Embodiments of the present invention are directed to audio speakers, and more particularly to line array speaker systems.
Line array speaker assemblies typically include multiple speakers or other direct-radiating electro-acoustical drivers removably interconnected along a selected line. The speakers may be arranged in a line that is straight, progressive, or otherwise arcuate. During installation, each speaker is connected to the speaker above and/or below it, and each speaker must be oriented at a selected angle, so the speakers within the line array are properly aimed. The speakers can be heavy and cumbersome, such that the process to install and disassemble a linear array assembly is labor intensive and typically requires more than one person to handle and adjust the speakers.
The speakers within the line array are typically coupled to one or more audio processors or other control systems to produce controlled vertical and horizontal angular coverage with the desired phase coherence, distortion reduction, and other desired performance characteristics for the venue in which the line array is installed. The number of speakers in the line array, the angular orientation of line array, the angular orientation of each speaker within the line array, and each speaker's position within the line array can be critical for proper audio processing to achieve the desired acoustic performance for the particular venue in which the line array is installed. Typically, before the installation, the venue dimensions are considered and the user objectives (e.g., loudness and spectral smoothness) are defined and prioritized. From this information, the optimal loudspeaker count and angular orientation or splay angles are determined. The line array is then assembled and deployed in the venue. Correction filters are often applied to each of the speakers to better achieve defined user objectives for the line array installation. These corrections typically vary for each speaker, because the filters also depend on the splay angles between each speaker. The process for obtaining the information needed for the desired audio processing and ultimate performance of the line array can be difficult and labor intensive to obtain with sufficient accuracy.
The present technology provides a line array assembly with a smart hanging system that overcomes drawbacks of the prior art and provides other benefits.
The present disclosure describes a line array assembly with a smart hanging system in accordance with certain embodiments of the present invention. Several specific details of the invention are set forth in the following description and the Figures to provide a thorough understanding of certain embodiments of the invention. One skilled in the art, however, will understand that the present invention may have additional embodiments, and that other embodiments of the invention may be practiced without several of the specific features described below.
Certain details are set forth in the following description and in
The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain examples of embodiments of the present technology. Indeed, certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this Detailed Description section. Unless the context clearly requires otherwise, as used herein the terms “about,” “generally,” “substantially” and “approximately” refer to values within 10% of the stated value. In instances in which relative terminology is used in reference to something that does not include a numerical value, the terms are given their ordinary meaning to one skilled in the art.
The accompanying Figures depict embodiments of the present technology and are not intended to be limiting of its scope. The sizes of various depicted elements are not necessarily drawn to scale, and these various elements may be arbitrarily enlarged to improve legibility. Component details may be abstracted in the Figures to exclude details such as position of components and certain precise connections between such components when such details are unnecessary for a complete understanding of how to make and use the present technology. Many of the details, dimensions, angles, and other features shown in the Figures are merely illustrative of particular embodiments of the present technology. Accordingly, other embodiments can have other details, dimensions, angles, and features without departing from the present disclosure. In addition, those of ordinary skill in the art will appreciate that further embodiments of the present technology can be practiced without several of the details described below. In the Figures, identical reference numbers identify identical, or at least generally similar, elements.
It is noted that, for purposes of discussion, the embodiments described below are in the context of a line array assembly 10 that is hung generally “vertically” downwardly from an upper structure. It is to be understood, however, that the line array assembly 10 in accordance with the present technology can be stacked upwardly from a lower supporting structure or can be positioned and/or supported generally horizontally, or at any other selected angle as may be suitable for a selected venue or installation.
The illustrated speakers 12 in the line array assembly 10 each have an engagement system 14 that allow each speaker 12 to releasably connect to the next-above speaker 12 and to the next-below speaker 12. For the speaker 12a in Position 1, the engagement system 14 allows the speaker 12a to connect to support rack 16 or other support systems from which the line array assembly 10 can hang or otherwise be supported. As discussed in greater detail below, the speakers 12 each have an adjustable hanger assembly that allows each speaker 12 to be positioned at a selected angle relative to vertical, and relative to the one or more other of the speakers 12 to which it is attached. Each speaker 12 within the line array assembly 10 can be adjustably positioned with an angular splay orientation relative to the adjacent speaker 12, and an angular inclination orientation relative to vertical (e.g., relative to a front face 28 of each speaker 12). The engagement system 14 is also configured to enable a single user to adjust and hang the speakers 12 in a selected arrangement to provide the desired splay and inclination angles of the speakers 12 for the particular venue. Accordingly, the line array assembly 10 can be safely assembled and adjusted with minimum man-power (i.e., a single user). Similarly, the engagement system 14 can be easily and safely released, so the single user can also quickly disconnect and disassemble the line array assembly 10, such as during a “tear down” process at the end of an event in a venue or the like.
