One or more embodiments relate to a speaker system with a horn that provides asymmetrical sound coverage.
A loudspeaker typically includes one or more drivers that are each coupled to a horn. The horn includes an input throat and an output mouth. The throat is sized to match the acoustic impedance and exit diameter of the driver and to reduce distortion of the acoustic signal. The mouth is typically large enough to project sound efficiently at a desired frequency. The horn guides the acoustic signal or acoustic energy into particular directions or regions. The horn includes a waveguide that extends between the throat and the mouth to constrain and control the radiation of acoustic energy. The surfaces of the waveguide produce a coverage pattern of a specified total coverage angle that may differ horizontally and vertically. The coverage angle is a total angle in any plane of observation (although typically horizontal and vertical orthogonal planes are used) about a reference axis that extends normal to the face of the loudspeaker. The coverage angle is evaluated as a function of frequency and corresponds to the angle at which the intensity of sound, or sound pressure level (SPL), is half of the SPL on the axis.
Audio systems may include a plurality of loudspeakers to provide sound from multiple locations in a horizontal plane (e.g., “surround” sound). Audio systems may also include loudspeakers to provide sound within a vertical plane, including floor or wall mounted loudspeakers in combination with loudspeakers mounted to the ceiling. Loudspeakers that are mounted to a surface, e.g., the floor, wall, or ceiling, may be rotated to adjust the coverage pattern toward a target listening area. However, speakers that are mounted within a wall may be difficult to rotate due to the narrow depth of the wall.
In one or more embodiments, a speaker system is provided with a housing adapted to mount to a support. A driver is supported by the housing and arranged to project sound about a first axis extending at an offset angle relative to a longitudinal axis extending from the housing. A waveguide extends from the driver to define a cavity extending along the first axis. The waveguide includes a first segment formed at a first angle relative to the longitudinal axis, and a second segment formed at a second angle relative to the longitudinal axis, wherein the second segment is arranged opposite the first segment and the second angle is greater than the first angle to collectively provide an asymmetrical sound pattern in a first plane.
In one or more embodiments, a housing is provided with a faceplate adapted to mount to a wall or a ceiling, and a frame extending from the faceplate to be received in the wall or the ceiling. A horn includes a throat, a mouth, and a waveguide that extends between the throat and the mouth. The throat is disposed adjacent to a first driver to receive projected sound, and is arranged about a first axis extending from the first driver at an offset angle relative to a longitudinal axis extending normal to the faceplate. The mouth is coupled to the faceplate. The waveguide extends from the throat to the mouth to define a cavity extending along the first axis. The waveguide comprises: a first segment formed at a first angle relative to the longitudinal axis, and a second segment formed at a second angle relative to the longitudinal axis. The second segment is arranged opposite the first segment and the second angle is greater than the first angle to collectively provide an asymmetrical sound pattern in a first plane.
In one or more embodiments, a speaker system is provided with a housing with a faceplate and a frame extending from the faceplate. A first driver is supported by the frame and is arranged to project sound about a first axis extending at an offset angle relative to a longitudinal axis extending normal to the faceplate. A horn includes a throat disposed adjacent to the first driver to receive projected sound, and a mouth coupled to the faceplate. A waveguide extends from the throat to the mouth to define a cavity extending along the first axis. The waveguide comprises: a first segment formed at a first angle relative to the longitudinal axis, and a second segment formed at a second angle relative to the longitudinal axis. The second segment is arranged opposite the first segment and the second angle is greater than the first angle to collectively provide an asymmetrical sound pattern in a first plane.
As required, detailed embodiments are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary and may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present disclosure.
With reference to
The speaker system 100 may be combined with other audio, visual, and peripheral devices to provide a home entertainment system 114. In one or more embodiments, the audio devices include a front-right speaker system 116, a top-left speaker system 118, and a top-right speaker system 120 to collectively provide sound to the target listening area 112. In one or more embodiments, the home entertainment system 114 also includes side speakers and rear speakers (not shown) to collectively provide 360 degree “surround” sound.
