Special PC mode entered upon detection of undesired state

Information

  • Patent Grant
  • 8176564
  • Patent Number
    8,176,564
  • Date Filed
    Tuesday, June 14, 2005
    19 years ago
  • Date Issued
    Tuesday, May 8, 2012
    12 years ago
Abstract
A system and method for monitoring a computer, particularly a pay-per-use computer, uses an isolated computing environment or supervisor. The isolated computing environment boots prior to any boot device associated with an operating system, runs concurrently with the operating system and monitors and measures the computer in operation. Once the isolated computing environment determines the computer is not in compliance with the required policies, the isolated computing environment may either impose an impediment to use such as slowing clock speed or completely disable the operating system. The user may have to return the computer to a service provider to restore it from the offending condition and reset the computer to an operational state.
Description
BACKGROUND

Operating systems are a key building block in the development of computing systems. Over the several decades since personal computing has become widespread operating systems have substantially increased in complexity. The development of a computer operating system that is backward-compatible to a substantial number of computer applications, but still is secure enough to achieve a high level of assurance of tamper resistance is extremely challenging. However, new business models for pay-per-use or pay-as-you-go computing require a high level of assurance of tamper resistance.


SUMMARY

A computer adapted for use in a pay-per-use business model may use a supervisor or isolated computing environment to monitor and measure performance of the computer, as well as compliance to a set of usage policies. The isolated computing environment may have a secure memory, a secure processing capability, and a cryptographic capability. The isolated computing environment may boot prior to other boot devices to establish a secure computing base before the introduction of non-secure computing capabilities to the computer, such as the operating system.


According to one aspect of the disclosure, the isolated computing environment may request data, receive data, or probe for information from the computer. The isolated computing environment may use the acquired data to develop a score for compliance with the policy established, for example, by a service provider. The score may increase as compliance with the policies is confirmed and the score may decrease as noncompliance is determined. Should the score reach or fall below a threshold level, a sanctioned mode may be invoked. The sanctioned mode, or alternate operating mode, may involve a simple warning to a user, may limit a function of the computer so the computer is less useful, or may stop the operating system or some other key component completely, thereby disabling the computer. When disabled, the computer may require service by a service provider or other authorized party for determination and correction of noncompliant conditions, and may include the user paying back service fees or penalties. The isolated computing environment may send notification data to a user or service technician to assist in determining the current state of the computer and corrective actions to take to restore the computer. Similarly, even in a non-sanctioned mode, the isolated computing environment may export data for monitoring or diagnostics.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified and representative block diagram of a computer;



FIG. 2 is a block diagram of a simplified isolated computing environment;



FIG. 3 is a simplified and exemplary block diagram illustrating an embodiment of a supervisor;



FIG. 4 is a simplified and exemplary block diagram illustrating another embodiment of a supervisor;



FIG. 5 is a flow chart depicting a method of establishing and measuring compliance to a policy on a computer.





DETAILED DESCRIPTION OF VARIOUS EMBODIMENTS

Although the following text sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the description is defined by the words of the claims set forth at the end of this disclosure. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.


It should also be understood that, unless a term is expressly defined in this patent using the sentence “As used herein, the term ‘——————’ is hereby defined to mean . . . ” or a similar sentence, there is no intent to limit the meaning of that term, either expressly or by implication, beyond its plain or ordinary meaning, and such term should not be interpreted to be limited in scope based on any statement made in any section of this patent (other than the language of the claims). To the extent that any term recited in the claims at the end of this patent is referred to in this patent in a manner consistent with a single meaning, that is done for sake of clarity only so as to not confuse the reader, and it is not intended that such claim term by limited, by implication or otherwise, to that single meaning. Finally, unless a claim element is defined by reciting the word “means” and a function without the recital of any structure, it is not intended that the scope of any claim element be interpreted based on the application of 35 U.S.C. §112, sixth paragraph.


Much of the inventive functionality and many of the inventive principles are best implemented with or in software programs or instructions and integrated circuits (ICs) such as application specific ICs. It is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation. Therefore, in the interest of brevity and minimization of any risk of obscuring the principles and concepts in accordance to the present invention, further discussion of such software and ICs, if any, will be limited to the essentials with respect to the principles and concepts of the preferred embodiments.



FIG. 1 illustrates a computing device in the form of a computer 110. Components of the computer 110 may include, but are not limited to a processing unit 120, a system memory 130, and a system bus 121 that couples various system components including the system memory to the processing unit 120. The system bus 121 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.


Computer 110 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 110 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, FLASH memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by computer 110. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.


The system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to transfer information between elements within computer 110, such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not limitation, FIG. 1 illustrates operating system 134, application programs 135, other program modules 136, and program data 137.


The computer 110 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152, and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk 156 such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 141 is typically connected to the system bus 121 through a non-removable memory interface such as interface 140, and magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a removable memory interface, such as interface 150.


The drives and their associated computer storage media discussed above and illustrated in FIG. 1, provide storage of computer readable instructions, data structures, program modules and other data for the computer 110. In FIG. 1, for example, hard disk drive 141 is illustrated as storing operating system 144, application programs 145, other program modules 146, and program data 147. Note that these components can either be the same as or different from operating system 134, application programs 135, other program modules 136, and program data 137. Operating system 144, application programs 145, other program modules 146, and program data 147 are given different numbers here to illustrate that, at a minimum, they are different copies. A user may enter commands and information into the computer 20 through input devices such as a keyboard 162 and pointing device 161, commonly referred to as a mouse, trackball or touch pad. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 120 through a user input interface 160 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). A monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190. In addition to the monitor, computers may also include other peripheral output devices such as speakers 197 and printer 196, which may be connected through an output peripheral interface 195.


The computer 110 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 110, although only a memory storage device 181 has been illustrated in FIG. 1. The logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area network (WAN) 173, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.


When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a network interface or adapter 170. When used in a WAN networking environment, the computer 110 typically includes a modem 172 or other means for establishing communications over the WAN 173, such as the Internet. The modem 172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 110, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG. 1 illustrates remote application programs 185 as residing on memory device 181.


The communications connections 170172 allow the device to communicate with other devices. The communications connections 170172 are an example of communication media. The communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. A “modulated data signal” may be a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Computer readable media may include both storage media and communication media.


