This application is based upon and claims the benefit of priority of the prior Japanese Patent Application No. 2019-031849, filed on Feb. 25, 2019 and Japanese Patent Application No. 2019-035801, filed on Feb. 28, 2019, the entire contents of both of which are incorporated herein by reference.
The embodiments discussed herein are directed to a speaker device.
Conventionally, an actuator using a volumetric strain of a piezoelectric element by applying a voltage, what is called an inverse piezoelectric effect, has been known (for example, see Japanese Laid-open Patent Publication No. 2014-127794). Such an actuator can, by being attached to, for example, the back surface of a panel such as a display and driven, vibrate the panel and cause such a panel to function as a diaphragm of a speaker.
However, in the above-described conventional technology, there has been room for further improvement in improving the vibration characteristics of the panel.
For example, in the above-described technology, the panel is vibrated by following the expansion and contraction of the piezoelectric element by the volumetric strain and making the panel warp. However, as compared with making the panel vibrate directly but not by following, a loss in vibration transmission is likely to occur and the vibration in an opposite phase is likely to arise. Accordingly, when the panel is made to function as a speaker device, it caused the deterioration in sound-pressure frequency characteristics, for example.
Furthermore, when the attaching position to the back surface of the panel is not appropriate for example, it was not possible to vibrate the panel efficiently and it also caused the vibration characteristics to deteriorate.
A speaker device according to an embodiment a panel and an actuator. The actuator is provided on the panel. The actuator includes a diaphragm, a piezoelectric element, and a vibration transmission portion. The piezoelectric element is provided on at least one of principal surfaces of the diaphragm. The vibration transmission portion is provided on the diaphragm and abuts the panel without making contact with the piezoelectric element.
A more complete appreciation of the present disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
With reference to the accompanying drawings, the following describes exemplary embodiments of a speaker device disclosed in the present application in detail. The invention, however, is not intended to be limited by the following embodiments.
Furthermore, in the following description, a case in which an actuator is provided on, for example, a display panel such as an organic electro-luminescence (EL) display that needs no backlight and in which such a display is made to function as a display speaker will be exemplified. The display speaker corresponds to one example of a speaker device.
In each drawing used in the following description, in order to facilitate the understanding of explanation, a three-dimensional Cartesian coordinate system may be illustrated. In such a Cartesian coordinate system, a principal surface direction of plate-like members such as a panel, a piezoelectric element, and a diaphragm is defined as an X-Y plane direction, and the thickness direction of those plate-like members is defined as a Z-axis direction.
Note that “principal surface” refers to a principal surface on the front or back of a plate-like member excluding side surfaces that are the surfaces along the thickness direction of the plate-like member and the principal surface direction refers to the direction of a plane of the principal surface. Furthermore, in the following description, the description assumes as a front direction when viewed from a positive direction of the Z-axis.
Before describing from a first embodiment, an overview of a configuration of a display speaker 10′ according to a comparative example will be described first.
As illustrated in
The piezoelectric element PZ is what is called a piezoelectric element and, on the basis of an element for which a piezoelectric material such as a specific ceramic is sandwiched by two electrodes, has various structures such as unimorph type.
In the display speaker 10′ in the comparative example, for example, two pieces of such piezoelectric elements PZ are provided on the back surface of the panel P by being attached to symmetrical positions with respect to an entire surface of the panel P. Then, the display speaker 10′ vibrates the panel P by utilizing a phenomenon, what is called an inverse piezoelectric effect, of deforming a piezoelectric material when a voltage is applied to those piezoelectric elements PZ, and outputs a sound by using the panel P as a diaphragm.
Specifically, as illustrated in
However, because the volume is unchanged, the piezoelectric element PZ contracts (see arrows 202 in
In the display speaker 10′ in the comparative example, the piezoelectric elements PZ thus expand and contract and are attached to the back surface of the panel P as in the foregoing, but the panel P itself neither expands nor contracts. For this reason, as illustrated in
However, when the panel P is thus made to vibrate by warping the panel P following the expansion and contraction of the piezoelectric elements PZ, a loss in vibration transmission is likely to occur and the vibration in an opposite phase is likely to arise. Consequently, according to the display speaker 10′ in the comparative example, due to the cancellation of sound by the vibration in such an opposite phase, it is likely to cause deterioration in the sound-pressure frequency characteristics.
Hence, a display speaker 10 according to the first embodiment vibrates the panel P by an actuator 11. The actuator 11 includes a diaphragm 111, the piezoelectric elements PZ, and a vibration transmission portion 112.
