Specimen capture stapler

Information

  • Patent Grant
  • 11344300
  • Patent Number
    11,344,300
  • Date Filed
    Tuesday, February 18, 2020
    4 years ago
  • Date Issued
    Tuesday, May 31, 2022
    2 years ago
Abstract
A surgical stapling device includes an end effector and a handle assembly operably coupled to the end effector. The end effector includes an anvil assembly and a cartridge assembly. The surgical stapling device also includes a specimen bag adhered to both the anvil assembly and the elongated support channel of the cartridge assembly. The specimen bag includes a drawstring within a drawstring housing. Once the surgical stapling device is inserted into a patient's body and the anvil assembly and the cartridge assembly are open, a tissue specimen is placed into the specimen bag. The anvil assembly and the cartridge assembly are then closed on the tissue specimen and the surgical stapling device is fired. The specimen bag then separates from the surgical stapling device and both the surgical stapling device and the specimen bag are removed from the patient.
Description
TECHNICAL FIELD

The present disclosure relates generally to surgical apparatuses for use in minimally invasive surgical procedures, such as endoscopic and/or laparoscopic procedures, and more particularly, the present disclosure relates to a surgical apparatus including a specimen retrieval device for collecting body tissue(s) and/or body fluid(s) during these procedures.


BACKGROUND

Minimally invasive surgery, such as endoscopic surgery, reduces the invasiveness of surgical procedures. Endoscopic surgery involves surgery through body walls, for example, viewing and/or operating on the ovaries, uterus, gall bladder, bowels, kidneys, appendix, etc. There are many common endoscopic surgical procedures, including arthroscopy, laparoscopy, gastroentroscopy and laryngobronchoscopy, just to name a few. In these procedures, trocars are utilized to pass through incisions and penetrate the abdominal wall, thereby permitting endoscopic surgery to be performed. Trocar tubes or cannula devices are extended into and left in place in the abdominal wall to provide access for endoscopic surgical tools. A camera or endoscope is inserted through a trocar tube to permit the visual inspection and magnification of a body cavity. The surgeon can then perform diagnostic and/or therapeutic procedures at the surgical site with the aid of specialized instrumentation, such as forceps, graspers, cutters, applicators, and the like, which are designed to fit through additional cannulas.


When removing certain tissues from the body cavity, for example tumor tissue, it is important that the tumor tissue does not come into contact with healthy or uninvolved tissue. If tumor tissue or tissue parts have to be removed, they may be introduced into an “extraction bag,” also referred to herein as a “specimen bag,” at the site where the tumor or diseased tissue has been detached from the surrounding tissue, after which the specimen bag is withdrawn from the body, thereby minimizing contact of the diseased tissue with healthy tissue.


Improved devices, including specimen bags for use in minimally invasive surgical procedures, remain desirable.


SUMMARY

The present disclosure provides surgical stapling devices and methods for using the devices. In embodiments, a surgical stapling device of the present disclosure includes an end effector including an anvil assembly and a cartridge assembly pivotally coupled to one another, the anvil assembly and the cartridge assembly being relatively movable such that the end effector is movable between an open position and a clamped position. The surgical stapling device of the present disclosure also includes a specimen bag including a body and a mouth defining an open end, the mouth attached to the anvil assembly and the cartridge assembly such that movement of the end effector to the open position moves the mouth of the specimen bag to an open position.


In some embodiments, the mouth of the specimen bag includes a drawstring housing having a drawstring therein.


Methods of the present disclosure include, in embodiments, advancing a surgical stapling device including an anvil assembly and a cartridge assembly into a body cavity adjacent tissue to be removed from a patient's body and placing the tissue to be removed from the patient's body into a specimen bag having a mouth attached to the anvil assembly and the cartridge assembly. The anvil assembly and the cartridge assembly are closed on the tissue and the surgical stapling device is fired to separate a tissue specimen from the tissue.


In some embodiments, the method of the present disclosure further includes grasping the tissue specimen to pull the tissue specimen deeper into the specimen bag.


In other embodiments, grasping the tissue specimen to pull the tissue specimen deeper into the specimen bag occurs after firing the surgical stapling device.


In embodiments, the method of the present disclosure further includes closing the mouth of the specimen bag after firing the surgical stapling device.