Each speaker 12 in the line array assembly 10 of the illustrated embodiment has the same construction as the other speakers and each speaker 12 can be connected to any one of the other speakers in a next-above position or a next-below position. Accordingly, the description of a speaker 12 herein is applicable to any of the other speakers in the line array assembly.
The engagement system 14 on a speaker 12 is adjustable to change the angular orientation of the speaker 12 relative to the next-above speaker 12. (Compare, e.g., the splay angle between the two speakers 12 in
The engagement system 14 of each speaker 12 is adjustable independent of the position of the next-above or next-below speaker 12. For example, the engagement system 14 of the speakers in some positions within the line array assembly 10, such as the speakers 12a-c in Positions 1, 2, and 3 (
In the illustrated embodiment, the front end of the boom arm 38 is pivotally attached to the top end portion of the front vertical strut 32, so the rear end portion of the boom arm 38 can move generally vertically relative to the top end portion of the rear vertical strut 34. When the engagement system 14 is in the fully raised position (i.e., at the 0° position), the rear end of the boom arm 38 is in the upper-most position relative to the top end portion of the rear vertical strut 34. When the engagement system 14 is in the fully lowered position (i.e., at the 12° position), the rear end of the boom arm 38 is in the lower-most position relative to the rear vertical strut 34. When the engagement system is in the intermediate position (i.e., at the 6° position), the rear end of the boom arm 38 is between the upper-most and lower-most positions. As discussed in greater detail below, the auto-pin locking mechanism 40 is coupled to the vertical rear strut 34 and configured to releasably engage the rear end portion of the boom arm 38 to releasably retain the boom arm 38 in the fully raised, fully lowered, or intermediate positions.
The adjustable hanger assemblies 30 on the opposing ends of each speaker 12 in the line array 10 are configured to connect at its top corners to the next-above speaker 12 or the support rack 16 and to connect at its bottom corners to the next-below speaker 12 (
When speakers 12 are assembled to form the line array 10 (
Each hanger assembly 30 of a speaker 12 is configured to lockably and releasably connect to the next-below speaker 12 (
When the speaker 12 is pivoted into engagement with the rear portion of the next-above speaker 12, the biased bottom rear hooks 46 of the next-above speaker 12 are in the engage position. The upper rear strikes 44 of the speaker 12 engage and press against a sloped cam surface 54 (
The adjustable hanger assemblies 30 can be configured to lock the associated speaker 12 together so the speakers 12 in the line array assembly 10 will not unintentionally separate from each other once interconnected. As seen in
When the lock selector 56 is moved to the disengaged position, the blocking portion 58 pushes against a sloped upper portion 60 of the bottom rear hook 46 that causes the bottom rear hook 46 to pivot and move to the retracted position. When the lock selector 56 moves the bottom rear hook 46 to the retracted position, such as when two adjacent speakers 12 are connected together, the bottom rear hook 46 will move away from and disengage from the upper rear strike 48 of the next-below speaker 12 and allow the speaker 12 to pivot on the other speaker's 12 bottom front hook 42. The user can then easily and quickly lift the next-below speaker 12 off and away from the above speaker 12. Although the lock selector 56 of the illustrated embodiment has three positions, other embodiments can include a lock selector 56 with a different number of positions. For example, the lock selector 56 can be movable between the locked position and unlocked position, and a separate actuator can be used to move the bottom rear hook 46 to the retracted position.
As indicated above, the engagement system 14 of each speaker 12 is adjustable to allow a user to select the splay angle of a speaker 12 relative to the next-above speaker or relative to the support rack 16. Moving the engagement system 14 between the fully raised and fully lowered positions changes the splay angle of the speaker 12 relative to the next-above speaker. In the illustrated embodiment, the engagement system 14 moves between the fully raised and fully lowered positions by adjusting the angle of the boom arm 38 of each adjustable hanger assembly 30 of the associated speaker 12. The front end of the boom arm 38 is pivotally connected to the front vertical strut 32, and the rear portion of the boom arm 38 moves generally vertically through an arc relative to the vertical rear strut 34, thereby changing the angle of the boom arm 38 relative to the vertical front and rear struts 32 and 34.
