The field of the invention is headset audio systems.
The background description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided in this application is prior art or relevant to the presently claimed invention, or that any publication specifically or implicitly referenced is prior art.
Headset audio systems are subject to steady improvement, and with their increasing popularity, especially among gamers, a need exists to create headset audio systems that can reproduce sounds with increasing accuracy and fidelity. One way to do this is to create headset audio systems that feature chambers behind a speaker's diaphragm.
U.S. Pat. Nos. 10,257,607 and 10,171,905 represent efforts made to improve the state of the art in this field. The devices captured in the '607 and the '905 patents feature headset audio systems having chambers, but those chambers are not optimally configured to cooperate with one another in a way that allows for improved sound performance in different frequency ranges. U.S. Pat. No. 9,942,648 is another example of efforts made in this space. The '648 patent describes an earbud audio system instead of a headset audio system, where the earbud audio system includes multiple chambers behind a driver.
But none of these references contemplate advantages conferred by more creative headset audio system configurations featuring multiple chambers that are tuned to have resonant frequencies within certain frequency bands to improve frequency response of headset audio systems within those frequency bands. Thus, a need still exists in the art for improved headset audio systems.
These and all other extrinsic materials discussed in this application are incorporated by reference in their entirety. Where a definition or use of a term in an incorporated reference is inconsistent or contrary to the definition of that term provided in this application, the definition of that term provided in this application applies and the definition of that term in the reference does not apply.
The present invention is directed to headset audio systems and methods. In one aspect of the inventive subject matter, a headset audio system is contemplated to include: a casing comprising an upper portion, a lower portion, a first resonance chamber, a second resonance chamber, a first vent, and a second vent; a speaker driver disposed between the upper portion and the lower portion, where the first resonance chamber is separated from the second resonance chamber by at least one wall and where the first vent couples with the first resonance chamber and creates a first pathway from the first resonance chamber to the casing's exterior. The second vent then couples with the second resonance chamber and creates a second pathway from the second resonance chamber to the casing's exterior; the speaker driver has a diaphragm, where a front side of the diaphragm projects sound away from the casing and a back side of the diaphragm projects sound into both the first resonance chamber and the second resonance chamber; the first resonance chamber has a first resonant frequency; and the second resonance chamber has a second resonant frequency that is different from the first resonant frequency.
In some embodiments, the first resonant frequency is between 60 Hz and 250 Hz and the second resonant frequency is between 500 Hz and 2 kHz. The first and second resonance frequencies can exist between 20 Hz to 60 Hz, 60 Hz to 250 Hz, 250 Hz to 500 Hz, 500 Hz to 2 kHz, 2 kHz to 4 kHz, 4 kHz to 6 kHz, or 6 kHz to 20 kHz without deviating from the inventive subject matter. In some embodiments, the first vent has a length between approximately 15-40 mm, and the second vent has a length between approximately 2-15 mm. The first vent can have a cross-sectional area between approximately 20-60 mm2, and the second vent can have a cross-sectional area between approximately 20-60 mm2.
In another aspect of the inventive subject matter, another headset audio system is contemplated to include: a casing comprising a first resonance chamber having a first resonant frequency, a second resonance chamber having a second resonant frequency that is different from the first resonant frequency, a first vent, and a second vent, where the first vent creates a pathway between the first resonance chamber and the casing's exterior and where the second vent creates a pathway between the second resonance chamber and the casing's exterior; and a speaker driver disposed within the casing, the speaker driver comprising a diaphragm, where a front side of the diaphragm projects sound away from the casing and a back side of the diaphragm projects sound into both the first resonance chamber and the second resonance chamber.
In some embodiments, the first resonant frequency is between 60 Hz and 250 Hz and the second resonant frequency is between 500 Hz and 2 kHz. The first and second resonance frequencies can exist between 20 Hz to 60 Hz, 60 Hz to 250 Hz, 250 Hz to 500 Hz, 500 Hz to 2 kHz, 2 kHz to 4 kHz, 4 kHz to 6 kHz, or 6 kHz to 20 kHz without deviating from the inventive subject matter. In some embodiments, the first vent has a length between approximately 15-40 mm, and the second vent has a length between approximately 2-15 mm. The first vent can have a cross-sectional area between approximately 20-60 mm2, and the second vent can have a cross-sectional area between approximately 20-60 mm2.
