Speaker clip

Information

  • Patent Grant
  • 10063951
  • Patent Number
    10,063,951
  • Date Filed
    Thursday, April 21, 2016
    9 years ago
  • Date Issued
    Tuesday, August 28, 2018
    6 years ago
Abstract
Certain embodiments may take the form of an electronic device having a main housing encapsulating operative circuitry for the device. The electronic device includes an attachment member moveably coupled to the metal housing. The attachment member has an acoustical device located therein that is communicatively coupled to the operative circuitry in the main housing. The attachment member includes a recessed portion for positioning the acoustical device within the attachment member.
Description
BACKGROUND

Technical Field


The present invention relates to electronic devices providing auditory output and, more particularly, to an electronic device providing auditory output from an attachment member of an electronic device.


Background Discussion


Small form factor electronic devices such as personal digital assistants, cell phones, mobile media devices and so on have become nearly ubiquitous in today's society. Among other functions, they may serve as work tools, communication devices and/or provide entertainment and are commonly carried in a hand, with a clip or in a pocket. Generally, the operative parts of electronic devices, such as the processor and memory, are enclosed in housings made of plastic, metal and/or glass that may have an aesthetically pleasing appearance. The housings provide structural integrity to the devices and protect potentially sensitive component parts of the electronic devices from external influences. Sometimes, a smaller form factor device will be more popular or able to demand a higher retail price than a functionally equivalent larger device.


SUMMARY

Certain aspects of embodiments disclosed herein are summarized below. It should be understood that these aspects are presented to provide the reader with a brief summary of certain forms embodiments might take and that these aspects are not intended to limit the scope of any embodiment. Indeed, any embodiment disclosed and/or claimed herein may encompass a variety of aspects that may not be set forth below.


Certain embodiments may take the form of an electronic device that includes a main housing encapsulating operative circuitry for the device. An attachment member is movably coupled to the main housing. The attachment member may be movably coupled to the main housing in one of a number of different ways, such as a spring loaded hinge, for example. An acoustical device is positioned within a portion of the attachment member. The acoustical device is communicatively coupled to the operative circuitry in the main housing.


Another embodiment may take the form of an electronic device having a main housing for holding a processor of the electronic device and an attachment clip moveably coupled to the main housing. The attachment clip includes a cavity and an acoustical device located within the cavity of the attachment clip. The acoustical device is communicatively coupled to the processor via a conduit.


In yet another embodiment, a method of manufacturing a small form factor electronic device may be provided. The method includes milling a main housing and an attachment member. A recessed region is created within the attachment member and an acoustical device is positioned within the recessed region of the attachment member. An adhesive layer may be applied to secure the acoustical device to the clip on one or more sides. A cover layer may be attached to the acoustic device with an adhesive layer. In some embodiments, the cover may be attached to the clip. The adhesive is applied so as to not block sound from exiting. The main housing and attachment member are coupled together.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a small form factor electronic device having an acoustical device located in an attachment member.



FIG. 2 illustrates a side-view of e electronic device of FIG. 1.



FIG. 3 is a block diagram of the electronic device of FIG. 1.



FIG. 4 is an exploded view of the attachment member and a main housing of the electronic device of FIG. 1.



FIG. 5 illustrates a cross-sectional view of the electrical device of FIG. 1 taken along line AA in FIG. 1.



FIG. 6 illustrates an attachment member of the electronic device of FIG. 1 with a domed cover layer.



FIG. 7 illustrates a dimpled surface of an attachment member of the electronic device of FIG. 1.



FIG. 8 is an exploded view of the attachment member of the electronic device of FIG. 1 in accordance with an alternative embodiment.



FIG. 9 illustrates a cross-sectional view of the attachment member of FIG. 8 along taken along line AA.



FIG. 10 is a flowchart of an example method of manufacturing the electronic device of FIG. 1.



FIG. 11 is a top view of a device having a main housing taking the form of a watch





DETAILED DESCRIPTION

Certain embodiments may take the form of an electronic device having an acoustical element located outside a main housing of the device. For example, the acoustical element may be positioned in an attachment clip of the electronic device to provide acoustic functionality without taking up space within the main housing of the device.


In some embodiments, the acoustical element may be positioned within an attachment member moveably coupled to a main housing. The acoustical member may take the form of a piezoelectric acoustical element. Generally, piezoelectric acoustical elements are thin, flat elements that vibrate when an electrical current is applied to generate sound. More specifically, piezoelectric acoustical elements include a material, such as some quartz crystals, that demonstrates a piezoelectric effect and flexes or deflects when an electrical current is applied to the material. The movement of the material is transferred to a diaphragm of the element which correspondingly moves or vibrates to generate sound. To allow for vibration of the diaphragm, the piezoelectric element may be set off by a clearance distance from a surface of the attachment member into which it is installed. In some embodiments, multiple layers may be positioned on top of the piezoelectric element to protect and secure the piezoelectric element, among other functions. In some embodiments, the piezoelectric element may be mounted in between two surfaces to create sandwich-like structure.


