Information
-
Patent Grant
-
6570995
-
Patent Number
6,570,995
-
Date Filed
Tuesday, November 13, 200123 years ago
-
Date Issued
Tuesday, May 27, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 381 396
- 381 398
- 381 400
- 381 403
- 381 405
- 381 412
- 381 417
- 381 418
- 381 420
- 381 423
- 381 430
-
International Classifications
-
Abstract
A speaker device includes a speaker diaphragm composed of a selected acoustic diaphragm material whose acoustic loss coefficient (tan δ) is more than 0.02 in a frequency band over 20 kHz, and including a dome positioned at the center of the diaphragm and shaped to be substantially arcuate in its cross section, with an edge positioned outside the dome and formed integrally therewith through a link; and a conductive one-turn ring inserted into a magnetic gap and bonded fixedly, at one end thereof, to the link between the dome and the edge of the speaker diaphragm. In this device, signals of a frequency band over 20 kHz are reproduced by utilizing the split vibrations of the speaker diaphragm.
Description
BACKGROUND OF THE INVENTION
The present invention relates to a speaker device adapted for reproducing acoustic signals of a frequency band over 20 kHz.
There have been known heretofore such speaker devices as those shown in
FIGS. 7
,
8
and
9
for reproducing acoustic signals of a frequency band over 20 kHz.
The example of
FIG. 7
shows a dynamic speaker device wherein its magnetic circuit includes a doughnut-shaped magnet
1
, first and second magnetic yokes
2
,
3
composed of a magnetic material such as iron, and a magnetic gap
4
. The first magnetic yoke
2
includes a cylindrical center pole
2
a
and a discoidal flange
2
b
orthogonal to the center pole
2
a.
The second magnetic yoke
3
is termed a plate which is shaped like a doughnut whose inside diameter is greater than the outside diameter of the center pole
2
a
by a length corresponding to the magnetic gap
4
.
In a state where the center pole
2
a
is inserted into the inner hollow portion of the magnet
1
and the inner hollow portion of the plate
3
, the magnet
1
is attached fixedly while being held between the upper surface of the flange
2
b
and the lower surface of the plate
3
. The contact portions of the magnet
1
are bonded to the upper surface of the flange
2
b
and the lower surface of the plate
3
.
In order to reproduce signals of a frequency band over 20 kHz, a speaker diaphragm
7
of the speaker device is composed of an adequate acoustic diaphragm material having a great modulus of elasticity so as to raise the split vibration start frequency as high as possible. For this purpose, the speaker diaphragm is composed of a selected acoustic vibration material including ceramics such as SiC or carbon graphite, or metallic one such as aluminum or titanium.
The speaker diaphragm
7
in this example is composed of the acoustic diaphragm material mentioned above, wherein a dome
7
a
positioned at the center and shaped to be substantially arcuate in its cross section, and an edge
7
b
positioned outside the dome
7
a,
are formed integrally with each other through a link
7
c.
Further an upper end of a cylindrical voice coil bobbin
5
, which is composed of a non-conductor, is bonded fixedly with a bonding agent
9
to an inner periphery of the dome
7
a
of the speaker diaphragm
7
, and a voice coil
6
wound around the voice coil bobbin
5
at a predetermined position thereof is inserted into the magnetic gap
4
formed between the plate
3
and the center pole
2
a.
Further the outer periphery of the edge
7
b
of the speaker diaphragm
7
is bonded fixedly to a speaker frame
8
.
In the speaker device shown in
FIG. 7
, a current is caused to flow in the voice coil
6
as an acoustic signal is supplied to the voice coil
6
, and the speaker diaphragm
7
is vibrated by the interaction of the voice coil
6
and the magnetic flux in the gap
4
, thereby emitting sound from the diaphragm
7
.
FIGS. 8 and 9
show electromagnetic induction type speaker devices respectively. In explaining the examples of
FIGS. 8 and 9
, any component parts corresponding to those in
FIG. 7
are denoted by the same reference numerals, and a detailed description thereof will be omitted below.