As seen in
An additional safeguard can be provided, for example, in the unlikely event that the auto-pin mechanism 40 or the locking pin 68 fail to engage. In the illustrated embodiment of
When the locking pin 68 is in the extended, angle-locked position and extends through the registration holes 66 in the adjustment plate 64 connected to the boom arm 38, the locking pin 68 blocks the adjustment plate 64 from moving relative to the vertical rear strut 34, thereby locking the boom arm 38 in the selected angle. When the locking pin 68 is in the retracted, angle-adjust position, the locking pin 68 is disengaged from the registration holes 66 and the adjustment plate 64, so the boom arm 38 and adjustment plate 64 can be pivoted to a selected angular orientation.
In the illustrated embodiment, when the locking pin 68 of the auto-pin locking mechanism 40 is aligned with and extended through the upper most registration hole 66c, the boom arm 38 is set for the greatest splay angle (e.g., 12°), so the engagement system 14 is in the fully lowered position. When the locking pin 68 is aligned with and extended through the lower-most registration hole 66a, the boom arm 38 is set for the smallest splay angle (e.g., 0°), so the engagement system 14 is in the fully raised position. When the locking pin 68 is aligned with and extended through the middle registration hole 66b, the boom arm 38 is set for an intermediate splay angle (e.g., 6°), so the engagement system 14 is in the intermediate position. Although the adjustment plate 64 of the boom arm 38 in the illustrated embodiment has three holes corresponding to the three positions of adjustable engagement system 14, the adjustment plate 64 in other embodiments can have a greater or fewer number of registration holes 66 to correspond to a greater or fewer number of angular positions (e.g., approximately 0°, 3°, 6°, 9°, 12°, etc.) of the engagement system 14 for each speaker 12.
In some embodiments, as seen in
As seen in
The release paddle 72 is movable relative to the housing 76 between a pin-extend position (
In the illustrated embodiment, the locking pin 68 has a projection 94 positioned to be engaged by the distal end 88 of the rocker arm 86 when the release paddle 72 is moved toward the pin-extend position. The distal end 88 of the rocker arm 86 can be configured to push against the projection 94 of the locking pin 68, but the rocker arm 86 is not fixed to the projection 94. As seen in
In one embodiment, a spring 96 or other biasing member is coupled to the locking pin 68 and urges the locking pin 68 toward the retracted, angle-adjust position. It is noted that the release paddle 72 is urged toward pin-extend position, but the locking pin 68 is urged toward the retracted, angle-adjust position. The force generated by the spring 96 against the locking pin 68 is less than the force generated by the spring or other biasing member that urges the release paddle 72 toward the pin-extend position. Accordingly, the auto-pin locking mechanism 40 is overall biased toward the locking pin 68 being in the extended, angle-locked position.
In operation, a single user can adjust the selected splay angle for each speaker 12 in the line array assembly 10 by adjusting the engagement system 14 of the respective speaker 12 (
If the release paddles 72 were moved to the pin-retract position, and a user were to, for example, grasp the handles 22 of the speaker 12 on the end panels 20 (
In one or more embodiments, the auto-pin locking mechanism 40 has a retention latch 100 movably coupled to the housing 76 and configured to releasably hold the release paddle 72 in the pin-retract position. As seen in
In the illustrated embodiment, the retention latch 100 is urged toward the lever-hold position by a spring 113 (
Accordingly, after a user has depressed the release paddle 72 toward the pin-retract position by pushing on the handle portion 78, the retention latch 100 will retain the release paddle in the pin-retract position. The user can cancel a depression of the release paddle 72 by pushing on the distal end 104 of the retention latch 100 and moving it to the lever-release position, which releases the catch 108 and unlocks the release paddle 72 from the pin-retract position, as shown in
In the illustrated embodiment, the retention latch 100 is urged toward the lever-hold position by a spring 113 (
The engagement system 14 with the adjustable hanger assemblies 30 on the ends of each speaker 12 in the line array assembly 10 allows a single user to interconnect or disconnect the speakers 12 for use in a selected venue. The single user can also easily adjust the splay of each speaker 12 during assembly of the line array assembly 10, thereby controlling the total inclination or angular orientation of each speaker 12 relative to vertical. For example, if the engagement system 14 of each speaker 12 in a line array assembly 10 has a splay angle of approximately 0° when in the fully-raised position and all speakers 12 in the line array assembly 10 have the engagement system 14 at the fully-raised position, the front faces 28 of all of the speakers 12 will be essentially co-planar.