Closing the mouth of the specimen bag occurs, in embodiments, by proximally pulling a drawstring encompassing the mouth of the specimen bag.


In some embodiments, proximally pulling the drawstring encompassing the mouth of the specimen bag further includes detaching the mouth of the specimen bag from the anvil assembly and the cartridge assembly.


In other embodiments, proximally pulling the drawstring encompassing the mouth of the specimen bag further includes detaching the specimen bag from an adapter assembly of the surgical stapling device.


In yet other embodiments, proximally pulling the drawstring encompassing the mouth of the specimen bag includes removing the specimen bag from the patient's body.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a surgical stapling device including a handle housing, an adapter assembly, an end effector, and a specimen bag attached thereto in accordance with an embodiment of the present disclosure;



FIG. 2 is a perspective view, of the end effector and the specimen bag, including a drawstring and drawstring housing, of the surgical stapling device shown in FIG. 1;



FIG. 3 is a cross-sectional view taken along section line 3-3 of FIG. 1;



FIG. 4 is an enlarged view of the indicated area of detail shown in FIG. 3;



FIG. 5 is a top view of the distal portion of the surgical stapling device shown in FIG. 1 during a surgical procedure as the specimen bag is being deployed;



FIG. 6 is a top view of showing the specimen bag of the present disclosure after firing of the surgical stapling device shown in FIG. 5;



FIG. 7 is a top view showing the detachment of the specimen bag from the surgical stapling device shown in FIG. 6; and



FIG. 8 is a side view showing removal of the drawstring and the drawstring housing from a patient's body after detachment of the specimen bag from the surgical stapling device shown in FIG. 7.





DETAILED DESCRIPTION OF EMBODIMENTS

The present disclosure provides a specimen retrieval device for use in minimally invasive surgical procedures. As used herein with reference to the present disclosure, minimally invasive surgical procedures encompass laparoscopic procedures, arthroscopic procedures, and endoscopic procedures, and refer to procedures utilizing scopes or similar devices having relatively narrow operating portions capable of insertion through a small incision in the skin.


The aspects of the present disclosure may be modified for use with various methods for retrieving tissue specimens during minimally invasive surgical procedures, sometimes referred to herein as minimally invasive procedures. Examples of minimally invasive procedures include, for example, cholecystectomies, appendectomies, nephrectomies, colectomies, splenectomies, and the like.


The presently disclosed specimen retrieval device will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. In this description, the term “proximal” is used generally to refer to that portion of the device that is closer to a clinician, while the term “distal” is used generally to refer to that portion of the device that is farther from the clinician. The term “clinician” is used generally to refer to medical personnel including doctors, surgeons, nurses, and support personnel.


Turning now to FIG. 1, a surgical stapling device 10 in accordance with an embodiment of the present disclosure is in the form of a handheld surgical instrument. The surgical stapling device 10 includes a handle assembly 100, an adapter assembly 200, and an end effector 300. The handle assembly 100 is configured for selective connection with the adapter assembly 200 and, in turn, the adapter assembly 200 is configured for selective connection with the end effector 300.


The surgical stapling device 10 may be a manual surgical stapling device or a powered surgical stapling device. A powered device includes one or more motors and an internal or external power source, whereas the manual device has a movable handle and a mechanism for driving the functions of the apparatus. Examples of such stapling devices include those disclosed in U.S. Pat. Nos. 5,865,361; 5,782,396; 8,672,206; and International WO 04/032,760, the entire disclosures of each of which are incorporated by reference herein.


The handle assembly 100, the adapter assembly 200, and the end effector 300 will only further be described to the extent necessary to disclose aspects of the present disclosure. For a detailed description of the structure and function of exemplary handles, adapter assemblies, and end effectors, reference may be made to commonly owned U.S. Patent Appl. Pub. No. 2016/0310134, the entire disclosure of which is incorporated by reference herein.


With reference now to FIG. 1, the handle assembly 100 includes a housing shell 112, including a proximal half-section 112a and a distal half-section 112b. The housing shell 112 includes a plurality of actuators 116 (e.g., finger-actuated control buttons, knobs, toggles, slides, interfaces, and the like) for activating various functions of the surgical device 10 (FIG. 1). As noted above, the handle 112 may include a power source (not shown) configured to power and control various operations of the surgical device 10 or the handle 112. Alternatively, it is also envisioned that the handle 112 may be manually powered.


