication No. PCT/US2013/077242, 4pp. (dated May 22, 2014). |
Written Opinion from PCT Publication No. PCT/US2013/077243, 4pp. (dated Apr. 17, 2014). |
Number | Date | Country | |
---|---|---|---|
20140185644 A1 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
61747812 | Dec 2012 | US |