This invention involves a kind of speaker structure with a loading hole.
In the design of a speaker system, the frequency response and transient effect are two important parameters which affect listening. The former reflects the amplitude proportion restoration capability of the electric-acoustic conversion system in specific audio frequency bands while the latter reflects the delayed attenuation characteristic for audio frequency.
When an electric-acoustic conversion device such as the electromagnetic loudspeaker has sufficiently good frequency response in the low sound frequency range of tens of Hz, the vibration stroke of its diaphragms will definitely be larger. But as a result, its elasticity will become weaker and this will inevitably cause the transient effect to be poorer; by the same reasoning, for sounds in the low frequency range, should it be required for the transient response of the loudspeaker system to be sufficiently good, then its frequency response at lower frequencies will inevitably be attenuated. Therefore, for audio frequency electric-acoustic conversion devices, particularly for sounds in the low frequency band, the frequency response and transient effect are a contradiction which gets worse as the frequency decreases. In view of this phenomenon, this contradiction can be improved by designing a good loudspeaker which has adequate elasticity and whose cone has a sufficiently large vibration stroke. But along with this, the cost of the loudspeaker will inevitably be increased substantially. Moreover, there is limited room for improvement.
Pertaining to the abovementioned problem of the difficulty in reconciling the mutual contradiction between frequency response and transient effect for sounds at low frequencies for the electric-acoustic conversion system, this invention proposes a kind of speaker structure with a loading hole. The technical plan is as follows:
The speaker structure with a loading hole includes:
An active cavity—The active cavity includes a cone hole and a loading hole; a loudspeaker is sealed and secured on the said cone hole; the said active cavity is connected to the outside air through the said loading hole; the cone of the said loudspeaker has one side which is connected to the free space;
A driven cavity—The driven cavity is connected to the said active cavity through the said loading hole; the cross-sectional area of the said loading hole is smaller than the cross-sectional area of the air passage on its either side; further, it is not larger than ⅔ the effective area of all the vibration units in the said active cavity; also, the volume of the said active cavity does not exceed half the total volume of the said active cavity and driven cavity.
The improvements for the basic technical plan above can be embodied in the following ways:
In a preferred embodiment, there is a partition board between the said active cavity and driven cavity. The said loading hole is located on this partition board. Further, the cross-sectional area of the said loading hole is smaller than the cross-sectional area of the said partition board on its either side between the said active cavity and driven cavity.
In a preferred embodiment, the said active cavity has a cone hole.
In a preferred embodiment, the said vibration units include the cone and passive diaphragms of the said loudspeaker; the said active cavity also includes at least one diaphragm hole. A said passive diaphragm is respectively secured on each said diaphragm; the said passive diaphragms and said active cavity are kept sealed.
In a preferred embodiment, the said active cavity has a buffer tube connected to it. The inner wall of this buffer tube gradually shrinks and stretches into the said driven cavity starting from the said active cavity; the inner wall of the said, buffer tube at its end continues to stretch while gradually expanding to form a speaker tube; the said loading hole is located where the said speaker tube and buffer tube connect at the smallest hole diameter.
In a preferred embodiment, the said driven cavity is a sealed type. Apart from its internal space that is connected to the said loading hole, the rest of its parts are kept sealed.
In a preferred embodiment, the said driven cavity is a phase inversion type. Apart from its internal space that is connected to the said loading hole, it is also connected to the outside free space through an internal phase inverter tube.
The beneficial effects of this invention are:
The following diagrams and embodiments provide further explanation for this invention:
As shown in
In this embodiment, the volume of active cavity 10 is ⅓ the volume of driven cavity 20. The cross-sectional area of loading hole 12 is ⅔ the cone area of loudspeaker 13. It is smaller than the cross-sectional area of the air passage on its either side.
And so, when the cone of loudspeaker 13 vibrates in its capacity as the sole vibration unit of this embodiment, the air within active cavity 10 becomes the load of its cone rear and returns to between active cavity 10 and driven cavity 20 through loading hole 12. Loading hole 12 is smaller than the cross-sectional area of the air passage on its either side. This strengthens the resistance to air flow and causes appropriate flow interference. It constitutes a loading component which improves the transient response of the speaker body. This causes the transient response of the entire speaker body to be no longer unconstrained by loudspeaker 13, particularly at low sound frequencies. Therefore, by setting the frequency response of loudspeaker 13 itself and setting the transient effect using loading hole 12, the constraint factors for frequency response and transient effect are separated for low sound frequencies. To a great extent, this solves the contradiction between frequency response and transient effect at low sound frequencies. It lowers the cone requirements for loudspeaker 13 and simultaneously allows the frequency response and transient effect for the entire system at low sound frequencies to be handled relatively independently. This causes the loudspeaker cost to be reduced. Driven cavity 20 of this embodiment is a sealed type. Apart from loading hole 12 that is connected to active cavity 10, the rest of its parts are kept sealed. It is suitable for the design of a sealed type speaker.
As shown in
There is a cone hole 11 on active cavity 10 and loudspeaker 13 is similarly secured using the back loading method. However for the entire active cavity 10, apart from the cone of loudspeaker 13, there are still two passive diaphragms 15 jointly functioning as vibration units. Each passive diaphragm 15 is secured on diaphragm hole 14 and kept sealed with the active cavity. In this embodiment, the cross-sectional area of loading hole 12 is ¼ the cross-sectional area of all the vibration units i.e. the cone of loudspeaker 13 and all the passive diaphragms 15.
This embodiment is suitable for the design of the phase inversion type speaker body. Relative to embodiment 1, passive diaphragms 15 are included in active cavity 10 to achieve high quality phase inversion as well as improve sound effects at low frequencies; at the same time, the phase inverter tube of driven cavity 20 also causes high quality phase inversion. Other than handling the frequency response and transient effect separately, the frequency response at low sound frequencies is also very prominent for the entire speaker body; at the same time, the frequency response at low sound frequencies can be enhanced by passive diaphragms 15 and phase inverter tube 21. This further lowers the requirements for loudspeaker 13.
As per
As per
The description above only covers the preferred embodiments of this invention and it is not meant to limit its implementation scope i.e. any equivalent changes or modifications made within the patent scope of this invention or based on its specification content should all fall within the scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
201210233205.5 | Jul 2012 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SG2013/000253 | 6/19/2013 | WO | 00 |