In
FIG. 8
, an upper end of a cylindrical voice coil bobbin
10
, which is composed of a non-conductor, is bonded fixedly to an inner periphery of a dome
7
a
of a speaker diaphragm
7
, and a conductive one-turn ring
11
adhered to a predetermined position on the inner peripheral face of the bobbin
10
is inserted into a magnetic gap
4
formed between a plate
3
and a center pole
2
a.
Further a driving coil
12
is wound around a position corresponding, in the magnetic gap
4
, to the outer periphery of the center pole
2
a,
and acoustic signals are supplied to the driving coil
12
. Other component parts are structurally the same as those in FIG.
7
.
When acoustic signals are supplied to the driving coil
12
in the speaker device shown in
FIG. 8
, the conductive one-turn ring
11
is vibrated by the action of electromagnetic induction, so that the speaker diaphragm
7
is vibrated to emit sound therefrom.
FIG. 9
shows another example wherein an upper end of a cylindrical conductive one-turn ring
13
is bonded fixedly to an inner periphery of a dome
7
a
of a speaker diaphragm
7
, and this conductive one-turn ring
13
is inserted into a magnetic gap
4
formed between a plate
3
and a center pole
2
a.
In
FIG. 9
, any other component parts are structurally the same as those in FIG.
8
. The device of
FIG. 9
performs the same operation as that of FIG.
8
.
In the conventional speaker diaphragm
7
composed of such ceramic or metallic material, the acoustic loss coefficient (1/Q) is extremely small as less than 0.01. For this reason, there exists a disadvantage that, in the frequency band where split vibrations are generated, the sound pressure characteristic indicates a sharp and great peak dip derived from the influence of the split vibrations.
The speaker diaphragm
7
having such dome
7
a
and edge
7
b
is produced by integrally molding a thin sheet or the like. Therefore, the link
7
c
between the dome
7
a
and the edge
7
b
is rendered thinner as the sheet or the like is stretched in two directions.
Further when an acoustic signal is supplied to the voice coil
6
and the driving coil
12
in the above structure where the respective upper ends of the voice coil bobbin
5
, the bobbin
10
and the conductive one-turn ring
13
are bonded fixedly to the inner periphery of the dome
7
a
of the speaker diaphragm
7
, the dome
7
a
and the edge
7
b
are vibrated with 180° phase difference at a certain frequency while the link
7
c
having a small mechanical strength acts as a node, so that the sound pressure generated from the dome
7
a
and the sound pressure from the edge
7
b
at the relevant frequency cancel each other out to consequently cause a sound pressure dip, thereby deteriorating the tone quality.
SUMMARY OF THE INVENTION
The present invention has been accomplished in view of the problems mentioned above. It is an object of the invention to minimize the peak dip of sound pressure derived from split vibrations of the speaker diaphragm, and also to realize satisfactory reproduction of acoustic signals in a frequency band over 20 kHz.
According to one aspect of the present invention, there is provided a speaker device which includes a speaker diaphragm composed of a selected acoustic diaphragm material whose acoustic loss coefficient (tan δ) is more than 0.02 in a frequency band over 20 kHz, and including a dome positioned at the center and shaped to be substantially arcuate in its cross section, and an edge positioned outside the dome and formed integrally therewith through a link; and a conductive one-turn ring inserted into a magnetic gap and bonded fixedly, at one end thereof, to the link between the dome and the edge of the speaker diaphragm. This speaker device is capable of reproducing acoustic signals of a frequency band over 20 kHz by utilizing the split vibrations of the speaker diaphragm.
