The present disclosure relates to the technical field of display, and in particular to a special-shaped display panel and a display device.
As the technology of the display industry grows increasingly mature, special-shaped display gradually appears in public view. With an increasing number of demands for exotic display devices, design for special-shaped display is much different from past. Conventional square screens or simple special-shaped screens are generally symmetrical, for example, a circular watch, a mobile phone with a notch on the screen, etc., and the current market for asymmetric hollow-out special-shaped display is vacant yet. The asymmetric hollow-out special-shaped display panel generally receives signals differently on the two asymmetric sides, resulting in image dislocation.
Embodiments of the present disclosure provide a special-shaped display panel. The special-shaped display panel includes:
a special-shaped display area including a non-display sub-area and a display sub-area surrounding the non-display sub-area, the special-shaped display area being provided with a plurality of gate lines extending in a first direction, some of the gate lines being cut off in the non-display sub-area, and the display sub-area being asymmetric with respect to a straight line which passes through a center of the special-shaped display area and is perpendicular to the first direction;
a first gate drive circuit set located on one side of the special-shaped display area, electrically connected to one ends of gate lines which are not cut off by the non-display sub-area, and electrically connected to gate lines on one side which are cut off by the non-display sub-area; and
a second gate drive circuit set located on the other side of the special-shaped display area, electrically connected to the other ends of the gate lines which are not cut off by the non-display sub-area, and electrically connected to the gate lines on the other side which are cut off by the non-display sub-area.
In a possible implementation, the display sub-area includes: a first rectangular display sub-area located on one side of the non-display sub-area, a second arc-shaped display sub-area located on the other side of the non-display sub-area, and a third display sub-area connected to one end of the first display sub-area and one end of the second display sub-area, and a fourth display sub-area connected to the other end of the first display sub-area and the other end of the second display sub-area.
The gate line in the first display sub-area is electrically connected to the first gate drive circuit set merely. The gate line in the second display sub-area is electrically connected to the second gate drive circuit set merely. One end of the gate line in the third display sub-area is electrically connected to the first gate drive circuit set, and the other end of the gate line in the third display sub-area is electrically connected to the second gate drive circuit set. One end of the gate line in the fourth display sub-area is electrically connected to the first gate drive circuit set, and the other end of the gate line in the fourth display sub-area is electrically connected to the second gate drive circuit set.
In a possible implementation, a length of the first display sub-area perpendicular to the first direction is equal to a maximum length of the non-display sub-area perpendicular to the first direction. The length of the first display sub-area perpendicular to the first direction is equal to a maximum length of the second display sub-area perpendicular to the first direction.
In a possible implementation, the gate line in the first display sub-area has the same length as the gate line in the second display sub-area in the first direction.
In a possible implementation, the first display sub-area is provided with a plurality of first pixels distributed in an array, and the second display sub-area is provided with a plurality of second pixels distributed in an array.
The first pixels in the first display sub-area arranged in sequence in the first direction have the same column count as the second pixels in the second display sub-area arranged in sequence in the first direction.
In a possible implementation, an outer contour of one side, away from the non-display sub-area, of the third display sub-area is arc-shaped, and an outer contour of one side, away from the non-display sub-area, of the fourth display sub-area is arc-shaped.
The first gate drive circuit set is arranged around the third display sub-area at a periphery of the third display sub-area; and the second gate drive circuit set is arranged around the fourth display sub-area at a periphery of the fourth display sub-area.
In a possible implementation, the first gate drive circuit set includes a plurality of first gate drive circuits which are cascaded mutually; the second gate drive circuit set includes a plurality of second gate drive circuits which are cascaded mutually.
A first-type floating gate drive circuit is arranged between two adjacent second gate drive circuits in at least part of adjacent second gate drive circuits at the periphery of the third display sub-area; a second-type floating gate drive circuit is arranged between two adjacent second gate drive circuits in at least part of adjacent second gate drive circuits at the periphery of the fourth display sub-area.
The two adjacent second gate drive circuits at the periphery of the third display sub-area are electrically connected to each other by means of a signal line skipping the first-type floating gate drive circuit; and the two adjacent second gate drive circuits at the periphery of the fourth display sub-area are electrically connected to each other by means of a signal line skipping the second-type floating gate drive circuit.
In a possible implementation, the special-shaped display panel further includes: a first pulse signal line located at a periphery of the first display sub-area and having a body extension direction perpendicular to the first direction, and an arc-shaped second pulse signal line located at a periphery of the second display sub-area and surrounding an arc-shaped outer contour of the display sub-area.