An isolated computing environment 125 may be used to implement a supervisor, a trusted computing base, or other secure environment. and may be used to monitor, measure, and/or sanction the computer 110 when policies established for use are not followed. The policies may reflect the terms of an agreement between a user of the computer 110 and a service provider with an interest in the computer 110. The isolated computing environment 125 is discussed in more detail with respect to FIG. 2, below.


The isolated computing environment 125 may be instantiated in more than one manner. When implemented by one or more discrete components, the isolated computing environment 125 may be disposed on the motherboard (not depicted) of the computer. Ideally, the removal or de-lidding of the isolated computing environment 125 causes permanent damage to the motherboard and/or surrounding components and renders the computer 110 inoperable.


Another instantiation of the isolated computing environment 125 may be as depicted in FIG. 1, where the isolated computing environment 125 is incorporated in the processing unit 120. Being so disposed in the processing unit may offer advantages of better access to processing unit registers and monitoring of data sequences as well as improved resistance to physical attacks.


When an attested boot process exists, the isolated computing environment 125 may be implemented in software because the boot process can guarantee execution cycles and a certified operating environment. In such a case, the isolated computing environment 125 may not require a separate processor but may be run from the main processing unit 120. When an attested boot is not available, a hardware implementation of the isolated computing environment 125 may be recommended.


A license provisioning module, or LPM (see FIGS. 3 & 4), may be incorporated to measure and authorize use of the computer in a pay-per-use or pay-as-you-go configuration. The LPM, when implemented in software, may be stored in nonvolatile memory 146 and executed from memory 136. When the LPM is implemented in software, it may be vulnerable to attack. One purpose of the supervisor (see FIGS. 3 & 4) and/or isolated computing environment 125 may be to act as a watchdog over the LPM to help ensure its integrity and correct function.


In an alternate embodiment; the isolated computing environment 125 may assume the role of the LPM with respect to valid hardware configuration of the computer. That is, the separately-booted isolated computing environment 125 may have configuration data that allows operation of the computer according to its licensed capability, the licensed capability being less than that potentially available. For example, the computer may be capable of running with 512 megabytes (MB) of random access memory (RAM), but the valid configuration specifies 256 megabytes of RAM. The isolated computing environment 125 may limit the function of the computer to the 256 MB of system memory. Similar restrictions may be enforceable with respect to processor clock rate, available cache memory, number of cores of the processor 120 available, graphics card functions, hard drive capacity, networking options, or internal bus drivers. From an implementation perspective, there is little or no difference between imposing a limitation based on a monitored activity or enforcing a limitation based on a pre-determined setting or license.


Referring to FIG. 2, a simplified and representative isolated computing environment is discussed and described. The isolated computing environment may be or may be similar to the isolated computing environment 125 introduced above. The isolated computing environment 125 may include a memory 202, both volatile and non-volatile, a data input/output circuit 204 and a timer or clock 206. For example, a timer 206 may be used to implement the clock function by counting intervals of real time.


The isolated computing environment 125 may further include a digital signature verification circuit 208. When one-way verification of an external entity is required, for example, verification of a server (not depicted), a random number generator 210 may be a part of the digital signature verification circuit 208. Digital signature technology is well known and hashing, signature verification, symmetric and asymmetric algorithms and their respective keys are not discussed here in detail.


The blocks of the isolated computing environment 125 may be coupled by a bus 210. The bus 210 may be separate from a system or processing unit bus 214 used for external access. Separate busses may improve security by limiting access to data passed by bus 210. The bus 210 may incorporate security precautions such as balanced data lines to make power attacks on cryptographic keys 216 stored in the memory 202 more difficult.


A processor 216 may be available for execution of programs. As discussed above, when an attested boot is not available, the processor 216 may be included to provide the isolated computing environment 125 with guaranteed computing capability and separation from the operating system 134.


The memory 202, may, in addition to storing cryptographic keys 216, store data 220 that may include operational information, such as, a current score associated with compliance, or system information, such as, specific contractual information. Measurement data 222 may be associated with a monitor program 224. The monitor program 224 is discussed in more detail below, but briefly, is used to take measurements, receive information about the current operation of the computer 110, and determine a compliance score. The sanction program 226 may be invoked when the compliance score is below a predetermined threshold. The sanction program 226 may be capable of triggering both software and hardware mechanisms for impairing or disabling the computer 110.



FIG. 3 illustrates an exemplary embodiment of a computer 110, showing the relationship hardware and software components associated with pay-per-use or pay-as-you-go computing. The operating system 134 of FIG. 1 may support the LPM 302 and operating system services 304 associated with the pay-as-you-go operation. The operating system services 304 may include secure time, secure store, and encrypt/decrypt. In this embodiment, elements of the isolated computing environment 125 are configured as a supervisor 306. The supervisor 306 may include a secure memory 308, a secure clock 310, and a cryptographic key store 312. A unique hardware identifier 314 may be available to the supervisor 306 for use in processing provisioning packets and in identifying the computer 110 to an outside entity.


The secure memory 308 may be a separate memory area accessible only by the isolated computing environment 125, and/or only after cryptographic authentication. The secure clock 310 may provide a tamper-resistant time base providing monotonically increasing time for the life of the computer. The secure clock 310 may be used for interval timing or as a calendar base. The cryptographic key store 312 may provide storage for cryptographic keys. The key store 312 may be essentially a write-only memory and include cryptographic algorithms such that calculations are performed within the key store and only results are provided. Keys may not be read from the key store 312 once written and verified.


The supervisor 306, and its underlying isolated computing environment 125, may operate independently of the operating system 134. For security reasons, the supervisor 306 may boot prior to any other boot device when the computer 110 is powered on or reset. Booting independently from the operating system helps ensure that the supervisor 306 and the isolated computing environment 125 are not spoofed or starved for CPU time by another boot device.


