The present disclosure relates to a stochastic thermal-conglutination profiled filament, in particular to three profiled filaments of viscous state flat filament yarn spun from three spinneret slits of the spinneret plate, wherein continuous change of stochastically thermal-conglutination points lengthways along fire leads to continuous change of shape of cross section of fiber. The present disclosure pertains to the technical field related to chemical fiber manufacture.
The invention and development of chemical fiber is a history during which people use science and technology to imitate, replace and surpass natural fiber.
Length of chemical fiber filament can be infinite, with the monofilament linear density, monofilament vertical structure, monofilament cross section shape and monofilament performance always remained unchanged. Hence, chemical fiber is superior to natural fiber in terms of technical feature. Chemical fiber spun from a circular spinneret orifice, which has a circular cross section, is the most widely used variety with the maximum output. Chemical fiber spun from a non-circular spinneret orifice, which has a special cross section, is known as the profiled fiber. The profiled fiber, a fiber relative to the circular fiber, is extruded from a spinneret plate of special geometrical shape, cooled and solidified, thus having a cross profile of special geometrical shape, just like natural fiber which is shaped like Δ, T, cross, Y and multilobe shape etc. Nature of the profiled fiber varies with cross section shape and radial degree of profile DR %. The profiled fiber is featured by high resilience, pilling resistance, high bulkiness, spreadability and anti-fouling effect, capable of improving drapability and wrinkle resistance of textiles.
In recent years, development of variety of profiled fiber is full of variety, with increasingly wide application. Profiled fiber has broad market prospect in terms of clothing, decorating and technical textile industries, serving as an ideal raw material for non-woven and imitation leather coating. However, either the circular filament or the non-circular filament, whole bunch of filament or monofilament, remains unchanged in terms of linear density and number of monofilaments (f) along axially infinite length of fiber. Besides, monofilament structure, shape of cross section of the monofilament, radial degree of profile of the monofilament DR (%) and monofilament density remain unchanged. Also, profiled fiber lacks of varied stereochemical structure and poor fiber variety.
It is an objective to overcome the disadvantages of the prior art related to profiled filament and to provide a stochastic thermal-conglutination profiled filament which has varied stereochemical structure, rich variety and wide application scope. Three swelling flat monofilaments of viscous state, spun from three spinneret slits of the spinneret plate, subject to disturbed cooling air and spinning component melt pressure of cyclical change, leads to continuous change of stochastically thermal-conglutination points lengthways along monofilament, resulted from which, monofilament cross section is subject to continuous change. In this way, profiled filament is fabricated. Shape of cross section of monofilament is subject to stochastic change. Meanwhile, radial degree of profile of the monofilament DR (%), monofilament density, number of monofilaments (f), lengthways three-dimensional structure of monofilament and physical performance of monofilament are also subject to stochastic change.
The above objective is achieved by the following technical solution: The profiled filament, varies, according to the change of the process condition, in one or more of fiber structure, total linear density, monofilament density, number of monofilaments, shape of cross section of the monofilament, radial degree of profile of the monofilament DR %, three-dimensional structure of the monofilament, and physical property of the monofilament along the axial direction of the filament of the infinite length.
The profiled filament is made via controlling and adjusting the supplied spinning melt from a melt dosing pump periodically without changing the spinning speed of the spinning package, thus the total linear density and the monofilament density of the filament yarn spun from the spinneret plate also change periodically. Change of the melt pressure of the spinning component causes the extent of expansion of the polymer elastomers spun from the spinneret slits to change. The polymer elastomers collide with each other and thus the conglutination state may be reliable conglutination, unreliable conglutination, non-conglutination; and the number of monofilaments also changes regularly and periodically.
The position between 70 mm and 120 mm under the spinneret plate is provided with swing cooling air perpendicular to direction of motion of fiber. Polymer elastomers just spun from the spinneret slits are subject to regular and periodical perturbance by the swing cooling air, causing the conglutination points at an unstable state of perturbance, that is to say, location of conglutination points is subject to stochastic change; conglutination section is diversified; and monofilament density, number of monofilaments and shape of cross section of the monofilament are also subject to synchronal and stochastic change. The spinneret plate has three spinneret slits (one long and two short spinneret slits), conglutination status of polymer elastomers spun from the spinneret slits is subject to periodic variation. The three filaments have different linear densities and contractibility rates for solidification as well as stochastically changed fiber inner stress and mutual pulling force, causing the profiled filament is shaped like a helical structure, direction of spiral is of levorotation sometimes or dextrorotation sometimes, the fiber is straight sometimes or winding sometimes, and fiber surface is sunken sometimes or raised sometimes.
Polymer elastomers spun from the three spinneret slits (one long and two short spinneret slits) can be either made from the same constituent material subject to mutually stochastic conglutination, or made from two constituent materials of different performances subject to composite stochastic conglutination. Particularly, two constituent materials of different contraction performances subject to composite stochastic conglutination have richer stereoscopic effect.
The three (one long and two short) high polymer filaments spun from the three spinneret slits have different linear densities and cooling contractibility rates as well as stochastically changed fiber inner stress and mutual pulling force, causing the profiled filament is shaped like a helical structure, direction of spiral is of levorotation sometimes or dextrorotation sometimes, the fiber is straight sometimes or winding sometimes, and fiber surface is sunken sometimes or raised sometimes, physical performance and three-dimensional shape of monofilament is also stochastically changed, thus obtaining the profiled filament with infinite-length fiber structure with rich performance axially along monofilament of a bunch of multifilament. The profiled filament has the advantages of varied stereochemical structure, diversified varieties, wide application scope, simple manufacturing process, low fabricating cost and good quality etc.
Detailed description related to the invention is made in conjunction with the accompanying drawings and embodiments: the profiled filament varies, according to change of the process condition, in one or more of fiber structure, total linear density, monofilament density, number of monofilaments, shape of cross section of the monofilament, radial degree of profile of the monofilament DR %, three-dimensional structure shape of the monofilament, and physical property of the monofilament along the axial direction of the filament of the infinite length.
The profiled filament is made via controlling and adjusting the supplied spinning melt from the melt dosing pump periodically without changing the spinning speed of the spinning package, thus the total linear density and the monofilament density of the filament yarn spun from the spinneret plate also change periodically. Change of the melt pressure of the spinning component causes the extent of expansion of the polymer elastomers spun from the spinneret slit to change. The polymer elastomers collide with each other and thus the conglutination state may be reliable conglutination, unreliable conglutination, non-conglutination; and the number of monofilaments also changes regularly and periodically.
The position between 70 mm and 120 mm under the spinneret plate is provided with swing cooling air perpendicular to direction of motion of fiber. Polymer elastomers just spun from the spinneret slit are subject to regular and periodical perturbance by the swing cooling air, causing the conglutination points at a unstable state of perturbance, that is to say, location of conglutination points is subject to stochastic change; conglutination section is diversified; and monofilament density, number of monofilaments and shape of cross section of the monofilament are also subject to synchronal and stochastic change.
The spinneret plate has three spinneret slits (one long and two short spinneret slits), conglutination status of polymer elastomers spun from the spinneret slits is subject to periodic variation. The three filaments have different linear densities and contractibility rates for solidification as well as stochastically changed inner stress and mutual pulling force, causing the profiled filament is shaped like a helical structure, direction of spiral is of levorotation sometimes or dextrorotation sometimes, the fiber is straight sometimes or winding sometimes, and fiber surface is sunken sometimes or raised sometimes.
Polymer elastomers spun from the three spinneret slits (one long and two short spinneret slits) can be either made from the same constituent material subject to mutually stochastic conglutination, or made from two constituent materials of different performances subject to composite stochastic conglutination. Particularly, two constituent materials of different contraction performances subject to composite stochastic conglutination have richer stereoscopic effect. The profiled filament is a polymer elastomer made by a spinneret plate provided with multigroup spinneret orifices each of which is composed of three spinneret slits (one long and two short spinneret slits), just as shown in
The profiled filament can be either a polymer elastomer made from the same constituent material subject to mutually stochastic conglutination, or a polymer elastomer made from two constituent materials of different performances subject to composite stochastic conglutination, or a polymer elastomer made from two constituent materials of different contraction performances subject to composite stochastic conglutination.
The method for manufacturing the stochastic thermal-conglutination profiled filament is as below: first, a spinneret plate (as shown in
1. On the spinneret plate of the stochastic thermal-conglutination profiled filament is provided with a plurality groups of spinneret orifices, each spinneret orifice consists of three spinneret slits (one long and two short spinneret slits, as shown in
2. The spinning component melt pressure, adjusted and controlled by the melt dosing pump, is subject to regular and periodical change. Quantity of melt supplied by the melt dosing pump is also subject to periodic variation without changing the spinning speed of the spinning package, thus the total linear density and the monofilament density of the filament yarn spun from the spinneret plate also change periodically. In addition, the melt pressure of the spinning component is also subject to regular and periodical change, due to which, the extent of expansion of the polymer elastomers spun from the three spinneret slits (one long and two short spinneret slits) also changes regularly and periodically. The polymer elastomers swell and collide with each other and thus the conglutination state can be subject to regular and periodical change from reliable conglutination, unreliable conglutination to non-conglutination.
3. The position between 70 mm and 120 mm under the spinneret plate is provided with swing cooling air perpendicular to direction of motion of fiber. Polymer elastomers just spun from the spinneret slit are subject to regular and periodical perturbance by the swing cooling air, causing the conglutination points at a unstable state of perturbance, that is to say, location of conglutination points is subject to stochastic change; conglutination section (at least shown in
Number | Date | Country | Kind |
---|---|---|---|
201010273632.7 | Sep 2010 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN11/79082 | 8/30/2011 | WO | 00 | 12/26/2012 |