In some embodiments the mounted piezoelectric element (and the various other layers, if included) do not substantially change the appearance of the attachment member in which the element is installed. That is, if the surface of the attachment member is flat, the installation of the piezoelectric element results in a substantially flat surface. In other embodiments, the surface of may be changed to provide an increased cavity size. In some embodiments, the cavity size may be shaped to create a particular frequency response or to otherwise influence the sound produced by the acoustical element. In some embodiments, the interior surface of the cavity may be modified to increase the size of the cavity, to control the frequency response of the cavity, modify the amount of air displaceable by movement of the diaphragm of the acoustical element, and/or to direct sound waves within the cavity and/or out of the cavity. The shape of the surface may be configured to resonate at a certain desired frequency or frequency range that is desired based on its shape. For example, one or more indentations in the surface may be provided to increase the size of the cavity and/or control the frequency response of the cavity. Generally, the larger the size of the cavity, the lower the frequency that may be resonant within the cavity. In some embodiments, holes may be provided in the surface to adjust the frequency response. Additionally, the cavity may be modified to aid in the assembly of the acoustic device such as alignment or attachment, or to change the stiffness of the walls of the cavity, such as adding ribs to increase stiffness without substantially reducing cavity volume, or to provide room for a conduit to pass therethrough.


Turning to FIGS. 1 and 2, an example electronic device 100 with an attachment member 102 is illustrated. The attachment member 102 is moveably coupled to a main housing 104 of the electronic device 100. Generally, the main housing 104 houses the operative circuitry of the electronic device 100, such as a processor, memory, and so forth. The electronic device 100 may be configured to function as a media recorder/playback device such as an MP3 player, a radio, an audio/video recorder, a mobile telephone, personal digital assistant, tablet computing device, or other similar device. In certain embodiments, the electronic device 100 may have an all metal, or primarily metal, exterior, or layer. In other embodiments, a portion (such as a back, front or other side) of the housing 104 may be made from metal or primarily from metal. The housing 104 may be made, in part or in whole, of aluminum, magnesium, titanium, an aluminum alloy, a magnesium alloy, a titanium alloy, steel, or other metal or metal alloy. In some embodiments, the housing 104 and attachment member 102 may be made partially or fully of plastic, glass and/or a composite such as a ceramic. It should be appreciated that the material used for the attachment member 102 may influence the frequency response of the acoustical element. As such, in some embodiments, the attachment member 102 or a portion of the attachment member 102 (such as a portion in which a cavity is formed) may be of a different material than the housing 104.


One or more apertures in the metal body may be configured to allow for input/output functionality to be accessed and/or for power or charging. For example, an aperture may be provided with one or more buttons to turn on/off the device 100 and/or control the operations of the device 100. Additionally, an aperture may be provide to allow for headphones to connect to with the electronic device 100. In other embodiments, however, no such apertures are provided and the input/output may be conducted wirelessly.


The electronic device 100 may have a small form factor such that it is easily carried in a hand or pocket. These sample embodiments may range from approximately 2″×4″ to about 1″ square, although alternative embodiments maybe larger or smaller. Typically, the attachment member 102 is movably coupled to the electronic device 100 to allow the electronic device 100 to be attached in a convenient location for a user, such as clipped on an article of clothing. In another embodiment, the attachment member may be a band, such as a watchband for example. Additionally, in some embodiments, the attachment member 102 may be made of the same metal or other material as the housing 104 of the electronic device 100.



FIG. 3 is an example block diagram of the electronic device 100. The electronic device 100 includes one or more processors 110, a memory 112, and one or more 110 devices 114. The one or more processors 110 may include one or more general processors, such as a central processing unit and/or one or more dedicated processors, such as a graphics processing unit. The memory 112 is coupled to the one or more processors 110 and may be implemented as one or more memory types such as magnetic memory (including but not limited to read only memory, flash memory, random access memory) At least one I/O device may take the form of an acoustical element 116, such as a speaker. One example of a suitable acoustical element 116 or other audio output device is the aforementioned piezoelectric element. This element may be positioned in an appropriately shaped space to act as a speaker as described below in greater detail with respect to FIG. 4. The electronic device 100 may also provide one or more other output modes, such as a visual output (e.g., one or more light emitting diodes, a graphic display, and so on), a haptic output, and so forth.