The diaphragm 111 is arranged such that the principal surfaces are substantially parallel to the back surface of the panel P. The piezoelectric element PZ is provided on at least one of the principal surfaces of the diaphragm 111. The vibration transmission portion 112 is provided so as to extend from the diaphragm 111 without making contact with the piezoelectric element PZ and abut the back surface of the panel P.
In the following description, a specific configuration example of the display speaker 10 in the first embodiment will be described with reference to
As illustrated in
Specifically, as illustrated in
The piezoelectric elements PZ are provided, as illustrated in
Note that the diaphragm 111 is provided such that the area of its principal surface is greater than the area of the principal surface of the piezoelectric element PZ. Thus, as illustrated in
The vibration transmission portion 112 is provided, in the principal surface of the diaphragm 111 on the side facing the back surface of the panel P, so as to extend from the margin area and abut the back surface of the panel P. For example, as illustrated in
As illustrated in
Furthermore, as illustrated in
Then, as illustrated in
Then, in the actuator 11 thus arranged, as illustrated in
As a result, the diaphragm 111 can be made to warp more easily by following the expansion and contraction of the piezoelectric elements PZ, and the driving force of the actuator 11 can be increased.
Furthermore, as the vibration transmission portion 112 is abutting the back surface of the panel P, the vibration transmission portion 112 converts the expansion and contraction of the piezoelectric elements PZ lying along the longitudinal direction (Y-axis direction) of the piezoelectric elements PZ into vibration of a direction perpendicular to the plane (Z-axis direction) and transmits it to the back surface of the panel P (see an arrow 903 in
In other words, the vibration transmission portion 112 gathers in the center of the diaphragm 111 the vibration that is converted into the direction perpendicular to the plane as the diaphragm 111 warps by following the expansion and contraction of the piezoelectric elements PZ, and transmits it to the back surface of the panel P.
Accordingly, the occurrence of vibration in an opposite phase in the panel P can be reduced. That is, the sound pressure frequency characteristics of the panel P can be improved.
Note that, as illustrated in
Note that, as illustrated in
In
Modifications of Vibration Transmission Portion 112
Next, with reference to
Until now, it has been exemplified that the vibration transmission portion 112 is made up of three members of the horizontal portion 112a and a pair of the leg portions 112b. However, as illustrated in
Furthermore, until now, it has been exemplified that the vibration transmission portions 112 and 112A are formed in a substantially U-like shape in a longitudinal sectional view of the X-Z plane, and are brought into surface contact with the panel P by the horizontal portion 112a for example. However, the embodiments are not limited thereto.
For example, as illustrated in
As a result, the vibration transmission portion 112E can transmit the vibration intensively to a point P1 in
Furthermore, until now, it has been exemplified that the vibration transmission portions 112, 112A, and 112B are formed in a bridge-like shape. However, the embodiments are not limited thereto.
For example, as illustrated in
As a result, the vibration transmission portion 112C can transmit the vibration intensively to the points P2 and P3 that are brought into point contact, and can contribute to accurately transmitting the vibration of low-frequency components of the sound, for example. Furthermore, the vibration transmission portion 112C can transmit the stable and concentrated vibration by a plurality of point contact.
In
As in the foregoing, the actuator 11 in the first embodiment is an actuator provided on the panel P and includes the diaphragm 111, the piezoelectric elements PZ, and the vibration transmission portion 112, 112A, 112B, or 112C. The piezoelectric element PZ is provided on at least one of the principal surfaces of the diaphragm 111. The vibration transmission portion 112, 112A, 112B, or 112C is provided on the diaphragm 111 and abuts the back surface of the panel P without making contact with the piezoelectric element PZ.
Thus, according to the actuator 11 in the first embodiment, the vibration characteristics of the panel P can be improved.
Furthermore, the piezoelectric elements PZ are provided on each of the principal surfaces of the diaphragm 111, and a voltage is applied to the piezoelectric element PZ such that the phases of vibration of the principal surfaces are opposite to each other at a time of driving. Consequently, according to the actuator 11 in the first embodiment, the driving force can be improved.
Furthermore, at least one vibration transmission portion 112 is provided in the center of the diaphragm 111. Thus, according to the actuator 11 in the first embodiment, the panel P can be made to vibrate efficiently, and the vibration characteristics of the panel P can be improved.
Furthermore, the vibration transmission portions 112 and 112A are formed in a substantially U-like shape. Thus, according to the actuator 11 in the first embodiment, the vibration can be transmitted to the panel P efficiently and the vibration characteristics of the panel P can be improved.