Referring now to FIGS. 1-2, the end effector 300 is in the form of a single use loading unit. It should be understood, however, that other types of end effectors may also be used with the surgical device 10 of the present disclosure including, for example, end-to-end anastomosis loading units, multi-use loading units, transverse loading units, and curved loading units.


The end effector 300 includes a proximal body portion 310 and a tool assembly 320. The proximal body portion 310 of the end effector 300 is releasably attachable to the distal cap 206 of the adapter assembly 200 (FIG. 1) and the tool assembly 320 is pivotally attached to the proximal body portion 310 of the end effector 300. The tool assembly 320 of the end effector 300 includes an anvil assembly 330 and a cartridge assembly 340 pivotally coupled to one another such that the tool assembly 320 is movable between an open or unclamped position and a closed or clamped position.


As shown in FIG. 3, the anvil assembly 330 includes an anvil plate 332 and a cover plate 334 secured over the anvil plate 332 such that the cover plate 334 defines an outer surface 334a of the anvil assembly 330.


The cartridge assembly 340 includes a staple cartridge 342 and a cartridge carrier 344.


As depicted in FIGS. 1 and 2, the surgical stapling device 10 of the present disclosure also includes a specimen bag 400 adhered to both the anvil assembly 330 and the cartridge assembly 340 of the end effector 300. The specimen bag 400 includes a body 460 having a generally tubular or elongated configuration that is defined by an openable and closable portion (or mouth) 440 and a closed portion 470 (FIG. 1). The mouth 440 defines an opening 450 that opens when the anvil assembly 330 and the cartridge assembly 340 are in an open position. The specimen bag 400 includes a drawstring 410 within a drawstring housing 420. In embodiments the proximal portion of the drawstring 410 may possess a ring. 430 to facilitate grasping of the drawstring 410 (FIGS. 1 and 2). The drawstring housing 420 is adhered along the length of the adapter assembly 200. The specimen bag 400 may be compressed so that it fits between the anvil assembly 330 and the cartridge assembly 340 and can pass through a cannula, trocar, or similar device (not shown). The drawstring housing 420 will be long enough that it sticks outside of the trocar (not shown).


In other embodiments (not shown) the specimen bag 400 of the present disclosure may be attached to the anvil assembly 330, the cartridge assembly 340 of the end effector 300, or both, using loops that slide over the anvil assembly 330, the cartridge assembly 340 of the end effector 300, or both, to secure the specimen bag thereto. This would allow the specimen bag to be sold as a separate product for use with existing surgical stapling devices.


The body 460 of the specimen bag 400 may be made from any suitable biocompatible material (e.g., nylon, urethane, ripstop nylon or latex) capable of forming a flexible collapsible member, or membrane. In embodiments, the material from which the specimen bag is made is resilient, antistatic, pyrogen-free, non-toxic, and sterilizable. The specimen bag 400 may be opaque or clear. In some embodiments, the body 460 of the specimen bag 400 is formed of a nylon material, or combinations of nylon materials.


As shown in greater detail in FIGS. 3 and 4, in embodiments the specimen bag 400 is adhered to both the anvil assembly 330 and the cartridge assembly 340. As shown in FIG. 4, the drawstring housing 420, possessing the drawstring 410 therein, is attached to the anvil 330 and the cartridge assembly 340 using any suitable means, including biocompatible adhesives. Although not depicted, the drawstring 420 is similarly attached to the cartridge assembly.


In use, as shown in FIG. 5, in embodiments a trocar 500 may be introduced through an incision “I” for access to a patient's body cavity “BC”. The end effector 300 is inserted through the trocar 500 so that the anvil assembly 330 and the cartridge assembly 340 are positioned within the body cavity “BC”. A tissue specimen “TS” is placed into the specimen bag 400 which will begin to unfold. The anvil assembly 330 and the cartridge assembly 340 are then closed on the tissue specimen “TS” and the surgical stapling device 10 is fired (not shown).


After firing the stapler, as shown in FIG. 6, the tissue specimen “TS” remains within the specimen bag 400, with the tissue remaining in the patient's body “TR” having a staple line “S” at the point of stapling.


Forceps may then be used to grasp the tissue specimen “TS” to pull the tissue specimen “TS” deeper into the specimen bag 400 (not shown).