Communication between the supervisor 306 and the operating system services 304 for may be accomplished over logical communication link 316, and may be supported over physical communication bus 214. The LPM 302 may be in communication with the supervisor 306 as shown by logical link 318. The link 318 supports requests from the supervisor 306 to the LPM 302 for audit data. Additionally, the LPM 302 may send a periodic heartbeat to the supervisor 306 as an ongoing audit of system compliance. Because the supervisor 306 may completely disable the operating system 134 when a noncompliant situation is discovered, the supervisor 306 may have sufficient power and hardware access to present a sanctioned mode user interface 320 for use while the computer 110 is in the sanctioned mode.


The audit/heartbeat data may be sent over logical link 318 and may include data required to validate a software component, particularly the LPM 302. The supervisor 316 may be programmed to expect heartbeat data at a regular interval. The heartbeat data may include validation information such as a digital signature of its binary executable code, including a sequence number or other method for preventing a replay attack. The regular heartbeat, for example, from the LPM 302 may serve as evidence that the LPM is still running and when its signature is verified, that it is a correct version of the unmodified code. Should the supervisor fail to validate the authenticity of the heartbeat, or if the heartbeat does not arrive within a prescribed period, the heartbeat may fail and the compliance score may be reduced. Heartbeat messages that arrive more often than required may not be penalized, while a single failed heartbeat may not be sufficient to invoke a sanction, depending on the policy rules.


The supervisor 306 is different from a known hypervisor or monitor. A monitor may sit between the operating system and related hardware to negotiate resource sharing or CPU time slicing. Because a monitor is closely tied to the operating system, it is difficult to abstract a monitor to a variety of operating systems, or even operating system versions. In contrast, the supervisor 306, in one embodiment, does not attempt to manage or negotiate system resource usage during normal operation. In its simplest form, the supervisor 306 receives a policy, authenticates the policy, monitors for compliance, and sanctions noncompliance to the policy. The policy may be a data structure that is passed from the operating system corresponding to predetermined limits, for example, usage hours or calendar months of usage.


Because the supervisor 306 is independent of the operating system, or an other boot device, the supervisor 306 may be used to enforce policies for virtually any operating system or operating environment. This independence from the underlying platform is, in one embodiment, is facilitated by the supervisor's guaranteed access to computing cycles, secure memory, and time base.



FIG. 4 depicts an alternate embodiment of the operating system and hardware components associated with a pay-per-use computer, such as computer 110. As in FIG. 3, the operating system 134 includes the LPM 302 and the underlying operating system services 304. A smaller supervisor 309, that also may also be based on a hardware isolated computing environment 125, may only monitor system secure resources 307 via bus 330, rather than offer and maintain them as in the embodiment of FIG. 3. The secure resources 307 may have secure memory 308, the secure clock 310, the cryptographic key store 312, and the hardware identifier 314. Individual service requests to the various operating system calling entities may be made via logical connections illustrated by data paths 322, 324, 326. The audit/heartbeat logical connection 318 may be maintained between the supervisor 309 and the LPM 302. In this configuration, the hardware identifier 314 may be made available to the LPM 302 via logical connection 328, among other things, for verifying provisioning packets and for use in generating the heartbeat signal.


In operation, both configurations as depicted in FIG. 3 and FIG. 4 may operate in a similar fashion with respect to developing a compliance score. The compliance score may be an accumulation of weighted values determined by measurement and observation. The measurements 222 performed by the monitoring process 224 (FIG. 2) may be used to evaluate different events and classify them, in the most simplistic form, as either good or bad. Each good event results in an improved compliance score, whereas each bad event decreases the compliance score. Criteria may be established such that no single event may be sufficient for the compliance score to reach a minimum threshold, causing sanctions to be imposed.


The supervisors 306309 of the embodiments of FIG. 3 and FIG. 4 may both measure the frequency and quality of heartbeat signals. The compliance score may be increased when good heartbeats are received on time. The supervisor 306 of FIG. 3 may have full access to key data used in metering and measurement. For example, the compliance score may also increase when the monitor 224 determines: that the operating system is metering usage. The monitor 224 may also determined a tally of time used versus purchases of additional time. When the estimated purchases match the estimated usage, the compliance score may also be increased. Other measurements may be taken, such as verification of designated files, for example the LPM 302 or boot files (not depicted), or verification of the system clock.


However, when the heartbeat fails or does not arrive on time, the compliance score may be reduced. If the operating system persists in a non-metered state for a predetermined amount of time, the compliance score may be reduced. If the operating system enters and exits the metering state at too high a rate, indicating perhaps tampering with the metering circuits, the compliance score may also be reduced.


The supervisor 309 of the embodiment of FIG. 4 may have less access to direct metering data or the operating system state. Such a configuration may be more reliant on heartbeat monitoring or other factors such as the rate of change of secured storage as an indication that metering data is being updated.


The compliance score in any embodiment may start at initial value and increase or decrease as various ‘good’ and ‘bad’ measurements are determined. When the compliance score is decreased sufficiently a first threshold may be reached, triggering an action. In one embodiment, the first threshold may be the only threshold and an immediate sanction may be imposed. In another embodiment, the first threshold may trigger a warning advising the user that tampering concerns have been raised and appropriate action may need to be taken. In yet another embodiment, the first threshold may trigger a limited sanction, such as, limiting display resolution or reducing processor speed. Should the compliance score continue to decrease a threshold may be reached where a dramatic sanction such as disabling the operating system may be invoked. At that point, the computer 110 may need to be taken to a service center for restoration. The sanctioned mode user interface 320 may be activated for restoration services when the operating system is disabled.


To illustrate using an exemplary embodiment, a computer 110 may be given a starting compliance score of 80. After a series of successful heartbeats, a purchase of usage time, and routine metering, the compliance score may be increased to a maximum of 100 (other embodiments may not use a maximum compliance score limit). At that point however, the user attempts to defeat the metering mechanism by overwriting the LPM 302. A measurement of the LPM 302 fails because a hash of the destination memory range does not match an expected hash. The heartbeat signals stop and routine metering stops because the replacement LPM is not programmed to support those functions. With each successive measurement failure the compliance score may decrease, for example, to 70. When the compliance score reaches 70, a warning message is displayed to the user indicating that the system appears to have been tampered and will be shut down without corrective measures. The user ignores the warning and the compliance score decreases to 55. The supervisor 306 may then activate the sanction program 226 to take action to shut down the computer 110, for example, by halting the processing unit 120. The sanctioned mode user interface 320 may then pop up a message informing the user that the computer has been disabled and must be taken to a service center for restoration.