In the present invention where the speaker diaphragm is composed of a selected acoustic diaphragm material having an acoustic loss coefficient (1/Q) of more than 0.02 in a frequency band over 20 kHz, it becomes possible to minimize the peak dip of sound pressure derived from the split vibrations of the speaker diaphragm in a frequency band over 20 kHz. Further since one end of the conductive one-turn ring is bonded fixedly to the link between the dome and the edge of the speaker diaphragm, the mechanical strength of the link can be increased to consequently eliminate undesired vibrations with 180° phase difference in the dome and the edge, hence ensuring high-quality reproduction of signals in a frequency band over 20 kHz
According to another aspect of the present invention, there is provided a speaker device which includes a speaker diaphragm composed of a selected acoustic diaphragm material whose acoustic loss coefficient (tan δ) is more than 0.02 in a frequency band over 20 kHz, and including a dome positioned at the center and shaped to be substantially arcuate in its cross section, and an edge positioned outside the dome and formed integrally therewith through a link; and a bobbin having a wound voice coil or an adhered conductive one-turn ring disposed in a magnetic gap, and bonded fixedly, at one end thereof, to the link between the dome and the edge of the speaker diaphragm. This speaker device is capable of reproducing acoustic signals of a frequency band over 20 kHz by utilizing the split vibrations of the speaker diaphragm.
In the present invention where the speaker diaphragm is composed of a selected acoustic diaphragm material having an acoustic loss coefficient (1/Q) of more than 0.02 in a frequency band over 20 kHz, it becomes possible to minimize the peak dip of sound pressure derived from the split vibrations of the speaker diaphragm in a frequency band over 20 kHz. Further, since one end of the voice coil bobbin having the wound voice coil or one end of the bobbin having the adhered conductive one-turn ring is bonded fixedly to the link between the dome and the edge of the speaker diaphragm, the mechanical strength of the link can be increased to consequently eliminate undesired vibrations with 180° phase difference in the dome and the edge, hence ensuring high-quality reproduction of acoustic signals in a frequency band over 20 kHz.
The above and other features and advantages of the present invention will become apparent from the following description which will be given with reference to the illustrative accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a sectional view of an exemplary embodiment representing a speaker device of the present invention;
FIGS. 2A and 2B
are graphs for explaining the characteristics of the present invention;
FIGS. 3A and 3B
are graphs for explaining the characteristics of the invention;
FIGS. 4A and 4B
are also graphs for explaining the characteristics of the invention;
FIG. 5
is a sectional view showing another embodiment of the invention;
FIG. 6
is a sectional view showing a further embodiment of the invention;
FIG. 7
is a sectional view showing a conventional speaker device;
FIG. 8
is a sectional view showing another conventional speaker device; and
FIG. 9
is a sectional view showing a further conventional speaker device.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter some preferred embodiments representing the speaker device of the present invention will be described in detail with reference to
FIGS. 1
to
4
. First in
FIG. 1
, any component parts corresponding to those in
FIGS. 7
to
9
are denoted by the same reference numerals.
The example of
FIG. 1
shows an embodiment where the present invention is applied to an electromagnetic induction type speaker device. A magnetic circuit in this speaker device includes a doughnut-shaped magnet
1
, first and second magnetic yokes
2
and
3
each composed of a magnetic material such as iron, and a magnetic gap
4
. The first magnetic yoke
2
includes a cylindrical center pole
2
a
and a discoidal flange
2
b
orthogonal to the center pole
2
a.
The second magnetic yoke
3
is termed a plate which is shaped like a doughnut whose inside diameter is greater than the outside diameter of the center pole
2
a
by a length corresponding to the magnetic gap
4
.
In a state where the center pole
2
a
is inserted into the inner hollow portion of the magnetic
1
and the inner hollow portion of the plate
3
, the magnet
1
is attached fixedly while being held between the upper surface of the flange
2
b
and the lower surface of the plate
3
. The contact portions of the magnet
1
are bonded to the upper surface of the flange
2
b
and the lower surface of the plate
3
.
A speaker diaphragm
20
in the speaker device of this embodiment is composed of a selected acoustic diaphragm material such as polyethylene terephthalate having an acoustic loss coefficient (tan δ) of more than 0.02 in a frequency band over 20 kHz, and it is formed integrally of a dome
20
a
which is positioned at the center and is shaped to be substantially arcuate in its cross section, and an edge
20
b
positioned outside the dome
20
a
adjacently thereto through a link
20
c.