The front-right speaker system 116 includes similar components as the front-left speaker system 100, including a housing 122 that supports a first loudspeaker 124, a second loudspeaker 126, and a third loudspeaker 128. The housing 122 may be arranged in a flush mount “in-wall” configuration at a front-right position, as illustrated in
The first loudspeaker 124 of the front-right speaker system 116 and the first loudspeaker 104 of the front-left speaker system 100 may be arranged such that they are generally mirror images of each other about a vertical axis to both provide asymmetric sound inward in the horizontal plane toward the target listening area 112, e.g., toward a couch located at the center of the room, as shown in
Referring to
The top-right speaker system 120 includes a housing 142 that supports a first loudspeaker 144 and a second loudspeaker 146. The housing 142 may be arranged in a flush mount “in-ceiling” configuration at a top-right position, as illustrated in
Each speaker system 100, 116, 118, 120 may include high-frequency loudspeakers and low-frequency loudspeakers. High-frequency sound patterns are generally more narrow than low-frequency sound patterns. Accordingly, in one or more embodiments the high-frequency loudspeakers of each speaker system 100, 116, 118, 120 are arranged off-axis to direct their respective asymmetrical sound patterns toward a target listening area. Whereas the low-frequency loudspeakers direct symmetrical sound patterns toward the target listening area while projecting sound about a longitudinal axis.
The home entertainment system 114 may also include a television 152 and an audio source 154 such as a DVD player, a video game console, an audio receiver, or a router. The home entertainment system 114 also includes a home controller 156 for controlling various aspects of the devices included in the home entertainment system 114. For example, the home controller 156 may separate audio from the audio source 154 into multiple channels corresponding to different locations in the room, e.g., front-center, front-left, front-right, rear-left, rear-right, top-left, top-right, etc. The home controller 156 may include crossover functionality and separate the audio into different channels based on frequency, e.g., high, medium, low, etc. The home controller 156 may provide audio channels to the appropriate speaker. For example, the home controller 156 may provide: the front-left audio channels to the front-left speaker system 100, the front-right audio channels to the front-right speaker system 116, the top-left audio channels to the top-left speaker system 118, and the top-right audio channels to the top-right speaker system 120. In other embodiments, the home controller 156 provides all audio channels to each speaker system, and the speaker system selects the appropriate channels based on its location.
As described above, the home controller 156 may separate the audio into multiple channels, including top channels. Such top channels may be used to simulate stationary or moving overhead sound, e.g., a plane flying overhead. Existing home entertainment systems may include wall and/or ceiling mounted speakers (not shown) that are adjustable to manually adjust the coverage pattern towards a target listening area and away from objects in the room, e.g., walls. Such adjustment may be limited for speaker systems that are mounted within a wall or ceiling due to the relatively narrow depth of the wall. Accordingly, each speaker system 100, 116, 118, 120 may include an off-axis loudspeaker horn to provide an asymmetrical sound pattern.
With reference to
The first loudspeaker 104 includes a first driver 164 and a horn 166. The first driver 164 receives an audio signal from the audio source 154 and/or home controller 156 and projects sound. The first driver 164 may be a compact high-frequency compression driver or tweeter that projects sound between 2 kHz and 20 kHz. The horn 166 guides the sound projected by the first driver 164 to form an asymmetric pattern. The horn 166 may be integrated into the housing 102 or attached to the housing 102.
The second loudspeaker 106 includes a second driver 168 and a diaphragm 170. The second driver 168 may be a compact low-frequency compression driver or woofer that projects sound between 50 Hz and 1 kHz. The diaphragm 170 attaches to the second driver 168 and to the housing 122 about an opening 172 formed through the faceplate 158. The third loudspeaker 108 includes a third driver 174 and a diaphragm 176. The third driver 174 may be a compact low-frequency compression driver or woofer that projects sound between 50 Hz and 1 kHz. The diaphragm 176 attaches to the third driver 174 and to the housing 122 about an opening 178 formed through the faceplate 158.
Referring to
With reference to
The second segment 188 and the fourth segment 192 are formed in different shapes to provide different coverage angles (b) and (d). Coverage angle (b) may be between 0-80 degrees and coverage angle (d) may be between 0-60 degrees. In one or more embodiments, the second segment 188 provides a coverage angle of 80 degrees; and the fourth segment 192 provides a coverage angle of 40 degrees. The first segment 186 and the third segment 190 may be formed in the same shape to provide the same coverage angle. Coverage angles (a) and (c) may be between 0-90 degrees. In one or more embodiments, angle (a) and angle (c) are both 90 degrees.