At the service center a technician may use the sanctioned mode user interface 320 to determine that the replacement LPM was not compliant and restore a compliant LPM 302. The service technician may trigger the supervisor 306 to restart the monitor 224 program, if required, and may be able to manually reset the compliance score, if desired. In this example, as someone clearly tampered with the computer, a fine or service charge may be imposed on the user to discourage future attempts at tampering with the system.



FIG. 5, a method of determining non-compliance with a policy on a computer is discussed and described. A policy establishing rules of operation and usage criteria for a computer 110 may be established by a service provider or other party with a financial interest in the computer 110. After the policy has been established, measurable criteria for determining compliance or noncompliance with the policy may be developed 402. The criteria may include measurements such as hashing of known memory ranges and/or monitoring of conditions and activities on the computer 110, such as reprovisioning usage credits on the computer 110. The measurement and monitoring criteria may be programmed into a supervisor such as supervisor 306, which in turn may be built on an isolated computing environment 125.


The supervisor 306 may be activated 404 prior to activating, or booting, any other system element including an operating system 134. The reasons for first boot are discussed previously, but briefly, doing so helps to ensure a known, clean operating environment for the supervisor 306. When first activated, for example during manufacturing or at the time of installation, an initial compliance score may be established corresponding to operation in accordance with the established policy. In one embodiment, the supervisor 306 has a program execution environment autonomous from the operating system 134, to further isolate the supervisor 306 from attacks made on the operating system 134 and associated components.


After the supervisor 306 is booted, other boot devices may be started 406, such as the operating system 134 or any other early boot devices. When the computer 110 is operational, the supervisor 306 may begin monitoring and measuring 408 according to the critria developed at block 402. Each monitoring or measuring finding may be used to adjust the compliance score.


The criteria used at block 408 may include clock verification, the duration of a single computing session, the amount of time measured between provisioning packets were provided, or comparisons between the total time of operation of the computer in the total number of provisioning packets provided.


Metering and measurement data that may be used in evaluating the various criteria may be an operating system heartbeat, a verification of designated files, verification of a system clock, a current operating mode, a frequency of writes to the memory, or a time since last provisioning cycle. For example, clock verification may include a comparison of the secure clock time 310 to a soft clock under the control the operating system and may be followed by an analysis of the last time provisioning packets were provided.


As often as each measurement or monitoring result is determined, the compliance score may be compared 410 to a predetermined threshold. When the score is above the threshold, the no branch from block 410 may be taken back to block 408 where additional measurements may be taken. When the compliance score is below the threshold, the yes branch from block 410 may be taken and an additional test performed to determine 412 whether the score indicates a warning or a sanction is appropriate. When a warning is appropriate the branch labeled warning may be taken from block 412 and a warning displayed 416. Execution may then continue at block 408.


When it is determined at block 412 that a sanction is appropriate, the sanctioned branch from block 412 may be taken to block 414 where a sanction may be imposed. A range of sanctions may be available, including reducing display resolution, color depth, slowing the processor, and depending on the policy, the operating system may be deactivated or other major system or apparatus that substantially disables the computer 110.


Although the forgoing text sets forth a detailed description of numerous different embodiments of the invention, it should be understood that the scope of the invention is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possibly embodiment of the invention because describing every possible embodiment would be impractical, if not impossible. Numerous alternative embodiments could be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims defining the invention.


Thus, many modifications and variations may be made in the techniques and structures described and illustrated herein without departing from the spirit and scope of the present invention. Accordingly, it should be understood that the methods and apparatus described herein are illustrative only and are not limiting upon the scope of the invention.