Referring to
When the line array assembly 10 is installed and in use in a venue, such as during set up, audio signals are provided to each of the speakers 12. The sound field generated by the line array assembly 10 is highly dependent on the number of speakers 12 in the array, the inclination angle(s) of the array, and the relative splay angles between each speaker 12 in the array. The audio signals provided to the speakers 12 can also be controlled, adjusted, timed, filtered, or otherwise processed through one or more audio processors, such as a Digital Signal Processor (DSP), to generate a desired overall sound field from the line array assembly 10. The one or more DSPs or other audio processors may be remote from the speakers 12 or partially or fully on board the respective speakers 12.
In accordance with aspects of the present technology, the interconnected speakers 12 in the line array assembly 10 are powered smart speakers 12 that are situationally aware and configured to communicate with each other to automatically determine the position of each speaker 12 within the array, and the speakers' splay and inclination angles. This positional and orientation information can then be provided to the one or more DSPs to control, adjust, or otherwise process the audio signals to generate the overall desired sound field for the particular position and arrangement of the line array assembly 10.
In at least one embodiment of the present technology, each speaker 12 within the line array assembly 10 (
Each speaker 12 in the line array assembly 10 has an accelerometer 112 and a microcontroller 114 within the speaker cabinet 18 and communicatively coupled to each other. Each speaker 12 also has an upper communication module 110a adjacent to the top portion of the speaker's cabinet 18, and a lower communication module 110b adjacent to the bottom portion of the speaker's cabinet 18. In the illustrated embodiment, each of the upper and lower communication modules 110a and 110b comprise a transmitter and a receiver configured to communicate with a similar communication module 110 of an immediately adjacent speaker within the line array assembly 10. Each of the upper and lower communication modules 110a and 110b of a speaker 12 is positioned adjacent to the respective upper and lower edge of the speaker's front face 28 and at approximately the mid-line of the front face 28. Accordingly, as seen in
The accelerometer 112 can be a three-axis model configured to allow determination of the respective speaker's fore-aft tilt relative to vertical (i.e. inclination) and optionally left-right tilt relative to horizontal. The microcontroller 114 is coupled to and communicates with the accelerometer 112 in the module. The microcontroller can acquire and filter the signals of the accelerometer 112 and convert them to absolute inclination angle values for that speaker 12. The microcontroller 114 can communicate information upwardly and downwardly within the array about each speaker's inclination angle values to the microcontrollers 114 in the other speakers 12 within the line array assembly 10. For example, if there are four speakers 12 in an array, the speaker 12 in Position 2 (i.e., the second speaker down from the top) knows information about the speaker 12 above it in Position 1. The speaker in Position 2 takes this information along with its own information and passes it down to the third speaker 12 in Position 3. The speaker 12 in Position 3 knows initially about what is below the speaker 12 and about itself, and passes this information upwardly to the speaker in Position 2, which then adds to this information the information about itself and the speaker above in Position 1. Then, the speaker in Position 2 passes this new body of information upwardly to the speaker in Position 1, which then knows about itself as well as the speakers in Positions 2, 3, and 4. This collection of information then gets passed back downwardly, and the process is repeated until every speaker knows the information, including the positional and orientation information and/or other selected information, about every other speaker in the array. In some embodiments, the microcontroller 114 in each speaker is configured to communicate with and receive signals from the accelerometer 112 via a I2C (or SPI) protocol. Other embodiments can use other communication protocols between the components.
The microcontroller 114 is also configured to filter the noise from the accelerometer signals in extremely noisy environments. For example, the microcontroller 114 can use a low pass filter (LPF) to remove the effect of speaker cabinet vibrations, interference from other electronics, noise of the accelerometer's internal components, and even swinging of the array. A single pole filter is computationally cheap yet may be suitable in some embodiments. Alternatively, a biquad IIR filter would allow a steeper rolloff (i.e. faster convergence of splay angle data). Other filters involving histograms and hysteresis can also reduce spurious noise in the accelerometer's signals.