One should appreciate that the disclosed subject matter provides many advantageous technical effects including the ability to tune headset audio systems for improved sound reproduction in targeted frequency ranges. Various objects, features, aspects, and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawing figures in which like numerals represent like components.
The following discussion provides example embodiments of the inventive subject matter. Although each embodiment represents a single combination of inventive elements, the inventive subject matter is considered to include all possible combinations of the disclosed elements. Thus, if one embodiment comprises elements A, B, and C, and a second embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly disclosed.
As used in the description in this application and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. Also, as used in the description in this application, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
Also, as used in this application, and unless the context dictates otherwise, the term “coupled to” is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously.
In some embodiments, the numbers expressing quantities of ingredients, properties such as concentration, reaction conditions, and so forth, used to describe and claim certain embodiments of the invention are to be understood as being modified in some instances by the term “about.” Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some embodiments of the invention may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, and unless the context dictates the contrary, all ranges set forth in this application should be interpreted as being inclusive of their endpoints and open-ended ranges should be interpreted to include only commercially practical values. Similarly, all lists of values should be considered as inclusive of intermediate values unless the context indicates the contrary.
Upper casing 102 also features acoustic damper mesh 114. Acoustic damper mesh 114 is designed to absorb sound, and, as shown in, e.g.,
Lower casing 104 couples with upper casing 102. It can couple with upper casing 102 by pressure fit, by snapping together, by adhesive, by fastener, etc.
Physical attributes of vents 106 and 108 can both impact performance of the headset audio system 100. For example,
It is contemplated that each resonance chamber 116 and 118 and associated vent 108 and 106, respectively, can be tuned according to principles that apply to Helmholtz resonators. A Helmholtz resonator has a cavity with an opening at one end (e.g., like a beer bottle that can be used to make a sound when air is blown over its opening). The volume of space within the cavity can determine a tone that is generated when air passes over its opening, and the size and shape of the opening can also impact its acoustic properties. In the context of headset audio system 100, the volume and configuration (e.g., shape, material, etc.) of each resonance chamber 116 and 118 and the configuration (e.g., size, shape, length, etc.) of each corresponding vent 108 and 106 thus affects each resonance chamber's resonant frequency.
Thus, each resonance chamber 116 and 118 and corresponding vent 108 and 106 can be tuned such that a range of frequencies in the vicinity of the resonant frequency of a chamber and vent combination improve a headset audio system's ability to produce high quality sound in that frequency range. For example, if chamber 118 and vent 106 are configured to have a resonant frequency (e.g., according to Helmholtz resonance principles) within a band of frequencies associated with bass tones (e.g., a resonant frequency between 60 Hz and 250 Hz such as around 100 Hz), then headset audio system 100 can produce higher quality sounds in the base range. To complement chamber 118 and vent 106, chamber 116 and vent 108 can thus be configured to have a resonant frequency that is within a range of frequencies associated with midrange sounds (e.g., between around 500 Hz and about 2 kHz such as around 1 kHz), which would result in headset audio system 100 also producing higher quality sounds in the midrange.