Claims
  • 1. A computing device, comprising: a first memory device storing an operating system of the computing device;a tamper resistant memory device that is separate from the first memory device, the tamper resistant memory device storing a supervisory program;a processor coupled to both the first memory device and the tamper resistant memory device;when a user turns on the computing device, the supervisory program being booted up and readied for operation prior to a time when the operating system of the computing device starts running, the supervisory program having precedence over and operating independently of at least one other boot device in the computing device;when the computing device is powered up and ready for use by the user on a pay per use or pay as you go basis, the supervisory program generating an initial compliance score that is representative of the computing device's compliance with a plurality of policies that indicate the operating system is metering usage of the computing device on the pay per use or the pay as you go basis;while the computing device is being used on the pay per use or the pay as you go basis, the supervisory program: receiving data that is representative of a then current operational state of the computing device,calculating an updated compliance score, andwhen the updated compliance score is less than a first threshold, invoking a first sanction mode that limits the ability of the computing device to be used on the pay per use or the pay as you go basis until the user takes corrective action that raises the value of the updated compliance score above the first threshold; andthe supervisory program, during an interval of time for which the user has fully paid for use of the computing device, causing the computing device to enter a non-operational state when, during the interval of time, the supervisory program determines that the updated compliance score falls below a second threshold that is lower than the first threshold,wherein the operating system stored on the first memory device and the supervisory program stored on the tamper resistant memory device that is separate from the first memory device both execute on the processor concurrently, the supervisory program having guaranteed access to computing cycles on the processor while the processor is also executing the operating system that meters the usage of the computing device.
  • 2. The computing device of claim 1, wherein the computing device comprises a personal computer.
  • 3. The computing device of claim 1, the received data comprising an operating system heartbeat indicating that the operating system is metering the usage of the computing device.
  • 4. The computing device of claim 1, wherein the received data indicates whether the computing device is operating in the first sanction mode.
  • 5. The computing device of claim 1, wherein the received data comprises a time since a last provisioning cycle was executed.
  • 6. A method implemented by a supervisory program on a computing device comprising a processor, the method comprising: booting the supervisory program on the computing device independently from an operating system that also boots on the computing device;generating an initial compliance score that is representative of compliance by the computing device with one or more policies that indicate the operating system is metering usage of the computing device;receiving data that indicates whether the operating system is metering the usage of the computing device;calculating an updated compliance score based on the received data;in an instance where the updated compliance score is outside of a first threshold but not a second threshold that is different than the first threshold, invoking a first sanction mode that limits the ability of the computing device to be used on a pay per use or pay as you go basis until a user takes corrective action that changes the value of the updated compliance score to be within the first threshold;in an instance where the compliance score is outside both the first threshold and the second threshold, causing the computing device to enter a non-operational state,wherein the operating system is stored in a first memory device and the supervisory program is stored in a tamper resistant memory device that is separate from the first memory device; andthe operating system and the supervisory program both execute concurrently on the processor of the computing device, the supervisory program having guaranteed access to computing cycles on the processor while the processor is also executing the operating system.
  • 7. The method according to claim 6, the second threshold being lower than the first threshold.
  • 8. The method according to claim 6, the received data comprising a heartbeat indicating that the operating system is metering the usage of the computing device.
  • 9. The method according to claim 8, the heartbeat being received at a regular interval.
  • 10. The method according to claim 8, the heartbeat being received from a provisioning module that is supported by the operating system.
  • 11. The method according to claim 10, the heartbeat comprising a digital signature of binary executable code of the provisioning module.
  • 12. The method according to claim 6, the first sanction mode reducing a processor speed of the processor of the computing device.
  • 13. The method according to claim 6, the first sanction mode limiting a display resolution of the computing device.
  • 14. The method according to claim 6, the supervisory program booting before the operating system.
  • 15. The method of claim 6, wherein the updated compliance score is further based on a comparison of a soft clock under control of the operating system to a secure clock time from a tamper resistant time base.
  • 16. One or more computer-readable storage devices comprising executable instructions that perform the method of claim 6.
  • 17. A method comprising: generating an initial compliance score that is representative of compliance by a computing device with one or more policies that indicate an operating system of the computing device is metering usage of the computing device;receiving data that indicates whether the operating system is metering the usage of the computing device;calculating an updated compliance score based on the received data;in an instance where the updated compliance score reaches a first threshold but not a second threshold that is different than the first threshold, invoking a first sanction mode that limits the ability of the computing device to be used on a pay per use or pay as you go basis until a user takes corrective action that changes the value of the updated compliance score;in an instance where the compliance score reaches the second threshold, causing the computing device to enter a non-operational state,wherein the operating system is stored on a first memory device and the generating, the receiving, the calculating, the invoking, and the causing are performed by a program that is stored in a tamper resistant memory device that is separate from the first memory device, andthe operating system and the program both execute concurrently on a processor of the computing device, the program having guaranteed access to computing cycles on the processor while the processor is also executing the operating system.
  • 18. The method according to claim 17, the non-operational state being entered by disabling the operating system.
  • 19. The method according to claim 17, wherein the first sanction mode comprises slowing a clock speed of the processor.
  • 20. One or more computer-readable storage devices comprising executable instructions that perform the method of claim 17.
Parent Case Info

This application is a continuation-in-part of U.S. patent application Ser. No. 11/022,493, filed Dec. 22, 2004 which is a continuation-in-part of U.S. patent application Ser. No. 11/006,837, filed Dec. 8, 2004, which is a continuation-in-part of U.S. patent application Ser. No. 10/989,122, filed Nov. 15, 2004.