The microcontroller 114 can also be configured to convert voltage values to tilt angle values in degrees by calculating arctan (X/Z), which does not require scaling the individual X and Z values. In some embodiments, an offset may need to be applied, as it is unlikely the mounting of the accelerometer 112 within the speaker will be at 0° when the speaker is mounted at 0°, for example, because of assembly tolerances during manufacturing or device tolerances of the accelerometer or other reasons. The calculation of arctan (Y/Z) may indicate if the array is turned to be vertical, horizontal, or if hung in an acute or obtuse orientation.
The microcontroller 114 is also coupled to and communicates with the upper and lower communication modules 110a and 110b in the speaker 12. The transmitter and receiver in each of the upper and lower communication modules 110a and 110b is configured to communicate with the receiver and transmitter, respectively in the next closest communication module 110 of an immediately adjacent speaker 12, if any. For example, the upper communication module 110a of a speaker 12 is configured to communicate upwardly to determine if there is an immediately adjacent lower communication module 110b in a next-above speaker. Similarly, each lower communication module 110b of a speaker 12 is configured to communicate downwardly to determine if there is an immediately adjacent upper communication module 110b in a next-below speaker. The speaker's upper and lower communication modules 110a and 110b each communicate with the associated microcontroller 114 in that speaker 12, which communicates with the microcontrollers 114 in the other speakers 12 up and down the line array assembly 10. This communication between the speakers 12 in the line array assembly allows point-to-point communication among peers, and each speaker 12 can determine its relative position within the line array assembly 10 (
In the illustrated embodiment, the microcontroller 114 and the upper and lower communication modules 110a and 110b periodically transmit upwardly and/or downwardly to communicate with the other speakers 12 wirelessly via infrared (IR) signals and communication protocol. Other embodiments can use other wireless communication protocols, such as Wi-Fi, Bluetooth Low Energy (BTLE), ZigBee, RF (radio frequency), NFC (near-field communication), magnetic signaling, acoustic signaling, light-based, or other wireless communication protocols. In yet other embodiments, the speakers 12 within the line array assembly 10 can communicate with each other through a hard-wired system, such as Ethernet, I2C (or SPI) protocol, Out-Of-Band XLR Communications, Power Line Communications, or the like, although such hard-wire interconnections may increase the complexity of assembling and disassembling the line array assembly 10.
In the illustrated embodiment, the microcontrollers 114 in the line array assembly 10 communicate via an ad-hoc network protocol, so that all information about each speaker 12 is eventually shared between the microcontrollers 114 in each of the speakers 12 without needing central coordination. Accordingly, the line array assembly 10 is configured so that, when the speakers are activated, the microcontroller 114 of each speaker causes the upper and lower communication modules 110a and 110b to transmit upwardly and downwardly, respectively. If a speaker 12 receives a signal from above, the microcontroller 114 determines that the speaker is not in Position 1 within the array. If, however, the upper communication module 110a of a speaker transmits upwardly but does not receive a response signal from a next-above speaker, the microcontroller 114 determines that the speaker 12 is in Position 1 within the array. The microcontroller 114 then transmits through its lower communication module 110b to the other speakers that it is in Position 1.
Similarly, if a speaker 12 receives a response signal from above but does not receive a signal from below, the microcontroller 114 determines that the speaker 12 is in the last position within the line array assembly 10. The microcontroller 114 in that last speaker then transmits upwardly through its upper communication module 110a to the other speakers that it is in the last position. Once the speaker in Position 1 is identified and communicated downwardly, the microcontroller 114 in next-below speaker can confirm it is in Position 2 and communicates that information downwardly to the speakers below. The microcontroller 114 in each subsequent speaker 12 below can identify its position within the line array assembly 10. This process of communicating upwardly and downwardly between speakers 12 occurs multiple times that equals one less than the number of speakers 12 in the line array for all of the speakers 12 to be situationally aware. For example, if the line array assembly 10 has 6 speakers, the up and down transmissions occur at least 5 times.