The frequency characteristic of such polyethylene terephthalate with respect to its acoustic loss coefficient is such as shown in FIG.
2
A. The acoustic loss coefficient in a frequency band over 20 kHz is in a range of 0.03 to 0.04 which is higher than 0.02.
In this embodiment, an upper end face of a cylindrical conductive one-turn ring
13
is bonded fixedly with a bonding agent
21
to the link
20
c
between the dome
20
a
and the edge
20
b
of the speaker diaphragm
20
, and the conductive one-turn ring
13
is inserted into the magnetic gap
4
formed between the plate
3
and the center pole
2
a.
In this case, the end face is shaped to be relatively large in width (large in thickness) so as to reduce the electric resistance of the conductive one-turn ring
13
, and the mechanical strength of the link
20
c
can be increased by equalizing the width of the end face to that of the link
20
c
between the dome
20
a
and the edge
20
b
of the speaker diaphragm
20
.
Also in the example of
FIG. 1
, a peripheral end of the edge
20
b
of the speaker diaphragm
20
is bonded fixedly to a speaker frame
8
. Further a driving coil
12
is wound around the periphery of the center pole
2
a
at a position corresponding to the gap
4
, and acoustic signals are supplied to the driving coil
12
.
In the speaker device of
FIG. 1
, the conductive one-turn ring
13
is vibrated by the action of electromagnetic induction caused due to supply of acoustic signals to the driving coil
12
, hence vibrating the speaker diaphragm
20
to emit sound therefrom.
In this case, the speaker diaphragm
20
used in this embodiment is composed of polyethylene terephthalate having an acoustic loss coefficient of 0.03-0.04 in a frequency band over 20 kHz, so that the sound pressure-to-frequency characteristic is so improved as to diminish the peak dip of the sound pressure derived from the split vibrations of the speaker diaphragm
20
in a frequency band over 20 kHz, as shown graphically in FIG.
2
B.
Further, since the end face of the conductive one-turn ring
13
is bonded fixedly with the bonding agent
21
to the link
20
c
between the dome
20
a
and the edge
20
b
of the speaker diaphragm
20
, the mechanical strength of the link
20
c
can be increased to consequently eliminate undesired vibrations that may otherwise be caused, with 180° phase difference, in the dome
20
a
and the edge
20
b
while the link
20
c
acts as a node, hence ensuring high-quality reproduction of the acoustic signals in a frequency band over 20 kHz.
Meanwhile in any speaker device structurally equal to the embodiment of
FIG. 1
, if the speaker diaphragm
20
is composed of polycarbonate having an acoustic loss coefficient of 0.02-0.03 in a frequency band over 20 kHz as shown graphically in
FIG. 3A
for example, then the sound pressure-to-frequency characteristic of the speaker device becomes such as shown in
FIG. 3B
, where a peak dip appears in a frequency band under 20 kHz with an acoustic loss coefficient of less than 0.02, but satisfactory sound pressure-to-frequency characteristic is obtained in a frequency band over 20 kHz.
Also in any speaker device structurally equal to the embodiment of
FIG. 1
, if the speaker diaphragm
20
is composed of polyether imide having an acoustic loss coefficient of 0.009-0.015, which is less than 0.02, in a frequency band over 20 kHz as shown in
FIG. 4A
for example, then the sound pressure-to-frequency characteristic of this speaker device becomes such as shown in
FIG. 4B
, where there is indicated a disadvantage that a relatively great peak dip occurs in a frequency band over 20 kHz.
FIGS. 5 and 6
show other embodiments of the present invention respectively. In the examples of
FIGS. 5 and 6
, any component parts corresponding to those shown in
FIGS. 1
,
7
and
8
are denoted by the same reference numerals, and detailed explanations thereof will be omitted below.
In the example of
FIG. 5
, an upper end of a cylindrical bobbin
10
composed of a non-conductor is bonded fixedly to a link
20
c
between a dome
20
a
and an edge
20
b
of a speaker diaphragm
20
similarly to the foregoing example of
FIG. 1
, and a conductive one-turn ring
11
adhered to a predetermined position on the inner peripheral face of the bobbin
10
is inserted into a magnetic gap
4
formed between a plate
3
and a center pole
2
a.