Furthermore, the vibration transmission portion 112B is formed in a substantially arch-like shape. As a result, according to the actuator 11 in the first embodiment, the vibration can be transmitted to the contact point intensively, and that can contribute to accurately transmitting the vibration of low-frequency components of the sound, for example. In addition, due to a substantially arch-like shape, the rigidity of the vibration transmission portion 112B can be improved.
Furthermore, the vibration transmission portion 112C is formed as a plurality of protrusions projecting from the diaphragm 111. As a result, according to the actuator 11 in the first embodiment, the vibration can be transmitted to the contact points intensively, and that can contribute to accurately transmitting the vibration of low-frequency components of the sound, for example. In addition, the stable and concentrated vibration can be transmitted due to a plurality of point contact, the panel P can be made to vibrate efficiently without a loss, and the vibration characteristics of the panel P can be improved.
Moreover, the vibration transmission portion 112 is provided at the center in the longitudinal direction of the diaphragm 111 and, on the shorter side of the rear surface side of the vibration transmission portion 112 or 112A, in other words, on the surface side facing the diaphragm 111 at both end portions in the longitudinal direction of the vibration transmission portion 112, the leg portions 112b are provided. Consequently, according to the actuator 11 in the first embodiment, the vibration of the diaphragm 111 can be transmitted to the panel P in a well-balanced manner.
Until now, it has been exemplified that the vibration transmission portions 112, 112A, 112B, and 112C are abutting the back surface of the panel P. However, the embodiments are not limited thereto.
That is, as illustrated in an M1 portion in
As has been illustrated in
When attaching the actuator 11 with respect to the chassis C, there is a need to ensure a space (hereinafter may be referred to as “vibration space”) for the diaphragm 111 to vibrate without being disturbed. Accordingly, as illustrated in
The actuator 11 may be, by providing a positioning portion C1 that positions the actuator 11 to an appropriate predetermined position with respect to the chassis C, attached to the chassis C via such a positioning portion C1. The following describes such a case as a second embodiment. Note that a display speaker according to the second embodiment is denoted by a reference sign “10A” (see
Specifically, the positioning portion C1 is provided, at the predetermined position in the chassis C, so as to project from the chassis C, for example. Such a predetermined position is an attaching position of the actuator 11A where the actuator 11A can vibrate the panel P most efficiently, for example, and is set in advance by experiments and the like. Furthermore, so as to correspond to the above-described M2 portions of the diaphragm 111, two positioning portions C1 are provided, for example.
The actuator 11A is attached to an appropriate predetermined position of the chassis C by fixing such M2 portions to the chassis C by using the adhesive material A. In addition, because the positioning portions C1 are provided projecting from the chassis C, the actuator 11A can ensure the above-described vibration space.
According to such an attaching method in the second embodiment, as compared with the first embodiment, because the number of components can be reduced and the adhesive material A can be a single layer but not two layers, it can contribute to the cost reduction and the suppression of deterioration in vibration characteristics.
The more specific configuration of the positioning portion C1 will be described later with reference to
Next,
Specifically, as illustrated in
Then, in the actuator 11A thus arranged, as illustrated in
As a result, the diaphragm 111 can be made to warp more easily by following the expansion and contraction of the piezoelectric elements PZ, and the driving force of the actuator 11A can be increased.
Furthermore, as the vibration transmission portion 112 is abutting the back surface of the panel P, the vibration transmission portion 112 converts the expansion and contraction of the piezoelectric elements PZ lying along the longitudinal direction (Y-axis direction) of the piezoelectric elements PZ into vibration of a direction perpendicular to the plane (Z-axis direction) and transmits it to the back surface of the panel P (see an arrow 1103 in
In other words, the vibration transmission portion 112 gathers in the center of the diaphragm 111 the vibration that is converted into the direction perpendicular to the plane as the diaphragm 111 warps by following the expansion and contraction of the piezoelectric elements PZ, and transmits it to the back surface of the panel P.
Accordingly, the occurrence of vibration in an opposite phase in the panel P can be reduced. That is, the sound pressure frequency characteristics of the panel P can be improved.
Next, a more specific configuration example of the positioning portion C1 in the second embodiment will be described with reference to
As illustrated in
The positioning portions C1 can be formed, so as to be able to support the two M2 portions (margin areas on both end portions in the longitudinal direction of the diaphragm 111) illustrated in
Furthermore, so as to be able to support the two M2 portions in the same manner, as illustrated in
Note that, in either case of
Incidentally, the clearance i is greater than the maximum amount of displacement of the diaphragm 111 toward the negative direction of the Z-axis and the measurement h2 is set so as to be greater than such a clearance i. The length 1 between the two positioning portions C1 is set so as to be greater than the measurement in the longitudinal direction (Y-axis direction) of the piezoelectric element PZ and smaller than the measurement in the longitudinal direction (Y-axis direction) of the diaphragm 111.