As shown in FIG. 7, once the tissue specimen “TS” is fully in the specimen bag 400, the drawstring 410 is pulled proximally (not shown) to close the specimen bag 400. While the specimen bag 400 is closing, the drawstring housing 420 detaches from the anvil assembly 330 and the cartridge assembly 340.


The drawstring housing 420 is then pulled to detach it from the adapter assembly 200 (not shown). At this point, the entire specimen bag 400 and drawstring housing 420 are completely detached from the surgical stapling device 10 and the surgical stapling device 10 can be removed from the patient (not shown). As shown in FIG. 8, the drawstring housing 420 with the drawstring 410 therein are then ready for removal through the trocar 300 by proximally pulling the drawstring housing 420 and the drawstring 410 therein (indicated by arrow “A” in FIG. 8). Next, the trocar 500 can be removed from the patient while the doctor ensures the specimen bag 400 remains closed by maintaining tension on the drawstring 410 (not shown), after which the specimen bag 400 can be removed from the patient (not shown).


Once the tissue specimen is removed from the patient, it will most likely be used for histopathological testing to ensure no cancer cells remain next to the cut line.


The devices and methods of the present disclosure provide several advantages over previous specimen retrieval devices.


For example, use of the devices of the present disclosure permits the direct placement of a diseased tissue specimen into a specimen bag to minimize the risk of spreading cancer cells during removal of the diseased tissue specimen from within a body cavity. It also reduces the maneuvering required with conventional devices to get the tissue specimen into the specimen bag, which can lead to the tissue specimen mistakenly coming in contact with healthy tissue.


In addition, the methods and devices of the present disclosure permit carrying out histopathology closer to the staple line, without having to worry about fluids being released from unhealthy tissue. With current practice, the best sample from the resected tissue is that portion closest to the cut line, to determine if any cancer daughter cells are left on the remaining healthy tissue. When the diseased tissue is cut, it is stapled as well. In some cases, the stapling deforms the tissue so that it can no longer be used for histopathology, therefore the pathologist must use the next closest sample of undamaged tissue, which is the width of three staples lines away from the cut line. However, if the resected tissue is not stapled, any contents inside the tissue could be expelled into its containing cavity. This could lead to an infection in the abdominal cavity. Using the devices and methods of the present disclosure, by immediately quarantining the resected tissue in a specimen bag, the risk of abdominal infection is less of a concern if the tissue being removed is not stapled or stapled with only one staple row far enough from the cut line to allow for histopathology.