In this case, the link
20
c
between the dome
20
a
and the edge
20
b
of the speaker diaphragm
20
is coated with a bonding agent
21
in the entire width thereof so as to bond the upper end of the bobbin
10
fixedly, thereby further increasing the mechanical strength of the link
20
c.
Other component parts in the example of
FIG. 5
are structurally the same as those in the aforementioned example of FIG.
1
.
It will be understood with ease that, in this example of
FIG. 5
also, similar functional effects are attainable as in the foregoing example of FIG.
1
.
FIG. 6
shows an embodiment representing a dynamic speaker device. The driving coil
12
used in the example of
FIG. 1
is removed, and an upper end of a voice coil bobbin
5
composed of a non-conductor is bonded fixedly to a link
20
c
between a dome
20
a
and an edge
20
b
of a speaker diaphragm
20
similarly to the example of FIG.
1
. Further, a voice coil
6
wound around the voice coil bobbin
5
at its predetermined position is inserted into a magnetic gap
4
between a plate
3
and a center pole
2
a,
and acoustic signals are supplied to the voice coil
6
. Other component parts are structurally the same as those in FIG.
1
.
In the speaker device of
FIG. 6
, a current is caused to flow in the voice coil
6
as an acoustic signal is supplied to the voice coil
6
, so that the speaker diaphragm
20
is vibrated by the interaction of the voice coil
6
and the magnetic flux in the gap
4
, hence emitting sound therefrom.
In the example of
FIG. 6
also, the speaker diaphragm
20
is composed of a selected acoustic diaphragm material having an acoustic loss coefficient of more than 0.02 in a frequency band over 20 kHz as in the example of
FIG. 1
, thereby improving the sound pressure-to-frequency characteristic in a manner to diminish the peak dip of the sound pressure derived from the split vibrations of the speaker diaphragm in a frequency band over 20 kHz.
Moreover, since the upper end of the voice coil bobbin
5
is bonded fixedly with the bonding agent
21
to the link
20
c
between the dome
20
a
and the edge
20
b
of the speaker diaphragm
20
, the mechanical strength of the link
20
c
is increased to consequently eliminate undesired vibrations with 180° phase difference that may otherwise be generated in the dome
20
a
and the edge
20
b
while the link
20
c
acts as a node, hence realizing satisfactory high-quality reproduction of signals in a frequency band over 20 kHz.
It is a matter of course that the present invention is not limited to the preferred embodiments described hereinabove, and a variety of other structural changes and modifications will be apparent to those skilled in the art without departing from the spirit of the invention.
Claims
- 1. A speaker device comprising:a speaker diaphragm composed of an acoustic diaphragm material having an acoustic loss coefficient (tan δ) of more than 0.02 in a frequency band over 20 kHz and including a dome positioned at a center of the diaphragm and shaped to be substantially arcuate in cross section and an edge positioned outside the dome and formed integrally therewith through a link; and a conductive one-turn ring inserted into a magnetic gap and bonded fixedly at one end thereof to the link between the dome and the edge of said speaker diaphragm, wherein signals of a frequency band over 20 kHz are reproduced by utilizing split vibrations of said speaker diaphragm.
- 2. A speaker device comprising:a speaker diaphragm composed of an acoustic diaphragm material having an acoustic loss coefficient (tan δ) of more than 0.02 in a frequency band over 20 kHz and including a dome positioned at a center of the diaphragm and shaped to be substantially arcuate in cross section and an edge positioned outside the dome and formed integrally therewith through a link; and a bobbin having one of a wound voice coil and an adhered conductive one-turn ring disposed in a magnetic gap and bonded fixedly, at one end thereof, to the link between the dome and the edge of said speaker diaphragm, wherein signals of a frequency band over 20 kHz are reproduced by utilizing split vibrations of said speaker diaphragm.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2000-347069 |
Nov 2000 |
JP |
|
US Referenced Citations (6)