The acoustical element 116 may be positioned within the attachment member 102 of the electronic device (e.g., outside the main housing 104 of the device 100). The placement of the acoustical element 116 within the attachment member allows the element to provide audible output without taking up space within the main housing 104. Furthermore, the placement of the acoustical device within the attachment member 102 may facilitate customization of the acoustical properties of surfaces that surround and/or house the acoustical device to help improve the quality of sound generated by the electronic device 100.


Turning to FIG. 4, an exploded view of the electronic device 100 is illustrated. In the exploded view, electrical components of the main housing 104 have been omitted to simplify the illustration and to focus attention on the acoustical element 116 positioned within the attachment member 102. However, it should be appreciated that the main housing 104 generally holds one or more electrical components that may be in electrical and/or operable communication with the acoustical device 116.


As shown in FIG. 4, the attachment member 102 is moveably coupled to the main housing 104 by a hinge block 120. The hinge block 120 may be fastened to the main housing 104 with one or more fastening devices 122 (e.g., screws, pins and the like). The hinge block 120 generally sits within a recess defined in the attachment member 102 and adjacent to a base of the main housing. In some embodiments, the hinge block 120 may at least partially define a distance that a surface 126 of the attachment member 102 is held from the main housing 104. In other embodiments the distance between the surface 126 and the main housing 104 may be greater than a height of the hinge block 120. One or more other members 128 located at an opposite end of the attachment member 102 from the hinge block 120 may also be provided to assist in defining the distance of the attachment member 102 from the main housing 104. The other member 128 may protrude from the surface 126 and may be configured to abut or make contact with the main housing 104.


A spring member 130 may be positioned within or adjacent to the hinge block 120 to bias the attachment member 102 to a closed position. In one embodiment, the spring member 130 may be an elongated rod with bent ends 132. Each end 132 is configured to touch one of a surface of the attachment member 102 and the hinge block 120 which is rigidly fastened to the main housing 104 with fastening devices 122. As the attachment member 102 is opened by applying a force to attachment member or main housing, the spring member 130 may be displaced from its resting position thereby providing resistance to the opening motion. The opening force must overcome the biasing force of the spring member to open the attachment member 102. Additionally, the biasing force of the spring member 130 returns the attachment member 102 to a closed position when the countervailing opening force stops. Other types of springs and other configurations may be implemented to achieve the same or similar functionality.


In some embodiments, one or more hinge pins 140 may inserted through a portion of the attachment member 124 and into the hinge block 120 to moveably secure the attachment member 102 and the main housing together 104. A longitudinal axis of the hinge pins 140 may be oriented to face each other within a common line. The hinge pins 140 may function as an axis of rotation for movement of the attachment member 102. The longitudinal axis of the pins may generally be parallel with the surfaces of the attachment member 102 and the main housing 104. In some embodiments, the one or more hinge pins may also function as spring members to hold the attachment member 102 in a closed position relative to the main housing. To do so, at least one end of the hinge pins 140 may be modified to provide a torsion resistance against one of the main housing or attachment member and the hinge block. Additionally, in some embodiments, the hinge pins 140 are secured or anchored within the hinge block to prevent the hinge pins rotating freely relative to the hinge block. It should be appreciated that other devices and/or techniques may be implemented in other embodiments to moveably secure the main housing and the attachment member together. For example, in some embodiments, a coil spring may be provided to bias the attachment member. The coil spring may be oriented along an axis of rotation or perpendicular thereto.


Spring plates 142 may be provided on the surface of one or both the attachment member 102 and hinge block 120 where the spring contacts the surface(s) to reduce deflection of and prevent galling of the surfaces. The spring plates 142 may be small patches of hard material, such as stainless steel, tungsten, or ceramic, for example, that help to reinforce and/or strengthen the surfaces against the pressures that the spring member places upon the surfaces. In embodiments where the thickness of the attachment member 102 and the walls of the main housing 104 are particularly thin, the spring plates 142 help to maintain the original shape and appearance of the attachment member and main housing.


As shown in FIG. 4, the attachment member 102 may be milled to remove material in order to create a recessed region 148. The recessed region 148 may generally have a size and shape that is at least the size and shape of an acoustical member that is to be installed within the attachment member. The recessed region 148 may also have a size and shape designed to affect the sound outputted by the acoustical device. For example, the size of the recessed region 148 may influence a frequency response of the recessed region. Additionally, indentations holes or other features may be provided within the recessed region to direct reflections of sound waves, or increase the movement of air within the recessed region or the amount of air moved within the recessed region, for example. Within the recessed region 148, there may be one or more guide/support structures 150, 152. The guide/support structures 150, 152 may be configured to help orient the acoustical device within the aperture when assembling the electronic device 100. Additionally, guide/support structures 150, 152 help to align the acoustical element and provide a bonding area to attach a cover to the attachment member 102 with an adhesive. In some embodiments, guide/support structures 150, 152 is integral to the attachment member 102, through it could also be a separate part in other embodiments.