Finally, less equipment is needed since the specimen bag and the stapling reload are combined.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A surgical stapling device, comprising: an end effector including an anvil assembly and a cartridge assembly pivotally coupled to one another, the anvil assembly and the cartridge assembly being relatively movable such that the end effector is movable between an open position and a clamped position; anda specimen bag including a body and a mouth defining an open end, the mouth attached to the anvil assembly and the cartridge assembly such that movement of the end effector to the open position moves the mouth of the specimen bag to an open position.
  • 2. The surgical stapling device according to claim 1, wherein the mouth of the specimen bag includes a drawstring housing having a drawstring therein.
  • 3. A method, comprising: advancing a surgical stapling device including an anvil assembly and a cartridge assembly into a body cavity adjacent tissue to be removed from a patient's body;placing the tissue to be removed from the patient's body into a specimen bag having a mouth attached to the anvil assembly and the cartridge assembly;closing the anvil assembly and the cartridge assembly on the tissue; andfiring the surgical stapling device to separate a tissue specimen from the tissue.
  • 4. The method of claim 3, further comprising grasping the tissue specimen to pull the tissue specimen deeper into the specimen bag.
  • 5. The method of claim 4, wherein grasping the tissue specimen to pull the tissue specimen deeper into the specimen bag occurs after firing the surgical stapling device.
  • 6. The method of claim 3, further comprising closing the mouth of the specimen bag after firing the surgical stapling device.
  • 7. The method of claim 6, wherein closing the mouth of the specimen bag occurs by proximally pulling a drawstring encompassing the mouth of the specimen bag.
  • 8. The method of claim 7, wherein proximally pulling the drawstring encompassing the mouth of the specimen bag further includes detaching the mouth of the specimen bag from the anvil assembly and the cartridge assembly.
  • 9. The method of claim 8, wherein proximally pulling the drawstring encompassing the mouth of the specimen bag further includes detaching the specimen hag from an adapter assembly of the surgical stapling device.
  • 10. The method of claim 8, wherein proximally pulling the drawstring encompassing the mouth of the specimen bag includes removing the specimen bag from the patient's body.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/824,106 filed Mar. 26, 2019, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (288)
Number Name Date Kind
30471 Dudley Oct 1860 A
35164 Logan et al. May 1862 A
156477 Bradford Nov 1874 A
1609014 Dowd Nov 1926 A
3800781 Zalucki Apr 1974 A
4557255 Goodman Dec 1985 A
4611594 Grayhack et al. Sep 1986 A
4744363 Hasson May 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4852586 Haines Aug 1989 A
4927427 Kriauciunas et al. May 1990 A
4977903 Haines Dec 1990 A
4991593 LeVahn Feb 1991 A
4997435 Demeter Mar 1991 A
5037379 Clayman et al. Aug 1991 A
5074867 Wilk Dec 1991 A
5084054 Bencini et al. Jan 1992 A
5143082 Kindberg et al. Sep 1992 A
5147371 Washington et al. Sep 1992 A
5176687 Hasson et al. Jan 1993 A
5190542 Nakao et al. Mar 1993 A
5190555 Wetter et al. Mar 1993 A
5190561 Graber Mar 1993 A
5192284 Pleatman Mar 1993 A
5192286 Phan et al. Mar 1993 A
5201740 Nakao et al. Apr 1993 A
5215521 Cochran et al. Jun 1993 A
5224930 Spaeth et al. Jul 1993 A
5234439 Wilk et al. Aug 1993 A
5279539 Bohan et al. Jan 1994 A
5312416 Spaeth et al. May 1994 A
5320627 Sorensen et al. Jun 1994 A
5330483 Heaven et al. Jul 1994 A
5336227 Nakao et al. Aug 1994 A
5337754 Heaven et al. Aug 1994 A
5341815 Cofone et al. Aug 1994 A
5352184 Goldberg et al. Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5368545 Schaller et al. Nov 1994 A
5368597 Pagedas Nov 1994 A
5370647 Graber et al. Dec 1994 A
5443472 Li Aug 1995 A
5465731 Bell et al. Nov 1995 A
5480404 Kammerer et al. Jan 1996 A
5486182 Nakao et al. Jan 1996 A
5486183 Middleman et al. Jan 1996 A
5499988 Espiner et al. Mar 1996 A
5524633 Heaven et al. Jun 1996 A
5535759 Wilk Jul 1996 A
5611803 Heaven et al. Mar 1997 A
5618296 Sorensen et al. Apr 1997 A
5630822 Hermann et al. May 1997 A
5642282 Sonehara Jun 1997 A
5643282 Kieturakis Jul 1997 A
5643283 Younker Jul 1997 A
5645083 Essig et al. Jul 1997 A
5647372 Tovey et al. Jul 1997 A
5649902 Yoon Jul 1997 A
5658296 Bates et al. Aug 1997 A
5679423 Shah Oct 1997 A
5681324 Kammerer et al. Oct 1997 A
5720754 Middleman et al. Feb 1998 A
5735289 Pfeffer et al. Apr 1998 A
5741271 Nakao et al. Apr 1998 A
5755724 Yoon May 1998 A
5759187 Nakao et al. Jun 1998 A
5769794 Conlan et al. Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5782840 Nakao Jul 1998 A
5785677 Auweiler Jul 1998 A
5788709 Riek et al. Aug 1998 A
5792145 Bates et al. Aug 1998 A
5814044 Hooven Sep 1998 A
5829440 Broad, Jr. Nov 1998 A
5836953 Yoon Nov 1998 A
5853374 Hart et al. Dec 1998 A
5865361 Milliman et al. Feb 1999 A
5895392 Riek et al. Apr 1999 A
5904690 Middleman et al. May 1999 A
5906621 Secrest et al. May 1999 A
5908429 Yoon Jun 1999 A
5957884 Hooven Sep 1999 A
5971995 Rousseau Oct 1999 A
5980544 Vaitekunas Nov 1999 A
5997547 Nakao et al. Dec 1999 A
6004330 Middleman et al. Dec 1999 A
6007512 Hooven Dec 1999 A
6007546 Snow et al. Dec 1999 A
6019770 Christoudias Feb 2000 A
6036681 Hooven Mar 2000 A
6059793 Pagedas May 2000 A
6123701 Nezhat Sep 2000 A
6152932 Ternstrom Nov 2000 A
6156055 Ravenscroft Dec 2000 A
6162235 Vaitekunas Dec 2000 A
6165121 Alferness Dec 2000 A
6168603 Leslie et al. Jan 2001 B1
6206889 Bennardo Mar 2001 B1
6228095 Dennis May 2001 B1
6241139 Milliman Jun 2001 B1
6258102 Pagedas Jul 2001 B1
6264663 Cano Jul 2001 B1
6270505 Yoshida et al. Aug 2001 B1
6277083 Eggers et al. Aug 2001 B1
6280450 McGuckin, Jr. Aug 2001 B1
6344026 Burbank et al. Feb 2002 B1
6348056 Bates et al. Feb 2002 B1
6350266 White et al. Feb 2002 B1
6350267 Stefanchik Feb 2002 B1
6368328 Chu et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383196 Leslie et al. May 2002 B1
6383197 Conlon et al. May 2002 B1
6387102 Pagedas May 2002 B2
6406440 Stefanchik Jun 2002 B1
6409733 Conlon et al. Jun 2002 B1
6419639 Walther et al. Jul 2002 B2
6447523 Middleman et al. Sep 2002 B1
6471659 Eggers et al. Oct 2002 B2
6506166 Hendler et al. Jan 2003 B1
6508773 Burbank et al. Jan 2003 B2
6537273 Sosiak et al. Mar 2003 B1
6547310 Myers Apr 2003 B2
6589252 McGuckin, Jr. Jul 2003 B2
6752811 Chu et al. Jun 2004 B2
6755779 Vanden Hoek et al. Jun 2004 B2
6780193 Leslie et al. Aug 2004 B2
6805699 Shimm Oct 2004 B2
6840948 Albrecht et al. Jan 2005 B2
6872211 White et al. Mar 2005 B2
6887255 Shimm May 2005 B2
6958069 Shipp et al. Oct 2005 B2
6971988 Orban, III Dec 2005 B2
6994696 Suga Feb 2006 B2
7014648 Ambrisco et al. Mar 2006 B2
7018373 Suzuki Mar 2006 B2
7052454 Taylor May 2006 B2
7052501 McGuckin, Jr. May 2006 B2
7090637 Danitz et al. Aug 2006 B2
7115125 Nakao et al. Oct 2006 B2
7235089 McGuckin, Jr. Jun 2007 B1
7270663 Nakao Sep 2007 B2
7273488 Nakamura et al. Sep 2007 B2
7410491 Hopkins et al. Aug 2008 B2
7547310 Whitfield Jun 2009 B2
7618437 Nakao Nov 2009 B2
7670346 Whitfield Mar 2010 B2
7722626 Middleman et al. May 2010 B2
7762959 Bilsbury Jul 2010 B2
7785251 Wilk Aug 2010 B2
7819121 Amer Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
RE42050 Richard Jan 2011 E
7892242 Goldstein Feb 2011 B2
8016771 Orban, III Sep 2011 B2
8057485 Hollis et al. Nov 2011 B2
8075567 Taylor et al. Dec 2011 B2
8097001 Nakao Jan 2012 B2
8152820 Mohamed et al. Apr 2012 B2
8172772 Zwolinski et al. May 2012 B2
8206401 Nakao Jun 2012 B2
8337510 Rieber et al. Dec 2012 B2
8343031 Gertner Jan 2013 B2
8348827 Zwolinski Jan 2013 B2
8388630 Teague et al. Mar 2013 B2
8409112 Wynne et al. Apr 2013 B2
8409216 Parihar et al. Apr 2013 B2
8409217 Parihar et al. Apr 2013 B2
8414596 Parihar et al. Apr 2013 B2
8419749 Shelton, IV et al. Apr 2013 B2
8425533 Parihar et al. Apr 2013 B2
8430826 Uznanski et al. Apr 2013 B2
8435237 Bahney May 2013 B2
8444655 Parihar et al. May 2013 B2
8579914 Menn et al. Nov 2013 B2
8585712 O'Prey et al. Nov 2013 B2
8591521 Cherry et al. Nov 2013 B2
8652147 Hart Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696683 LeVert Apr 2014 B2
8721658 Kahle et al. May 2014 B2
8734464 Grover et al. May 2014 B2
8777961 Cabrera et al. Jul 2014 B2
8795291 Davis et al. Aug 2014 B2
8821377 Collins Sep 2014 B2
8827968 Taylor et al. Sep 2014 B2
8870894 Taylor et al. Oct 2014 B2
8906035 Zwolinsk et al. Dec 2014 B2
8906036 Farascioni Dec 2014 B2
8956370 Taylor et al. Feb 2015 B2
8968329 Cabrera Mar 2015 B2
20020068943 Chu et al. Jun 2002 A1
20020082516 Stefanchik Jun 2002 A1
20030073970 Suga Apr 2003 A1
20030100909 Suzuki May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030199915 Shimm Oct 2003 A1
20030216773 Shimm Nov 2003 A1
20040097960 Terachi et al. May 2004 A1
20040138587 Lyons Jul 2004 A1
20050085808 Nakao Apr 2005 A1
20050165411 Orban Jul 2005 A1
20050236459 Gresham Oct 2005 A1
20050256425 Prusiner Nov 2005 A1
20050267492 Poncet et al. Dec 2005 A1
20060030750 Amer Feb 2006 A1
20060052799 Middleman et al. Mar 2006 A1
20060058776 Bilsbury Mar 2006 A1
20060169287 Harrison et al. Aug 2006 A1
20060200169 Sniffin Sep 2006 A1
20060200170 Aranyi Sep 2006 A1
20060229639 Whitfield Oct 2006 A1
20060229640 Whitfield Oct 2006 A1
20070016224 Nakao Jan 2007 A1
20070016225 Nakao Jan 2007 A1
20070073251 Zhou et al. Mar 2007 A1
20070088370 Kahle et al. Apr 2007 A1
20070135780 Pagedas Jun 2007 A1
20070135781 Hart Jun 2007 A1
20070186935 Wang et al. Aug 2007 A1
20070213743 McGuckin, Jr. Sep 2007 A1
20080188766 Gertner Aug 2008 A1
20080221587 Schwartz Sep 2008 A1
20080221588 Hollis et al. Sep 2008 A1
20080234696 Taylor et al. Sep 2008 A1
20080255597 Pravong et al. Oct 2008 A1
20080300621 Hopkins et al. Dec 2008 A1
20080312496 Zwolinski Dec 2008 A1
20090043315 Moon Feb 2009 A1
20090082779 Nakao Mar 2009 A1
20090182292 Egle et al. Jul 2009 A1
20090192510 Bahney Jul 2009 A1
20090240238 Grodrian et al. Sep 2009 A1
20100000471 Hibbard Jan 2010 A1
20100152746 Ceniccola et al. Jun 2010 A1
20110087235 Taylor et al. Apr 2011 A1
20110184311 Parihar et al. Jul 2011 A1
20110184434 Parihar et al. Jul 2011 A1
20110184435 Parihar et al. Jul 2011 A1
20110184436 Shelton, IV et al. Jul 2011 A1
20110190779 Gell et al. Aug 2011 A1
20110190781 Collier et al. Aug 2011 A1
20110190782 Fleming et al. Aug 2011 A1
20110264091 Koppleman et al. Oct 2011 A1
20110299799 Towe Dec 2011 A1
20120046667 Cherry et al. Feb 2012 A1
20120053406 Conlon Mar 2012 A1
20120083795 Fleming et al. Apr 2012 A1
20120083796 Grover et al. Apr 2012 A1
20120179165 Grover Jul 2012 A1