US Referenced Citations (369)
Number Name Date Kind
4558176 Arnold et al. Dec 1985 A
4620150 Germer et al. Oct 1986 A
4750034 Lem Jun 1988 A
4817094 Lebizay et al. Mar 1989 A
4855730 Venners et al. Aug 1989 A
4855922 Huddleston et al. Aug 1989 A
4857999 Welsh Aug 1989 A
4910692 Outram Mar 1990 A
4959774 Davis Sep 1990 A
4967273 Greenberg Oct 1990 A
5001752 Fischer Mar 1991 A
5012514 Renton Apr 1991 A
5249184 Woest et al. Sep 1993 A
5269019 Peterson et al. Dec 1993 A
5274368 Breeden et al. Dec 1993 A
5301268 Takeda Apr 1994 A
5355161 Bird et al. Oct 1994 A
5369262 Dvorkis et al. Nov 1994 A
5406630 Piosenka et al. Apr 1995 A
5414861 Horning May 1995 A
5437040 Campbell Jul 1995 A
5442704 Holtey Aug 1995 A
5448045 Clark Sep 1995 A
5459867 Adams et al. Oct 1995 A
5473692 Davis Dec 1995 A
5490216 Richardson, III Feb 1996 A
5500897 Hartman, Jr. Mar 1996 A
5513319 Finch et al. Apr 1996 A
5522040 Hofsass et al. May 1996 A
5530846 Strong Jun 1996 A
5552776 Wade et al. Sep 1996 A
5563799 Brehmer et al. Oct 1996 A
5568552 Davis Oct 1996 A
5586291 Lasker et al. Dec 1996 A
5671412 Christiano Sep 1997 A
5710706 Markl et al. Jan 1998 A
5715403 Stefik Feb 1998 A
5724425 Chang et al. Mar 1998 A
5745879 Wyman Apr 1998 A
5763832 Anselm Jun 1998 A
5768382 Schneier et al. Jun 1998 A
5771354 Crawford Jun 1998 A
5774870 Storey Jun 1998 A
5793839 Farris et al. Aug 1998 A
5802592 Chess Sep 1998 A
5825883 Archibald et al. Oct 1998 A
5841865 Sudia Nov 1998 A
5844986 Davis Dec 1998 A
5845065 Conte et al. Dec 1998 A
5875236 Jankowitz et al. Feb 1999 A
5883670 Sporer et al. Mar 1999 A
5892906 Chou et al. Apr 1999 A
5948061 Merriman Sep 1999 A
5953502 Helbig et al. Sep 1999 A
5956408 Arnold Sep 1999 A
5994710 Knee et al. Nov 1999 A
6026293 Osborn Feb 2000 A
6049789 Frison et al. Apr 2000 A
6061794 Angelo et al. May 2000 A
6078909 Knutson Jun 2000 A
6119229 Martinez et al. Sep 2000 A
6148417 Da Silva Nov 2000 A
6158657 Hall, III et al. Dec 2000 A
6185678 Arbaugh et al. Feb 2001 B1
6188995 Garst et al. Feb 2001 B1
6192392 Ginter Feb 2001 B1
6233685 Smith May 2001 B1
6243439 Arai et al. Jun 2001 B1
6253224 Brice, Jr. et al. Jun 2001 B1
6263431 Lovelace et al. Jul 2001 B1
6279111 Jensenworth et al. Aug 2001 B1
6289319 Lockwood et al. Sep 2001 B1
6295577 Anderson et al. Sep 2001 B1
6303924 Adan et al. Oct 2001 B1
6314409 Schneck et al. Nov 2001 B2
6321335 Chu Nov 2001 B1
6327652 England et al. Dec 2001 B1
6330670 England et al. Dec 2001 B1
6345294 O'Toole et al. Feb 2002 B1
6363488 Ginter et al. Mar 2002 B1
6367017 Gray Apr 2002 B1
6373047 Adan et al. Apr 2002 B1
6385727 Cassagnol et al. May 2002 B1
6405923 Seysen Jun 2002 B1
6408170 Schmidt et al. Jun 2002 B1
6424714 Wasilewski et al. Jul 2002 B1
6441813 Ishibashi Aug 2002 B1
6442529 Krishan et al. Aug 2002 B1
6442690 Howard, Jr. et al. Aug 2002 B1
6460140 Schoch et al. Oct 2002 B1
6463534 Geiger et al. Oct 2002 B1
6496858 Frailong et al. Dec 2002 B1
6567793 Hicks et al. May 2003 B1
6571216 Garg et al. May 2003 B1
6585158 Norskog Jul 2003 B2
6587684 Hsu et al. Jul 2003 B1
6609201 Folmsbee Aug 2003 B1
6625729 Angelo Sep 2003 B1
6631478 Wang et al. Oct 2003 B1
6646244 Aas et al. Nov 2003 B2
6664948 Crane et al. Dec 2003 B2
6671803 Pasieka Dec 2003 B1
6678828 Pham et al. Jan 2004 B1
6690556 Smola et al. Feb 2004 B2
6694000 Ung et al. Feb 2004 B2
6704873 Underwood Mar 2004 B1
6708176 Strunk et al. Mar 2004 B2
6711263 Nordenstam et al. Mar 2004 B1
6716652 Ortlieb Apr 2004 B1
6738810 Kramer et al. May 2004 B1
6763458 Watanabe Jul 2004 B1
6765470 Shinzaki Jul 2004 B2
6791157 Casto et al. Sep 2004 B1
6816809 Circenis Nov 2004 B2
6816900 Vogel et al. Nov 2004 B1
6834352 Shin Dec 2004 B2
6839841 Medvinsky et al. Jan 2005 B1
6844871 Hinckley et al. Jan 2005 B1
6847942 Land et al. Jan 2005 B1
6851051 Bolle et al. Feb 2005 B1
6868433 Philyaw Mar 2005 B1
6871283 Zurko et al. Mar 2005 B1
6920567 Doherty et al. Jul 2005 B1
6934942 Chilimbi Aug 2005 B1
6954728 Kusumoto et al. Oct 2005 B1
6957186 Guheen et al. Oct 2005 B1
6976162 Ellison et al. Dec 2005 B1
6983050 Yacobi et al. Jan 2006 B1
6986042 Griffin Jan 2006 B2
6990174 Eskelinen Jan 2006 B2
6993648 Goodman et al. Jan 2006 B2
7000100 Lacombe et al. Feb 2006 B2
7000829 Harris et al. Feb 2006 B1
7013384 Challener et al. Mar 2006 B2
7028149 Grawrock Apr 2006 B2
7054468 Yang May 2006 B2
7069442 Sutton, II Jun 2006 B2
7069595 Cognigni et al. Jun 2006 B2
7076652 Ginter et al. Jul 2006 B2
7096469 Kubala et al. Aug 2006 B1
7097357 Johnson et al. Aug 2006 B2
7103574 Peinado et al. Sep 2006 B1
7113912 Stefik Sep 2006 B2
7117183 Blair et al. Oct 2006 B2
7121460 Parsons et al. Oct 2006 B1
7127579 Zimmer Oct 2006 B2
7130951 Christie et al. Oct 2006 B1
7143297 Buchheit et al. Nov 2006 B2
7162645 Iguchi et al. Jan 2007 B2
7171539 Mansell et al. Jan 2007 B2
7174457 England et al. Feb 2007 B1