The acoustical device may be any suitable acoustical device. In one embodiment, the acoustical member is a piezoelectric speaker, as illustrated in FIG. 4. The illustrated piezoelectric speaker 160 includes an electrical conduit 162 that may couple the speaker with components in the main housing 104. The electrical conduit 162 may be any suitable electrically conductive member such as a coaxial cable, flex microstrip (as shown), fine gage wire, or the like. The electrical conduit 162 may flex and bend to move with the attachment member 104 and may pass through or along side the hinge block 120 and into the main housing 104 of the electronic device 100.


It should be appreciated that selection of a particular electrical conduit 162 for communication between components in the main housing 104 and the acoustical device 160 in the attachment member 102 may result in certain trade-offs. For example, electrical communication between the acoustical device and components located in the main housing may be achieved through fine gage wires or other suitable current carrying members. For example, the flex microstrip may be made flexible along at least one axis and may be thinner than a wire. This, in turn, may permit a shallower recessed region in the attachment member 102. In contrast, a small hole may be used to accommodate fine gage wire in both the attachment member 102 and the main housing 104, thus potentially simplifying and/or limiting the amount of machining required.


Glue or grease may be used to seal any openings in the attachment member 102 and/or the main housing 104 resulting from the electrical conduit 162 passing between the two. The glue or grease may be applied during the assembly process.


The piezoelectric speaker 160 may be coupled to the attachment member 102 with an adhesive layer 161. In some embodiments, the adhesive layer 161 may be integral with the underside of the piezoelectric speaker 160 (i.e., pre-assembled with the speaker), while in other embodiments, the adhesive layer may be a separate layer, as illustrated. Additionally, in some embodiments, the adhesive layer 161 may be configured as individual strips of adhesive that may be located along one or more sides of the piezoelectric speaker 160.


One or more additional layers may be provided over the piezoelectric speaker 160 to secure the speaker in place, protect the speaker, and/or to provide aesthetics. In particular, an adhesive layer 170 and a cover layer 172 may be stacked over the piezoelectric speaker 160. The adhesive may be located between the piezoelectric speaker 160 and the cover layer 172 to secure the cover layer to the speaker. Additionally, the adhesive layer 170 may be configured to adhere to the structures 150 and 152.


The cover layer 172 provides rigid support and protection for the piezoelectric element 160 while allowing sound to pass therethrough. In some embodiments, the cover layer 172 may have a solid surface to seal the cavity from the environment. In other embodiments, the cover layer 172 may include a plurality of perforations so as to not block sound. Additionally, in the embodiment illustrated in FIG. 4, the cover layer 172 may be configured to hold a mesh layer 173 having perforations 175 to allow for sound to pass therethrough. The mesh layer 173 generally is thinner than the cover layer 172 and may have smaller perforations than those in the cover. The smaller holes still allow for sound to pass through but limit dust and moisture intrusion. The mesh layer 173 may be made from materials different from those of the cover 172. For example, the mesh layer may include materials such as fabric woven from plastic, metal, or natural fibers. An adhesive layer may be provided to adhere the mesh layer 173 to the cover layer 172.


In some embodiments, the presence and/or position of the piezoelectric speaker 102 may be difficult for a user to visually perceive. For example, an outer layer above the piezoelectric speaker 160 may be substantially flush with the surface 126 of the attachment clip 102 and may have a substantially similar color and texture.



FIG. 5 illustrates a cross-sectional view of the attachment clip 102 along line AA in FIG. 1. The total thickness of the attachment clip 102 may be approximately 1.33 mm thick or less (e.g., approximately 1.15 mm thick). An outer wall of the attachment clip may be less than 0.5 mm at its thinnest point (e.g., approximately 0.35 mm where the piezoelectric speaker is positioned). A thin layer 180 of material may coat an interior surface of the attachment member. In some embodiments, the thin layer 180 is an electrical insulator to insulate the raised, conductive attachment point 163 (i.e., solder joint between the conduit 162 and the piezoelectric speaker 160) from making contact with the material 102, which in some embodiments is electrically conductive. In some embodiments, the thin layer 180 may be an approximately 0.05 mm Kapton® film layer that is only in a few small spots such as under the electrical attachment point. Additionally, the thin layer 180 may be positioned within a recess of the recessed portion 148 of the attachment member 102.


The piezoelectric speaker 160 may include packaging that provides clearance between the diaphragm of the speaker and the attachment member 102. Additionally, the adhesive 161 that attached the speaker 160 to the attachment member 102 may provide clearance. For example, in some embodiments, the adhesive 161 may provide approximately 0.05 mm clearance between a diaphragm of the speaker 160 and the attachment member 102. Additionally or alternatively, in some embodiments, the thin layer 180 may abut the packagin, of the speaker 160 while providing an opening adjacent to the diaphragm of the speaker to increase the clearance. Additionally, in some embodiments, guides may be provided in the recessed portion of the attachment member 102 which may support the packaging of the speaker 160 to provide the clearance. Generally, increasing the offset of the diaphragm of the speaker relative to other surfaces allows for more air to be displaced and may provide for improved acoustic quality and/or increased volume. In some embodiments, the piezoelectric speaker 160 may be located approximately 0.04-0.06 mm above the thin film 180. A pressure sensitive adhesive (such as the adhesive layer 170) may be positioned over the piezoelectric speaker. 160 to secure the speaker. The adhesive 170 may be approximately 0.04-0.06 mm thick. The cover layer 172 (including the mesh layer 173) may be secured to the adhesive 170. The cover layer 172 may be approximately 0.15 mm thick.


In some embodiments, the cover plate 172 may have a particular shape to provide specific acoustical effects. For example, the cover plate 172 may have a domed feature 174, as illustrated in FIG. 6, or other geometric shape. The domed feature 174 may be used to increase the volume of air that may be displaced by the diaphragm of the speaker and/or may also provide for improved frequency response at lower frequencies. Other geometric shaped may be used to direct the sound output from the speaker and/or amplify the sound. For example, the cover may have a horn or fan shape that would help to amplify the volume of the sound.


In some embodiments, an interior surface of the recessed portion 148 of the attachment member 102 and/or the interior surface of the cover layer 172 may be dimpled, as shown in FIG. 7. The dimpling may be configured to provide increased air space without sacrificing the structural integrity of the surfaces. As such, the dimples may have a depth, diameter and spacing that preserves the strength of the surfaces. In some embodiments, the dimples may be arranged randomly while in other embodiments, the dimples may be arranged in a grid pattern or other pattern that may be determined to provide an improved sound quality.



FIG. 8 illustrates an exploded view of the attachment member 102 in accordance with an alternative embodiment. As with the embodiment discussed above, the attachment member 102 includes a recessed region 148 for positioning of an acoustical element therein, a hinge block 120, a spring member 130, hinge pins 140, and so forth. In FIG. 6, items that correspond with previously discussed items maintain the same numbering. The recessed region 148 may include further recessed portions 222 for accommodating pieces of dielectric material 224, such as Kapton® film. The dielectric material 224 is generally located in a position that corresponds with a conductive attachment point for the acoustical element 160, to prevent electrical communication between the attachment member 102 and the acoustical element.


A first adhesive layer 226 may be provided over the acoustical element 160 to secure the acoustical element to the attachment member 102. A second adhesive layer 228 and a cover layer 230 are also provided. The second adhesive layer 228 secures the cover layer 230 to the attachment member 102. Each of the adhesive layers 226, 228 are configured so as to allow sound to pass through (i.e., without a center area, or with perforations in a center area). Additionally, as discussed above, the cover layer 230 may be configured to limit the amount of sound that is blocked while providing structure and protection. That is, the cover layer 230 is configured to allow sound to pass through.



FIG. 9 illustrates a cross-sectional view of the attachment member of FIG. 8. As shown, the dielectric material 224 is located underneath an conductive attachment point (e.g., a solder joint) that couples the piezoelectric speaker 160 with the conduit 162. The first adhesive layer 226 is coupled to the packaging 232 of the piezoelectric speaker 160 and the cover 230, such that the speaker is suspended within the cavity. The second adhesive layer 228 secures the cover 230 to the attachment member 102. In particular, structures 234 may be provided within the recess 148 to allow for flush or nearly flush mounting of the cover 230 with the surface of the attachment member 102.



FIG. 10 illustrates an example method of manufacturing 200 the electronic device 100. The method 200 may begin by creating the attachment member 102 and the housing 104 (Block 202). Any suitable process may be implemented to create the housing 104 and the attachment member 102, including casting (e.g., die casting), milling (e.g., computer numerical control (CNC) milling), extrusion or other suitable processes. In some embodiments, more than one process may be employed.


The attachment member 102 may then be processed to position the acoustical device within the attachment member (Block 204). The recessed portion may include features configured to help align the acoustical device and/or support the acoustical device. In some embodiments, additional processing of the attachment member 102 may be performed. Such additional processing may include customizing the volume that is to be defined by the attachment member and the acoustical device, such as dimpling the surface. Additionally, in some embodiments, a thin film in provided on the surface of the attachment member (Block 206).


The acoustical member is installed into the attachment member (Block 208). In some embodiments, a conduit may be thread through an aperture in the attachment member and the main housing to provide for communicative coupling between the components of the main housing and the acoustical device. An adhesive layer is provided over the acoustical element to secure the acoustical device within the recessed portion of the attachment member (Block 210). A cover layer is then installed over the adhesive (Block 212), which is also secured by the adhesive layer.


The method also includes coupling the attachment member to the main housing (Block 214). Coupling the attachment member and the main housing may include assembling a hinge block and providing a spring to hold the attachment member in a closed position relative to the main housing. Additionally, the method may include sealing the attachment member and main housing (Block 216). The sealing may be achieved by applying a grease or glue to apertures of the main housing and attachment member to prevent intrusion of water, dust and other contaminants.


Although various specific embodiments have been described above, it will be apparent to those having skill in the art that alternative arrangements and configurations not specifically shown or described herein may be achieved without departing from the spirit and scope of the present disclosure. As such, the embodiments described herein are intended as examples and not as limitations. In particular, in some embodiments, the main housing may hold a watch or pulse monitor and the attachment member may be a band, for example.



FIG. 11 shows a top view of a device 1100 having a main housing 1102 taking the form of a watch or pulse monitor. FIG. 11 also shows attachment member 1104 taking the form of a watchband extending from opposing sides of main housing 1102. Attachment member is depicted including an acoustic device 1106 within one side of attachment member 1104. Main housing 1102 is shown including processor 1108.

Claims
  • 1. A wearable electronic device comprising: a housing including a processor;a band removably coupled to the housing at an interface, the band configured to attach the wearable electronic device to a user, the band defining a cavity and comprising protrusions extending from a surface of the band and into the cavity; anda speaker positioned within the cavity and configured to generate audible sound waves, the speaker resting on the protrusions and offset from the surface by a height of the protrusions,wherein the speaker is electrically coupled to the processor by an electrical connection that extends through the interface.
  • 2. The wearable electronic device of claim 1, wherein the interface includes a coupling element that defines a hole, and the speaker is electrically coupled to the processor via the electrical connection that passes through the hole in the coupling element.
  • 3. The wearable electronic device of claim 1, wherein the protrusions comprise dimples arranged in a grid pattern along the surface.
  • 4. The wearable electronic device of claim 1, wherein the protrusions are arranged in a pattern that improves the sound quality of the speaker and increases the air space within the cavity, the protrusions having a size and spacing that preserves the strength of the band.
  • 5. The wearable electronic device of claim 1, further comprising a cover layer and a layer of mesh secured to an interior facing surface of the cover layer, the cover layer concealing the speaker and cavity.
  • 6. The wearable electronic device of claim 5, wherein the cover layer defines a first plurality of perforations and the layer of mesh defines a second plurality of perforations smaller than the first plurality of perforations.
  • 7. The wearable electronic device of claim 5, wherein the layer of mesh is thinner than the cover layer.
  • 8. A band assembly for an electronic device comprising: a band defining a cavity and comprising a pattern of dimples protruding from a surface of the band and into the cavity, the band: configured to be removably attached to a housing including a processor; andconfigured to attach the housing to a user;a speaker located within the cavity of the band, the speaker resting on the pattern of dimples and offset from the surface by a height of the pattern of dimples; andan electrical connection configured to communicably couple the speaker and the processor when the band is coupled to the housing.
  • 9. The band assembly of claim 8, wherein the electrical connection passes through a hole in the band.
  • 10. The band assembly of claim 8, further comprising a rib that stiffens a wall defining the cavity.
  • 11. The band assembly of claim 8, wherein the pattern of dimples are arranged in a pattern that improves the sound quality of the speaker and increases the air space within the cavity, the pattern of dimples having a size and spacing that preserves the strength of the band.
  • 12. The band assembly of claim 8, wherein: the band is formed of a first material and a second material; and the cavity is defined in the second material.
  • 13. The band assembly of claim 8, further comprising adhesive coupling the speaker to the band.
  • 14. An electronic watch comprising: a body;a processor disposed in the body;a watchband removably coupled to the body that is operable to attach the body to a user, the watchband having side surfaces and a bottom surface that define a cavity, the bottom surface having a plurality of dimples extending into the cavity;a speaker positioned within the cavity of the watchband, the speaker resting on the plurality of dimples and offset from the bottom surface by a height of the plurality of dimples; anda conductive member communicably coupling the speaker and the processor via an interface between the body and the watchband.
  • 15. The electronic watch of claim 14, wherein the body is formed from at least one of aluminum, magnesium, titanium, an aluminum alloy, a magnesium alloy, a titanium alloy, or steel.
  • 16. The electronic watch of claim 14, wherein the watchband hand is formed of plastic.
  • 17. The electronic watch of claim 14, further comprising: an aperture defined in the body; andan input component positioned in the aperture.
  • 18. The electronic watch of claim 14, wherein the plurality of dimples are arranged in a pattern that improves the sound quality of the speaker and increases the air space within the cavity, the pattern of dimples having a size and spacing that preserves the strength of the watchband.
  • 19. The electronic watch of claim 14, wherein the body includes a curved side surface.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation patent application of U.S. patent application Ser. No. 13/902,966, filed May 27, 2013 and titled “Speaker Clip,” which is a continuation patent application of U.S. patent application Ser. No. 12/774,395, filed May 5, 2010 and titled “Speaker Clip,” now U.S. Pat. No. 8,452,037, the disclosures of which are hereby incorporated herein by reference in their entireties.