The first pulse signal line includes a serpentine wire portion and a linear wire portion electrically connected to the serpentine wire portion, a total length of the serpentine wire portion and the linear wire portion being equal to a length of the second pulse signal line.
In a possible implementation, the special-shaped display panel further includes a control integrated circuit (IC).
The linear wire portion is electrically connected to the control IC by means of the serpentine wire portion.
In a possible implementation, the first pulse signal line includes a plurality of serpentine wire portions, the plurality of serpentine wire portions being distributed on the first pulse signal line in sequence at equal intervals.
In a possible implementation, the first pulse signal line and the second pulse signal line are start-of-frame signal lines; and alternatively, the first pulse signal line and the second pulse signal line are clock signal lines.
In a possible implementation, the first pulse signal line has the same line width as the second pulse signal line.
In a possible implementation, the display panel further includes a plurality of first-type signal wires intersecting with the first pulse signal line in an insulated mode, and a plurality of second-type signal wires intersecting with the second pulse signal line in an insulated mode.
An overlapping area of the first pulse signal line and the first-type signal wires is equal to that of the second pulse signal line and the second-type signal wires.
In a possible implementation, the first pulse signal line perpendicularly intersects with the first-type signal wires; and the second pulse signal line perpendicularly intersects with the second-type signal wires.
In a possible implementation, the first-type signal wires are signal wires in the first gate drive circuit set; and the second-type signal wires are signal wires in the second gate drive circuit set.
Embodiments of the present disclosure further provide a display device. The display device at least includes the special-shaped display panel provided in the embodiments of the present disclosure.
In order to make the objectives, technical solutions, and advantages in the embodiments of the present disclosure clearer, the technical solutions in the embodiments of the present disclosure will be clearly and completely described below in combination with the accompanying drawings in the embodiments of the present disclosure. Apparently, the described embodiments are some rather than all of the embodiments of the present disclosure. Based on the described embodiments of the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present disclosure.
Unless otherwise defined, technical or scientific terms used in the present disclosure should have ordinary meaning as understood by those of ordinary skill in the art to which the present disclosure belongs. “First”, “second” and similar words used in the present disclosure do not mean any order, quantity or importance, but are only used for distinguishing different components. “Comprise”, “include” and similar words are intended to mean that an element or item in front of the word encompasses elements or items that are listed behind the word and equivalents thereof, but do not exclude other elements or items. “Connect”, “connected” and similar words are not limited to a physical or mechanical connection, but can include an electrical connection, whether direct or indirect. “Upper”, “lower”, “left”, “right”, etc. are merely used to indicate a relative position relation, which may also change accordingly when an absolute position of a described object changes.
In order to keep the following descriptions of embodiments of the present disclosure clear and concise, the present disclosure omits detailed descriptions of known functions and known components.
With reference to
a special-shaped display area S including a non-display sub-area S2 and a display sub-area S1 surrounding the non-display sub-area S2, the special-shaped display area S being provided with a plurality of gate lines G extending in a first direction AB, some of the gate lines G being cut off in the non-display sub-area S2, and the display sub-area S1 being asymmetric with respect to a straight line which passes through a center O of the special-shaped display area S and is perpendicular to the first direction AB; wherein the straight line which passes through the center O of the special-shaped display area and is perpendicular to the first direction AB may be taken as a first straight line CD, that is, the display sub-area S1 is asymmetric with respect to the first straight line CD, and as shown in
a first gate drive circuit set A1 located on one side (the left side as shown in
a second gate drive circuit set A2 located on the other side (the right side as shown in
In the embodiments of the present disclosure, the display sub-area S1 is asymmetric with respect to the first straight line CD. For the special-shaped display area S on two sides of the first straight line CD, under the condition that the special-shaped display area is not cut off by the non-display sub-area S2 and the two sides are of a continuous integrated structure, double-side driving is used; under the condition that the special-shaped display area is cut off by the non-display sub-area S2, single-side driving is used for the two sides respectively, such that the display sub-areas S1 on the two sides cut off by the non-display sub-area S2 may receive synchronous driving signals (for example, scanning signals received by the cut gate lines G on the two sides are synchronous), the gate lines G do not need to bypass the non-display sub-area S2, the problem that a frame is large when the gate lines G bypass the non-display sub-area S2 to conduct single-side driving is avoided, and further, the problem that when the special-shaped display area S is integrally driven by a bilateral gate, pixels on the two sides cut off by the non-display sub-area S2 have difficulty in receiving synchronous signals, causing picture dislocation may be avoided.
During implementations, the special-shaped display panel in the embodiments of the present disclosure may be a letter-like screen, and the special-shaped display area S may be in a D shape as shown in
During implementations, in combination with
S14 is/are electrically connected to the first gate drive circuit set A1, and the other end of the gate line(s) in the fourth display sub-area is electrically connected to the second gate drive circuit set A2. Therefore, the first display sub-area S11 and the second display sub-area S12 that are cut off by the non-display sub-area S2 use single-side driving, and the third display sub-area S13 and the fourth display sub-area S14 that are not cut off by the non-display sub-area S2 use double-side driving.
It is to be noted that
During implementations, in combination with
During implementations, in combination with
During implementations, the first display sub-area S11 is provided with a plurality of first pixels (not shown in the figure) distributed in an array, and the second display sub-area S12 is provided with a plurality of second pixels (not shown in the figure) distributed in an array. The first pixels in the first display sub-area S11 arranged in sequence in the first direction AB has the same column count as the second pixels in the second display sub-area S12 arranged in sequence in the first direction AB. A column direction of the first pixels is perpendicular to the first direction AB, and a column direction of the second pixels is perpendicular to the first direction AB. In the embodiments of the present disclosure, the column count of the pixels is related to a data line and a pixel drive circuit for driving the pixels, such that the first pixels in the first display sub-area S11 have the same column count as the second pixels in the second display sub-area S12, and then a resistance-capacitance loading (RC Loading) generated when the gate line G in the first display sub-area S11 overlaps the data line and a signal line in the pixel drive circuit may be equal to a RC Loading generated when the corresponding gate line G in the second display sub-area S12 overlaps the data line and the signal line in the pixel drive circuit, so as to solve the problem of picture dislocation caused by the signal delay of the RC Loading generated when the gate line G overlaps the data line and the signal line in the pixel circuit.
During implementations, in combination with
During implementations, with reference to
When passing through the first-type floating gate drive circuit a3, the first gate drive circuit a1 is not connected to a signal line and is electrically connected to the next first gate drive circuit a1 directly. Similarly, when passing through the second-type floating gate drive circuit a4, the second gate drive circuit a2 is not connected to a signal line and is electrically connected to the next second gate drive circuit a2 directly.
During implementations, with reference to
During implementations, with reference to
During implementations, with reference to
During implementations, in combination with
During implementations, with reference to
During implementations, as shown in
It is to be noted that in order to clearly show an overlapping mode of the first pulse signal line and the first-type signal wires and an overlapping mode of the second pulse signal line and the second-type signal wires,
A display device is further provided in embodiments of the present disclosure. The display device includes the special-shaped display panel provided in the embodiments of the present disclosure.
The embodiments of the present disclosure have the following beneficial effects. In the embodiments of the present disclosure, the display sub-area is asymmetric with respect to a straight line which passes through a center of the special-shaped display area and is perpendicular to a first direction. The straight line which passes through the center of the special-shaped display area and is perpendicular to the first direction is taken as a first straight line. For the special-shaped display area on two sides of the first straight line, under the condition that the special-shaped display area is not cut off by the non-display sub-area and the two sides are of a continuous integrated structure, double-side driving is used; under the condition that the special-shaped display area is cut off by the non-display sub-area, single-side driving is used for the two sides respectively, such that the display sub-areas on the two sides cut off by the non-display sub-area may receive synchronous driving signals (for example, scanning signals received by the cut gate lines on the two sides are synchronous). The gate lines do not need to bypass the non-display sub-area, the problem that a frame is large when the gate lines bypass the non-display sub-area to conduct single-side driving is avoided. Further, the problem that when the special-shaped display area is integrally driven by a bilateral gate, pixels on the two sides cut off by the non-display sub-area have difficulty in receiving synchronous signals, causing picture dislocation may be avoided.
Apparently, those skilled in the art can make various amendments and variations to the present disclosure without departing from the spirit and scope of the present disclosure. In this way, if the amendments and variations to the present disclosure fall within the scope of claims of the present disclosure and the equivalents thereof, it is intended that the present disclosure also includes these amendments and variations.
Number | Date | Country | Kind |
---|---|---|---|
202010575627.5 | Jun 2020 | CN | national |
The present application is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/CN2021/093378, filed on May 12, 2021, which claims priority of Chinese Patent Application No. 202010575627.5, filed with the China National Intellectual Property Administration on Jun. 22, 2020 and entitled “SPECIAL-SHAPED DISPLAY PANEL AND DISPLAY DEVICE”, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/093378 | 5/12/2021 | WO |