The speaker system 100 may be mounted within a wall 198. The apertures 162 of the faceplate 158 receive fasteners to mount the housing 102 to the wall 198. The frame 160 extends from the faceplate 158 to extend through an opening 199 in the wall 198. The speaker system 100 has a compact design, e.g., with a depth (Y) that is less than 101.6 mm (4.0 inches), so that it fits within a standard wall 198. The speaker system 100 also has a width (w) that is less than 406.4 mm (16.0 inches) so that if fits between adjacent studs in the wall 198.
The asymmetrical horn 700 includes a throat 780, a mouth 782, and a waveguide 784 including four segments 786, 788, 790, and 792 extending between the throat 780 and mouth 782. The throat 780 is offset horizontally within the asymmetrical horn 700, such that the second segment 788 and the third segment 790 are formed in different shapes to provide different coverage angles (b) and (d). Coverage angle (b) may be between 0-80 degrees and coverage angle (d) may be between 0-60 degrees. In one or more embodiments, the second segment 188 provides a coverage angle (b) of 80 degrees; and the fourth segment 192 provides a coverage angle (d) of 60 degrees to collectively provide an asymmetrical coverage pattern 794 in a horizontal plane. The throat 780 is centered vertically within the asymmetrical horn 700, such that the first segment 786 and the third segment 790 are formed in similar shapes and generally mirror images of each other to provide a symmetrical coverage pattern in a vertical plane (not shown).
With reference to
The first loudspeaker 134 includes a first driver 964 and a horn 966. The first driver 964 receives an audio signal from the audio source 154 and/or home controller 156 (
The second loudspeaker 136 includes a second driver 968 and a diaphragm 970. The second driver 968 may be a compact low-frequency compression driver or woofer that projects sound between 50 Hz and 1 kHz. The diaphragm 970 attaches to the second driver 968 and to the housing 132 about an opening 972 formed through the horn 966.
Referring to
With reference to
The shape of the first segment 986 provides a coverage angle (e) in a horizontal plane relative to Axis C (not shown). The shape of the second segment 988 provides a coverage angle (f) in a longitudinal plane relative to Axis C. The shape of the third segment 990 provides a coverage angle (g) in a horizontal plane relative to Axis C (not shown). The shape of the fourth segment 992 provides a coverage angle (h) in a longitudinal plane relative to Axis C. The coverage angle is evaluated as a function of frequency and corresponds to the angle at which the intensity of sound, or sound pressure level (SPL), is half of the SPL on Axis C.
The second segment 988 and the fourth segment 992 are formed in different shapes to provide different coverage angles (f) and (h). Coverage angle (f) may be between 0-80 degrees and coverage angle (h) may be between 0-60 degrees. In one or more embodiments, the second segment 988 provides a coverage angle (f) of 80 degrees; and the fourth segment 992 provides a coverage angle (h) of 60 degrees. The first segment 986 and the third segment 990 may be formed in the same shape to provide the same coverage angle. Coverage angles (e) and (g) may be between 0-90 degrees. In one or more embodiments, angle (e) and angle (g) are both 80 degrees.
The speaker system 118 may be mounted within a ceiling 998. The apertures 962 of the faceplate 958 receive fasteners to mount the housing 132 to the ceiling 998. The frame 960 extends from the faceplate 958 to extend through an opening 999 in the ceiling 998.
With reference to
With reference to
Referring to
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the disclosure. Additionally, the features of various implementing embodiments may be combined to form further embodiments.
Number | Name | Date | Kind |
---|---|---|---|
4580655 | Keele, Jr. | Apr 1986 | A |
7275621 | Delgado, Jr. | Oct 2007 | B1 |
7590257 | Blanchard | Sep 2009 | B1 |
D796472 | Sprinkle | Sep 2017 | S |
9924249 | Sprinkle | Mar 2018 | B2 |
10848862 | Showalter | Nov 2020 | B2 |
20170055067 | Moro | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
200806069 | Jan 2008 | TW |
Number | Date | Country | |
---|---|---|---|
20220353607 A1 | Nov 2022 | US |