20120203241 Williamson, IV Aug 2012 A1
20130023895 Saleh Jan 2013 A1
20130103042 Davis Apr 2013 A1
20130116592 Whitfield May 2013 A1
20130184536 Shibley et al. Jul 2013 A1
20130190773 Carlson Jul 2013 A1
20130218170 Uznanski et al. Aug 2013 A1
20130245636 Jansen Sep 2013 A1
20130274758 Young et al. Oct 2013 A1
20130325025 Hathaway et al. Dec 2013 A1
20140046337 O'Prey et al. Feb 2014 A1
20140058403 Menn et al. Feb 2014 A1
20140180303 Duncan et al. Jun 2014 A1
20140222016 Grover et al. Aug 2014 A1
20140236110 Taylor et al. Aug 2014 A1
20140236167 Shibley Aug 2014 A1
20140243865 Swayze et al. Aug 2014 A1
20140249541 Kahle et al. Sep 2014 A1
20140276913 Tah et al. Sep 2014 A1
20140303640 Davis et al. Oct 2014 A1
20140309656 Gal et al. Oct 2014 A1
20140330285 Rosenblatt et al. Nov 2014 A1
20140350567 Schmitz et al. Nov 2014 A1
20140371759 Hartoumbekis Dec 2014 A1
20140371760 Menn Dec 2014 A1
20150018837 Sartor et al. Jan 2015 A1
20150045808 Farascioni Feb 2015 A1
20150305728 Taylor Oct 2015 A1
20160022352 Johnson Jan 2016 A1
20160310134 Contini et al. Oct 2016 A1
20170049427 Do et al. Feb 2017 A1
20170215904 Wassef et al. Aug 2017 A1
20170224321 Kessler et al. Aug 2017 A1
20170231611 Holsten Aug 2017 A1
20170311964 Desai et al. Nov 2017 A1
20170325798 Prior Nov 2017 A1
20200305866 Knapp Oct 2020 A1
20210128129 George May 2021 A1
Foreign Referenced Citations (37)
Number Date Country
25796 Jan 1884 DE
3542667 Jun 1986 DE
8435489 Aug 1986 DE
4204210 Aug 1992 DE
19624826 Jan 1998 DE
10327106 Dec 2004 DE
0947166 Oct 1999 EP
1685802 Aug 2006 EP
1707126 Oct 2006 EP
2005900 Dec 2008 EP
2184014 May 2010 EP
2436313 Apr 2012 EP
2474270 Jul 2012 EP
2583629 Apr 2013 EP
2379920 May 2012 ES
1272412 Sep 1961 FR
246009 Jan 1926 GB
9315675 Aug 1993 WO
9509666 Apr 1995 WO
0135831 May 2001 WO
2004002334 Jan 2004 WO
2004032760 Apr 2004 WO
2004112571 Dec 2004 WO
2005112783 Dec 2005 WO
2006110733 Oct 2006 WO
2007048078 Apr 2007 WO
2007048085 Apr 2007 WO
2008114234 Sep 2008 WO
2009149146 Dec 2009 WO
2011090862 Jul 2011 WO
2011090866 Jul 2011 WO
2013075103 May 2013 WO
2014134285 Sep 2014 WO
2015134888 Sep 2015 WO
2015164591 Oct 2015 WO
2017189442 Nov 2017 WO
2018148744 Aug 2018 WO
Non-Patent Literature Citations (17)
Entry
Extended European Search Report issued in corresponding Appl. No. EP 20165597.4 dated Aug. 5, 2020 (7 pages).
European Search Report EP 12191639.9 dated Feb. 20, 2013.
European Search Report EP 11250837.9 dated Sep. 10, 2013.
European Search Report EP 11250838.7 dated Sep. 10, 2013.
European Search Report EP 13170118.7 dated Dec. 5, 2013.
European Search Report EP 12165852 dated Jun. 20, 2012.
http://www.biomaterials.org/week/bio17.cfm, definition and examples of hydrogels.
European Search Report EP 12150271 dated Jan. 14, 2013.
European Search Report EP 12193450 dated Feb. 27, 2013.
European Search Report EP 12189517.1 dated Mar. 6, 2013.
European Search Report EP 12158873 dated Jul. 19, 2012.
European Search Report EP 11250836 dated Sep. 12, 2013.
European Search Report dated Feb. 12, 2019 issued in EP Application No. 18208634.
International Search Report issued in Appl. No. PCT/US2018/058609 dated Feb. 22, 2019.
Extended European Search Report issued in corresponding Appl. No. EP 19170619.1 dated Sep. 19, 2019 (8 pages).
Extended European Search Report issued in Appl. No. 19174966.2 dated Oct. 30, 2019 (10 pages).
Extended European Search Report issued in Appl. No. EP 19197987.1 dated Jan. 8, 2020 (10 pages).
Related Publications (1)
Number Date Country
20200305866 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
62824106 Mar 2019 US