US Referenced Citations (133)
Number Name Date Kind
1276708 Blair Aug 1918 A
1646628 Nolen Oct 1927 A
1893291 Kwartin Jan 1933 A
1992605 Clifford et al. Feb 1935 A
2325688 Landis Jul 1943 A
2779095 Hottenroth, Jr. Jan 1957 A
3414689 Gummel et al. Dec 1968 A
3866299 Gregg et al. Feb 1975 A
4068103 King et al. Jan 1978 A
4081631 Feder Mar 1978 A
4089576 Barchet May 1978 A
4095411 Kondo Jun 1978 A
4132437 Green Jan 1979 A
4245642 Skubitz et al. Jan 1981 A
4466441 Skubitz et al. Aug 1984 A
4658425 Julstrom Apr 1987 A
4847818 Olsen Jul 1989 A
5106318 Endo et al. Apr 1992 A
5239521 Blonder Aug 1993 A
5293002 Grenet et al. Mar 1994 A
5335011 Addeo et al. Aug 1994 A
5406038 Reiff et al. Apr 1995 A
5521886 Hirosawa et al. May 1996 A
5570324 Geil Oct 1996 A
5604329 Kressner et al. Feb 1997 A
5619583 Page et al. Apr 1997 A
5733153 Takahashi et al. Mar 1998 A
5879598 McGrane Mar 1999 A
5958203 Parce et al. Sep 1999 A
6036554 Koeda et al. Mar 2000 A
6073033 Campo Jun 2000 A
6129582 Wilhite et al. Oct 2000 A
6151401 Annaratone Nov 2000 A
6154551 Frenkel Nov 2000 A
6158884 Lebby Dec 2000 A
6192253 Charlier et al. Feb 2001 B1
6317237 Nakao et al. Nov 2001 B1
6370005 Sun et al. Apr 2002 B1
6400825 Miyamoto et al. Jun 2002 B1
6516077 Yamaguchi et al. Feb 2003 B1
6553126 Han et al. Apr 2003 B2
6700987 Kuze et al. Mar 2004 B2
6813218 Antonelli et al. Nov 2004 B1
6829018 Lin et al. Dec 2004 B2
6882335 Saarinen Apr 2005 B2
6892850 Suzuki et al. May 2005 B2
6924792 Jessop Aug 2005 B1
6934394 Anderson Aug 2005 B1
6942771 Kayyem Sep 2005 B1
7003099 Zhang et al. Feb 2006 B1
7059932 Tobias et al. Jun 2006 B1
7082322 Harano Jul 2006 B2
7116795 Tuason et al. Oct 2006 B2
7154526 Foote et al. Dec 2006 B2
7158647 Azima et al. Jan 2007 B2
7181030 Rasmussen et al. Feb 2007 B2
7263373 Mattisson Aug 2007 B2
7266189 Day Sep 2007 B1
7362877 Honda et al. Apr 2008 B2
7378963 Begault et al. May 2008 B1
7527523 Yohn et al. May 2009 B2
7536029 Choi et al. May 2009 B2
7570772 Sorensen et al. Aug 2009 B2
7679923 Inagaki et al. Mar 2010 B2
7792320 Proni Sep 2010 B2
7867001 Ambo et al. Jan 2011 B2
7878869 Murano et al. Feb 2011 B2
7903061 Zhang et al. Mar 2011 B2
7912242 Hikichi Mar 2011 B2
7936114 Numata May 2011 B2
7966785 Zadesky et al. Jun 2011 B2
8031853 Bathurst et al. Oct 2011 B2
8055003 Mittleman et al. Nov 2011 B2
8116505 Kawasaki-Hedges et al. Feb 2012 B2
8116506 Kuroda et al. Feb 2012 B2
8161890 Wang Apr 2012 B2
8204266 Munoz et al. Jun 2012 B2
8218397 Chan Jul 2012 B2
8226446 Kondo et al. Jul 2012 B2
8264777 Skipor et al. Sep 2012 B2
8286319 Stolle et al. Oct 2012 B2
8340312 Johnson et al. Dec 2012 B2
8409417 Wu Apr 2013 B2
8417298 Mittleman et al. Apr 2013 B2
8447054 Bharatan et al. May 2013 B2