The determined speaker position and inclination information, along with the orientation information, i.e., the inclination information of each speaker, provides situational information about all of the speakers in the line array assembly 10. The microprocessors 114 share the situational information upwardly and downwardly to all of microprocessors in the array of speakers. In some embodiments, the microprocessors 114 are configured to determine the splay angle of each speaker based on the positional information and inclination information of the speakers. For example, the inclination angle, which may be referred to as the top hang angle or the bumper angle, relative to vertical for the speaker 12a in Position 1 (i.e., the first speaker) is determined via the accelerometer 112. The top hang angle may correspond to the splay angle for the first speaker 12a if, for example, the connection points of the support rack 16 are horizontal. If the support rack 16 is not horizontal, the inclination or top hang angle of the first speaker 12a may be different that the splay angle. The splay angle of the speaker 12b in Position 2 (i.e., the second speaker) is determined by subtracting the inclination angle of the first speaker 12a from the inclination angle of the second speaker 12b. Accordingly, the microprocessor 114 for each subsequent speaker determines the splay angle of that subsequent speaker 12 by subtracting the inclination angle of the next-above speaker from the inclination angle of that lower speaker 12. The splay angles for all of the speakers 12 can be shared upwardly and downwardly between the microprocessors 114 within the array and are provided to the audio processor for optimum processing of the audio signals being provided to the line array assembly 10.
In some embodiments, the line array assembly 10 can be configured with remote communication system for communicating with each speaker 12 in a line array assembly 10. In these embodiments, however, such communication systems may utilize an RSSI number (Received Signal Strength Indicator) to represent the strength of the radio signal that is received from each speaker. The RSSI, however, can be a very noisy indicator and potentially unusable alone. Accordingly, a filter can be used to filter the RSSI and combines it with data from the accelerometer to derive speaker order and splay angles. By filtering and combining in this way, the normally unsuitable RSSI data can be used for accurate loudspeaker array configuration. The communication system for this embodiment may be beneficial for controlling, adjusting, or otherwise processing signals for communicating with all of the speakers 12 in multiple line array assemblies 10 in a venue or a room.
In some embodiments, each speaker 12 within the line array assembly 10 can include a network connector 120 coupled to the microcontroller 114 that allows the microcontroller 114 to communicate through a network to a remote audio processor the speaker's position within the array and its angular orientation (i.e., inclination and/or splay). The DSP or other audio processor then uses this array information to process the audio signals provided to each speaker 12 within the line array assembly 10 to generate the desired sound field from the interconnected speakers. The network connector 120 can be an ethernet connection, although other embodiments can communicate with the remote network wirelessly, such as via a Wi-Fi, BTLE, or other wireless communication protocol. The networked system may also allow communication to external devices, such as a phone, tablet, or laptop, for assisting a user in configuring the line array assembly 10.
References throughout the foregoing description to features, advantages, benefits, or similar language do not imply that all of the features and advantages that may be realized with the present technology should be or are in any single embodiment of the present technology. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present technology. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment. Furthermore, the described features, advantages, and characteristics of the present technology may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the present technology can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the present technology.
The above Detailed Description of examples and embodiments of the present technology is not intended to be exhaustive or to limit the present technology to the precise form disclosed above. While specific examples for the present technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the present technology, as those skilled in the relevant art will recognize. The teachings of the present technology provided herein can be applied to other systems, not necessarily the system described above. The elements and acts of the various examples described above can be combined to provide further implementations of the present technology. Some alternative implementations of the present technology may include not only additional elements to those implementations noted above, but also may include fewer elements. Further any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.
From the foregoing, it will be appreciated that specific embodiments of the present technology have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the various embodiments of the present technology. Further, while various advantages associated with certain embodiments of the present technology have been described above in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the present technology. Accordingly, the present technology is not limited, except as by the appended claims.
Although certain aspects of the present technology are presented below in certain claim forms, the applicant contemplates the various aspects of the present technology in any number of claim forms. Accordingly, the applicant reserves the right to pursue additional claims after filing this application to pursue such additional claim forms, in either this application or in a continuing application.
This U.S. non-provisional patent application claims the benefit of and priority to U.S. Provisional Patent Application No. 63/171,030, titled Speaker Array with Smart Hanging System, and filed Apr. 5, 2021, which is incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
5749137 | Martin | May 1998 | A |
7328769 | Adamson | Feb 2008 | B1 |
20020071580 | Engebretson | Jun 2002 | A1 |
20050232455 | Monitto | Oct 2005 | A1 |
20140205126 | Faranda | Jul 2014 | A1 |
20170171650 | Christner | Jun 2017 | A1 |
20180007456 | Spillmann et al. | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
211909056 | Nov 2020 | CN |
Entry |
---|
International Searching Authority, International Search Report and Written Opinion, PCT Patent Application PCT/US2022/023368, dated Jul. 15, 2022, 18 pages. |
Number | Date | Country | |
---|---|---|---|
20220321982 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
63171030 | Apr 2021 | US |