7207039 Komarla et al. Apr 2007 B2
7234144 Wilt et al. Jun 2007 B2
7236455 Proudler et al. Jun 2007 B1
7266569 Cutter et al. Sep 2007 B2
7299358 Chateau et al. Nov 2007 B2
7353402 Bourne et al. Apr 2008 B2
7356709 Gunyakti et al. Apr 2008 B2
7359807 Frank et al. Apr 2008 B2
7360253 Frank et al. Apr 2008 B2
7392429 Westerinen et al. Jun 2008 B2
7395245 Okamoto et al. Jul 2008 B2
7395452 Nicholson et al. Jul 2008 B2
7406446 Frank et al. Jul 2008 B2
7421413 Frank et al. Sep 2008 B2
7441121 Cutter, Jr. et al. Oct 2008 B2
7441246 Auerbach et al. Oct 2008 B2
7461249 Pearson et al. Dec 2008 B1
7464103 Siu Dec 2008 B2
7490356 Lieblich et al. Feb 2009 B2
7493487 Phillips et al. Feb 2009 B2
7494277 Setala Feb 2009 B2
7519816 Phillips et al. Apr 2009 B2
7539863 Phillips May 2009 B2
7540024 Phillips et al. May 2009 B2
7549060 Bourne et al. Jun 2009 B2
7562220 Frank et al. Jul 2009 B2
7565325 Lenard Jul 2009 B2
7568096 Evans Jul 2009 B2
7596784 Abrams Sep 2009 B2
7610631 Frank et al. Oct 2009 B2
7644239 Westerinen et al. Jan 2010 B2
7669056 Frank Feb 2010 B2
7694153 Ahdout Apr 2010 B2
7770205 Frank Aug 2010 B2
7814532 Cromer et al. Oct 2010 B2
7877607 Circenis Jan 2011 B2
7891007 Waxman et al. Feb 2011 B2
7958029 Bobich et al. Jun 2011 B1
20010034711 Tashenberg Oct 2001 A1
20010056413 Suzuki et al. Dec 2001 A1
20010056539 Pavlin et al. Dec 2001 A1
20020002597 Morrell, Jr. Jan 2002 A1
20020007310 Long Jan 2002 A1
20020023212 Proudler Feb 2002 A1
20020046098 Maggio Apr 2002 A1
20020055906 Katz et al. May 2002 A1
20020091569 Kitaura et al. Jul 2002 A1
20020107701 Batty et al. Aug 2002 A1
20020111916 Coronna et al. Aug 2002 A1
20020112171 Ginter et al. Aug 2002 A1
20020123964 Kramer et al. Sep 2002 A1
20020124212 Nitschke et al. Sep 2002 A1
20020129359 Lichner Sep 2002 A1
20020138549 Urien Sep 2002 A1
20020141451 Gates et al. Oct 2002 A1
20020144131 Spacey Oct 2002 A1
20020147601 Fagan Oct 2002 A1
20020147782 Dimitrova et al. Oct 2002 A1
20020147912 Shmueli et al. Oct 2002 A1
20020178071 Walker et al. Nov 2002 A1
20020184482 Lacombe et al. Dec 2002 A1
20020184508 Bialick et al. Dec 2002 A1
20020193101 McAlinden Dec 2002 A1
20020194132 Pearson et al. Dec 2002 A1
20030005135 Inoue et al. Jan 2003 A1
20030014323 Scheer Jan 2003 A1
20030027549 Kiel et al. Feb 2003 A1
20030028454 Ooho et al. Feb 2003 A1
20030035409 Wang et al. Feb 2003 A1
20030037246 Goodman et al. Feb 2003 A1
20030040960 Eckmann Feb 2003 A1
20030046026 Levy et al. Mar 2003 A1
20030048473 Rosen Mar 2003 A1
20030056107 Cammack et al. Mar 2003 A1
20030084104 Salem et al. May 2003 A1
20030084278 Cromer et al. May 2003 A1
20030084285 Cromer et al. May 2003 A1
20030084337 Simionescu et al. May 2003 A1
20030084352 Schwartz et al. May 2003 A1
20030088500 Shinohara et al. May 2003 A1
20030093694 Medvinsky et al. May 2003 A1
20030097596 Muratov et al. May 2003 A1
20030110388 Pavlin et al. Jun 2003 A1
20030115458 Song Jun 2003 A1
20030126519 Odorcic Jul 2003 A1
20030131252 Barton et al. Jul 2003 A1
20030135380 Lehr et al. Jul 2003 A1
20030149671 Yamamoto et al. Aug 2003 A1
20030156572 Hui et al. Aug 2003 A1
20030156719 Cronce Aug 2003 A1
20030163383 Engelhart Aug 2003 A1
20030163712 LaMothe et al. Aug 2003 A1
20030172376 Coffin, III et al. Sep 2003 A1
20030185395 Lee et al. Oct 2003 A1
20030188165 Sutton et al. Oct 2003 A1
20030196102 McCarroll Oct 2003 A1
20030196106 Erfani et al. Oct 2003 A1
20030208338 Challener et al. Nov 2003 A1
20030208573 Harrison et al. Nov 2003 A1
20030229702 Hensbergen et al. Dec 2003 A1
20040001088 Stancil et al. Jan 2004 A1
20040003190 Childs et al. Jan 2004 A1
20040003288 Wiseman et al. Jan 2004 A1
20040010440 Lenard et al. Jan 2004 A1
20040019456 Circenis Jan 2004 A1
20040023636 Gurel et al. Feb 2004 A1
20040030912 Merkle, Jr. et al. Feb 2004 A1
20040034816 Richard Feb 2004 A1
20040039916 Aldis et al. Feb 2004 A1
20040039924 Baldwin et al. Feb 2004 A1
20040039960 Kassayan Feb 2004 A1
20040044629 Rhodes et al. Mar 2004 A1
20040054907 Chateau et al. Mar 2004 A1
20040054908 Circenis et al. Mar 2004 A1
20040054909 Serkowski et al. Mar 2004 A1
20040064707 McCann et al. Apr 2004 A1
20040067746 Johnson Apr 2004 A1
20040073670 Chack et al. Apr 2004 A1
20040088548 Smetters et al. May 2004 A1
20040093371 Burrows et al. May 2004 A1
20040093508 Foerstner et al. May 2004 A1
20040107359 Kawano et al. Jun 2004 A1
20040107368 Colvin Jun 2004 A1
20040123127 Teicher et al. Jun 2004 A1
20040125755 Roberts Jul 2004 A1
20040128251 Adam et al. Jul 2004 A1
20040133794 Kocher et al. Jul 2004 A1
20040139027 Molaro Jul 2004 A1
20040193919 Dabbish et al. Sep 2004 A1
20040199769 Proudler Oct 2004 A1
20040205357 Kuo et al. Oct 2004 A1
20040220858 Maggio Nov 2004 A1
20040225894 Colvin Nov 2004 A1
20040255000 Simionescu et al. Dec 2004 A1
20040268120 Mirtal et al. Dec 2004 A1