8452037 Filson et al. May 2013 B2
8488817 Mittleman et al. Jul 2013 B2
8508908 Jewell-Larsen Aug 2013 B2
8560309 Pance et al. Oct 2013 B2
8574004 Tarchinski et al. Nov 2013 B1
8620162 Mittleman Dec 2013 B2
8632670 Garimella et al. Jan 2014 B2
8644519 Pance et al. Feb 2014 B2
8644533 Burns Feb 2014 B2
8693698 Carnes et al. Apr 2014 B2
8724841 Bright et al. May 2014 B2
8804993 Shukla et al. Aug 2014 B2
8811648 Pance et al. Aug 2014 B2
8858271 Yeung et al. Oct 2014 B2
8882547 Asakuma et al. Nov 2014 B2
8983097 Dehe et al. Mar 2015 B2
8989428 Kwong Mar 2015 B2
9007871 Armstrong-Muntner Apr 2015 B2
9066172 Dix et al. Jun 2015 B2
9161434 Merz et al. Oct 2015 B2
9227189 Sobek et al. Jan 2016 B2
9229494 Rayner Jan 2016 B2
20030087292 Chen et al. May 2003 A1
20040029530 Noguchi Feb 2004 A1
20040203414 Satou Oct 2004 A1
20040203520 Schirtzinger et al. Oct 2004 A1
20050009004 Xu et al. Jan 2005 A1
20050265125 Yoshida Dec 2005 A1
20050271216 Lashkari Dec 2005 A1
20060072248 Watanabe et al. Apr 2006 A1
20070012827 Fu et al. Jan 2007 A1
20080204379 Perez-Noguera Aug 2008 A1
20080260188 Kim Oct 2008 A1
20080292112 Valenzuela et al. Nov 2008 A1
20080310663 Shirasaka et al. Dec 2008 A1
20090045005 Byon et al. Feb 2009 A1
20110002487 Panther et al. Jan 2011 A1
20130129122 Johnson et al. May 2013 A1
20130164999 Ge et al. Jun 2013 A1
20130259281 Filson et al. Oct 2013 A1
20130280965 Kojyo Oct 2013 A1
20140093113 Dix et al. Apr 2014 A1
20140105440 Mittleman et al. Apr 2014 A1
20140140558 Kwong May 2014 A1
20140226826 Utterman et al. Aug 2014 A1
20140250657 Stanley et al. Sep 2014 A1
20150078611 Boozer et al. Mar 2015 A1
20150326959 Zadesky et al. Nov 2015 A1
Foreign Referenced Citations (15)
Number Date Country
204104134 Jan 2015 CN
2094032 Aug 2009 EP
2310559 Aug 1997 GB
2342802 Apr 2000 GB
2102905 Apr 1990 JP
2003319490 Nov 2003 JP
2004153018 May 2004 JP
2006297828 Nov 2006 JP
WO03049494 Jun 2003 WO
WO04025938 Mar 2004 WO
WO2007083894 Jul 2007 WO
WO08153639 Dec 2008 WO
WO2009017280 Feb 2009 WO
WO2011057346 May 2011 WO
WO2011061483 May 2011 WO
Non-Patent Literature Citations (4)
Entry
Baechtle et al., “Adjustable Audio Indicator,” IBM, 2 pages, Jul. 1, 1984.
Blankenbach et al., “Bistable Electrowetting Displays,” https://spie.org/x43687.xml, 3 pages, Jan. 3, 2011.
Pingali et al., “Audio-Visual Tracking for Natural Interactivity,” Bell Laboratories, Lucent Technologies, pp. 373-382, Oct. 1999.
Zhou et al., “Electrostatic Graphene Loudspeaker,” Applied Physics Letters, vol. 102, No. 223109, 5 pages, Dec. 6, 2012.
Related Publications (1)
Number Date Country
20160234585 A1 Aug 2016 US
Continuations (2)
Number Date Country
Parent 13902966 May 2013 US
Child 15134928 US
Parent 12774395 May 2010 US
Child 13902966 US