As the positioning portion C1 is thus configured, with respect to the chassis C, the actuator 11A can be attached to an appropriate predetermined position easily while ensuring the clearance i for the vibration space. Thus, it can contribute to improving the vibration characteristics of the panel P.
Modification of Positioning Portion C1
Until now, it has been exemplified that the positioning portion C1 is formed as a projecting portion projecting toward the panel. P from the chassis C. However, the positioning portion C1 is not limited thereto and may be formed as a recessed portion that is recessed with respect to the chassis C. Such a modification will be described with reference to
In such a case, as illustrated in
Note that, as illustrated in
As the positioning portion C2 is thus configured, with respect to the chassis C, the actuator 11A can be attached to an appropriate predetermined position easily while ensuring the clearance i for the vibration space. Thus, it can contribute to improving the vibration characteristics of the panel P.
As in the foregoing, the display speaker 10A (corresponds to one example of “speaker device”) in the second embodiment includes the panel P, the diaphragm 111, and the chassis C. The diaphragm 111 is equipped with the piezoelectric elements PZ, and is provided so as to vibrate the panel P by vibrating by the excitation of such piezoelectric elements PZ. The chassis C supports the diaphragm 111. Furthermore, the chassis C is provided with the positioning portion C1 or C2 that positions such a diaphragm 111 to the predetermined position while ensuring the vibration space of the diaphragm 111.
Thus, according to the display speaker 10A in the second embodiment, the vibration characteristics of the panel P can be improved.
Furthermore, the diaphragm 111 has the areas of non-contact with the piezoelectric elements PZ, the non-contact areas being formed on at least both end portions, and the positioning portion C1 or C2 is formed so as to support the above-described non-contact areas of the both end portions. Consequently, according to the display speaker 10A in the second embodiment, the piezoelectric elements PZ can be excited without being disturbed. That is, the vibration characteristics of the panel P can be improved.
Furthermore, the positioning portion C1 or C2 is formed at a position where the positioning portion C1 or C2 is possible to support the diaphragm 111 at the above-described predetermined position at which the panel P vibrates at the maximum efficiency by the diaphragm 111, the predetermined position being set beforehand. Consequently, according to the display speaker 10A in the second embodiment, the panel P can be made to vibrate efficiently. That is, the vibration characteristics of the panel P can be improved.
Furthermore, as the positioning portions C1 and C2 are formed as a projecting portion projecting toward the panel P from the chassis C or a recessed portion that is recessed with respect to the chassis C, the vibration space is ensured. Consequently, according to the display speaker 10A in the second embodiment, the diaphragm 111 can be made to vibrate while ensuring the vibration space. That is, the vibration characteristics of the panel P can be improved.
Furthermore, the positioning portions C1 and C2 have a projecting measurement as a projecting portion or a recessed measurement as a recessed portion that is greater than the maximum amount of displacement of the diaphragm 111. Consequently, according to the display speaker 10A in the second embodiment, the diaphragm 111 can be made to vibrate without being disturbed. That is, the vibration characteristics of the panel P can be improved.
Furthermore, the positioning portion C1 is formed as a plurality of projecting portions extending in parallel. In addition, the positioning portion C1 is formed as a projecting portion of a frame-like shape. Thus, according to the display speaker 10A in the second embodiment, a mistake in attaching can be prevented by clearly indicating the attaching position of the actuator 11A to a worker and it can contribute to improving the vibration characteristics of the panel P.
In addition, the display speaker 10A in the second embodiment further includes the vibration transmission portion 112 extending from the above-described non-contact area of the diaphragm 111 and provided so as to abut the back surface of the panel P. Consequently, according to the display speaker 10A in the second embodiment, the occurrence of vibration in an opposite phase in the panel P can be reduced and the vibration characteristics of the panel P can be improved.
That is, as illustrated in
As a result, stereophonic reproduction of sound can be carried out, for example. When the display speaker 10B is installed on a passenger compartment of a vehicle, by providing each actuator 11 or 11A in the vicinity of both end portions of an instrument panel (instrument board) for example, effective stereophonic reproduction of sound can be provided to the driver.
Furthermore, in each of the above-described embodiments, it has been described that the piezoelectric elements PZ are provided on each of the principal surfaces of the diaphragm 111. However, the piezoelectric element PZ only needs to be provided on at least one of the principal surfaces of the diaphragm 111.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2019-031849 | Feb 2019 | JP | national |
2019-035801 | Feb 2019 | JP | national |