20050015343 Nagai et al. Jan 2005 A1
20050021944 Craft et al. Jan 2005 A1
20050028000 Bulusu et al. Feb 2005 A1
20050033747 Wittkotter Feb 2005 A1
20050039013 Bajikar et al. Feb 2005 A1
20050044197 Lai Feb 2005 A1
20050050355 Graunke Mar 2005 A1
20050060388 Tatsumi et al. Mar 2005 A1
20050065880 Amato et al. Mar 2005 A1
20050080701 Tunney et al. Apr 2005 A1
20050091104 Abraham Apr 2005 A1
20050097204 Horowitz et al. May 2005 A1
20050102181 Scroggie et al. May 2005 A1
20050108547 Sakai May 2005 A1
20050108564 Freeman et al. May 2005 A1
20050120251 Fukumori Jun 2005 A1
20050125673 Cheng et al. Jun 2005 A1
20050129296 Setala Jun 2005 A1
20050132150 Jewell et al. Jun 2005 A1
20050138370 Goud et al. Jun 2005 A1
20050138389 Catherman et al. Jun 2005 A1
20050138423 Ranganathan Jun 2005 A1
20050141717 Cromer et al. Jun 2005 A1
20050144099 Deb et al. Jun 2005 A1
20050166051 Buer Jul 2005 A1
20050182921 Duncan Aug 2005 A1
20050182940 Sutton Aug 2005 A1
20050188843 Edlund et al. Sep 2005 A1
20050203801 Morgenstern et al. Sep 2005 A1
20050213761 Walmsley et al. Sep 2005 A1
20050216577 Durham et al. Sep 2005 A1
20050221766 Brizek et al. Oct 2005 A1
20050235141 Ibrahim et al. Oct 2005 A1
20050240533 Cutter et al. Oct 2005 A1
20050246521 Bade et al. Nov 2005 A1
20050246525 Bade et al. Nov 2005 A1
20050246552 Bade et al. Nov 2005 A1
20050257073 Bade Nov 2005 A1
20050275866 Corlett Dec 2005 A1
20050278519 Luebke et al. Dec 2005 A1
20050279827 Mascavage et al. Dec 2005 A1
20050286476 Crosswy et al. Dec 2005 A1
20050289177 Hohmann, II Dec 2005 A1
20050289343 Tahan Dec 2005 A1
20060010326 Bade et al. Jan 2006 A1
20060015717 Liu et al. Jan 2006 A1
20060015718 Liu et al. Jan 2006 A1
20060015732 Liu Jan 2006 A1
20060020784 Jonker et al. Jan 2006 A1
20060026418 Bade Feb 2006 A1
20060026419 Arndt et al. Feb 2006 A1
20060026422 Bade et al. Feb 2006 A1
20060055506 Nicolas Mar 2006 A1
20060072748 Buer Apr 2006 A1
20060072762 Buer Apr 2006 A1
20060074600 Sastry et al. Apr 2006 A1
20060075014 Tharappel et al. Apr 2006 A1
20060075223 Bade et al. Apr 2006 A1
20060085634 Jain et al. Apr 2006 A1
20060085637 Pinkas Apr 2006 A1
20060085844 Buer et al. Apr 2006 A1
20060089917 Strom et al. Apr 2006 A1
20060090084 Buer Apr 2006 A1
20060100010 Gatto et al. May 2006 A1
20060106845 Frank et al. May 2006 A1
20060106920 Steeb et al. May 2006 A1
20060107306 Thirumalai et al. May 2006 A1
20060107328 Frank et al. May 2006 A1
20060107335 Frank et al. May 2006 A1
20060112267 Zimmer et al. May 2006 A1
20060117177 Buer Jun 2006 A1
20060129824 Hoff et al. Jun 2006 A1
20060130130 Kablotsky Jun 2006 A1
20060143431 Rothman et al. Jun 2006 A1
20060165005 Frank et al. Jul 2006 A1
20060168664 Frank et al. Jul 2006 A1
20060206618 Zimmer et al. Sep 2006 A1
20060213997 Frank et al. Sep 2006 A1
20060282319 Maggio Dec 2006 A1
20060282899 Raciborski Dec 2006 A1
20070033102 Frank et al. Feb 2007 A1
20070280422 Setala Dec 2007 A1
20090070454 McKinnon, III et al. Mar 2009 A1
Foreign Referenced Citations (69)
Number Date Country
1531673 Sep 2004 CN
0635790 Jan 1995 EP
0843449 May 1998 EP
1061465 Dec 2000 EP
1085396 Mar 2001 EP
1387237 Feb 2004 EP
1429224 Jun 2004 EP
1223722 Aug 2004 EP
1460514 Sep 2004 EP
1233337 Aug 2005 EP
2359969 Sep 2001 GB
2378780 Feb 2003 GB
H0535461 Feb 1993 JP
H0635718 Feb 1994 JP
H07036559 Feb 1995 JP
H07141153 Jun 1995 JP
H086729 Jan 1996 JP
2001526550 May 1997 JP
H09185504 Jul 1997 JP
H9251494 Sep 1997 JP
2000293369 Oct 2000 JP
2001051742 Feb 2001 JP
2003510684 Mar 2001 JP
2001101033 Apr 2001 JP
2003510713 Apr 2001 JP
2001184472 Jul 2001 JP
2001312325 Nov 2001 JP
2001331229 Nov 2001 JP
2001338233 Dec 2001 JP
2002108478 Apr 2002 JP
2002108870 Apr 2002 JP
2002374327 Dec 2002 JP
2003507785 Feb 2003 JP
2003140761 May 2003 JP
2003140762 May 2003 JP
2003157335 May 2003 JP
2003208314 Jul 2003 JP
2003248522 Sep 2003 JP
2003296487 Oct 2003 JP
2002182562 Jan 2004 JP
2004062561 Feb 2004 JP
2004118327 Apr 2004 JP
2004164491 Jun 2004 JP
2004-304755 Oct 2004 JP
2004295846 Oct 2004 JP
2007525774 Sep 2007 JP
H08-054952 Feb 2011 JP
20010000805 Jan 2001 KP
20020037453 May 2002 KP
20050008439 Jan 2005 KP
20050021782 Mar 2005 KP
WO-9721162 Jun 1997 WO
WO-9811478 Mar 1998 WO
WO-0054126 Sep 2000 WO
WO-0135293 May 2001 WO
WO-0145012 Jun 2001 WO
WO-0163512 Aug 2001 WO
WO-0177795 Oct 2001 WO
WO-0193461 Dec 2001 WO
WO-0208969 Jan 2002 WO
WO-02056155 Jul 2002 WO
WO-02103495 Dec 2002 WO
WO-03009115 Jan 2003 WO
WO-03030434 Apr 2003 WO
WO-03073688 Sep 2003 WO
WO-03107585 Dec 2003 WO
WO-03107588 Dec 2003 WO
WO-2004092886 Oct 2004 WO
WO-2007032974 Mar 2007 WO
Related Publications (1)
Number Date Country
20060107329 A1 May 2006 US
Continuation in Parts (3)
Number Date Country
Parent 11022493 Dec 2004 US
Child 11152214 US
Parent 11006837 Dec 2004 US
Child 11022493 US
Parent 10989122 Nov 2004 US
Child 11006837 US