The same can be true for any other frequency range. For example, the low midrange is generally associated with sounds occurring between about 250 Hz and about 500 Hz, so reproduction of sounds in this frequency range can be improved by creating a resonance chamber and vent that are configured with a resonant frequency that is within that range of frequencies (e.g., around 300 Hz). In another example, the sub bass range is generally associated with sounds occurring between about 20 Hz and about 60 Hz, so reproduction of sounds in this frequency range can be improved by creating a resonance chamber and vent that are configured with a resonant frequency that is within that range of frequencies (e.g., around 35 Hz). In another example, the upper midrange is generally accepted as being sounds occurring between about 2 kHz and about 4 kHz, so reproduction of sounds in this frequency range can be improved by creating a resonance chamber and vent that are configured with a resonant frequency within that range of frequencies (e.g., around 3 kHz). In another example, presence is generally accepted as being sounds occurring between about 4 kHz and about 6 kHz, so reproduction of sounds in this frequency range can be improved by creating a resonance chamber and vent that are configured with a resonant frequency within that range of frequencies (e.g., around 5 kHz). In another example, brilliance is generally accepted as being sounds occurring between about 6 kHz and about 20 kHz (where 20 kHz is often described as an upper limit of sounds the human ear can detect, depending on the human), so reproduction of sounds in this frequency range can be improved by creating a resonance chamber and vent that are configured with a resonant frequency within that range of frequencies (e.g., around 10 kHz).
Thus, as with Helmholtz resonators, the internal volume of a chamber of the inventive subject matter can be adjusted to affect its resonant frequency. For example,
It is contemplated that if resonance chamber 116 and vent 108 are configured to improve sound quality within a certain frequency range, then resonance chamber 118 and vent 106 can be configured to improve sound quality within a different frequency range, where the frequency ranges discussed above can be implemented for each of the vent/chamber pairs.
Thus, resonance chamber 116 can be tuned for sub bass, bass, midrange, upper midrange, presence, or brilliance, and resonance chamber 118 can be used for any one of those same ranges. In some embodiments, resonance chamber 116 is tuned for a different range than resonance chamber 118, but it is contemplated that both resonance chambers can be tuned to improve performance within the same range of frequencies where, e.g., one resonance chamber is tuned such that its resonant frequency is in the lower end of a range than the other resonance chamber.
In some embodiments, lower casing 106 features coupling protrusions having, e.g., screw holes that can be used to hold headset audio systems of the inventive subject matter inside a headset's earcup.
These components are generally annular in shape, creating a cavity 128 passing therethrough. One side of cavity 128 has a covering 130, which can be made from, e.g., an air permeable membrane that, in effect, makes it so cavity 128 functions as part of resonance chamber 116. In some embodiments, covering 130 is not air permeable.
As mentioned above, as the voice coil 126 moves, it causes dome 110 and outer membrane 112 to create compression waves (also described as sound waves). Sound intended for a listener is projected away from the diaphragm (e.g., upwards as drawn in
Resonance chamber 116 is separated by from resonance chamber 118 in part by wall 134. Wall 134, which is annular, is formed through the mating of protrusions from both the lower casing 104 and the interior casing 136. These protrusions are depicted as having complementary notches, where the notches help to align both portions (e.g., the interior casing portion and the lower casing portion) of wall 134 to create and keep separate resonance chambers 116 and 118. As shown in
Thus, as described above, as a speaker driver generates sound, compression waves travel into both resonance chambers 116 and 118. Resonance chamber 116 primarily receives compression waves from both dome 110 (e.g., via cavity 128) and outer membrane 112 (e.g., via channels 132), and resonance chamber 118 primarily receives compression waves from outer membrane 112. In some embodiments, depending on desired resonant frequencies, resonance chamber 118 can be sized and dimensioned to be larger or smaller, e.g., volumetrically, than resonance chamber 116. Thus, the present invention permits robust amplification of human-audible frequencies (e.g., up to two frequency ranges as up to two chambers are contemplated) within a headset by providing two separate amplification chambers that are separately vented. Channels 132 and 138 are disposed around the speaker driver as cutouts (e.g., formed during molding of the interior casing, cut out of interior casing after forming the interior casing, etc.) in an interior casing 136, as shown in
Thus, specific systems, apparatuses, and methods directed to headset audio systems have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts in this application. The inventive subject matter, therefore, is not to be restricted except in the spirit of the disclosure. Moreover, in interpreting the disclosure all terms should be interpreted in the broadest possible manner consistent with the context. In particular the terms “comprises” and “comprising” should be interpreted as referring to the elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps can be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced.