The present invention relates to the field of laboratory equipment, specifically, specimen collection tubes and similar devices, particularly for use in biological and medical testing and assays, and related procedures.
Current specimen collection tubes are used as receptacles for collection of biological samples using swabs, capillary tubes, brushes, or biopsy needles (collection means). After the collection of biological samples using collection means, the distal end of the collection means in placed into the specimen tube usually containing preservative, transfer or wash media. The specimen tube is then transferred for further processing. Current available specimen tubes required the sample to be drawn back out from the proximal end of the tube, requiring additional handling with potential loss of sample and risk to operator to come in contact with sample especially if potentially infectious. This process will undoubtedly leave sample at the bottom of the tube within left over preservative, transfer or wash media. Therefore, transfer of entire sample is not achieved, and operator is at risk of coming into contact with potential hazardous of infectious sample due to additional handling. Additionally, when biological targets within biological samples are difficult to detect, more sample results in higher sensitivity and greater opportunity of detection.
Therefore, it is desirable, advantageous, cost saving and low risk to have a specimen collection tube with ability to transfer a biological or hazardous sample with minimal handling to second test tube for further processing. Here we describe a specimen collection tube with engagement means to secure collection means at the proximal end of specimen collection tube such that distal end of collection means is held at a given depth at the bottom of a specimen collection tube. This specimen collection tube has engagement means at distal end to attach second test tube for collection and further processing of the collected biological sample. The specimen collection tube has a frangible, penetrable bottom that remains intact with normal handling. The bottom of specimen collection tube is penetrable by sample using centrifugation to drive entire sample through specimen collection tube and into second test tube for collection of an entire sample with minimal handling. The secondary test tube can then be removed and closed until this test tube is used for further processing of sample.
The present invention comprises, in part, a specimen collection tube assembly. A tube body is provided, having an open proximal end, and a closed end distal thereto. A cap is receivable on the open proximal end. A specimen retriever is receivable within the tube body when the cap is received on the open proximal end. The tube body includes a coupling structure disposed at the closed distal end which captures and holds a test tube brought into engagement therewith. The closed distal end of the tube body further includes a frangible section, which ruptures upon application of a force having a component directed along a direction from the open proximal end toward the closed distal end, such that material contained within the closed distal end of the tube is prompted to move into a test tube captured by the coupling structure.
In an embodiment of the invention, the cap is threadably couplable with the tube body.
In an embodiment of the invention, the coupling structure comprises a substantially cylindrical collar disposed about the frangible section, the cylindrical collar sized to be inserted into an end of a test tube. In an embodiment, the coupling structure engages a test tube with one of a friction fit, a threaded engagement, a snap-on engagement, a bayonet-type engagement.
In an embodiment, the frangible section comprises at least one line of weakness. In an embodiment, the at least one line of weakness extends at least one of radially from a bottommost reach of the tube body, extends in a circular path around a portion of the tube body.
In an embodiment, the specimen retriever comprises a stem having a proximal end and a distal end, with a grip disposed at the proximal end and a specimen-retaining tip disposed at the distal end. In an embodiment, the specimen-retaining tip comprises one of a swab, a capillary tube, a brush, a biopsy needle tip, and cannula.
In an embodiment, the grip is captured between an outer surface of the proximal end of the tube body, and an inner surface of the cap, when the cap is positioned on the proximal end of the tube body.
In an embodiment, the cap includes a region through which a specimen retriever may be thrust.
In an embodiment, a specimen collection solution is contained within the tube body and retained by the cap. In an embodiment, the specimen collection solution comprises at least one of a preservative, a transfer medium, a wash medium.
The present invention also comprises, in part, a specimen collection system comprising a specimen collection tube assembly comprising a tube body, having an open proximal end, and a closed end distal thereto; a cap receivable on the open proximal end; and a specimen retriever, receivable within the tube body, when the cap is received on the open proximal end. The tube body includes a coupling structure disposed at the closed distal end which captures and holds a test tube brought into engagement therewith. The closed distal end of the tube body further includes a frangible section, which ruptures upon application of a force having a component directed along a direction from the open proximal end toward the closed distal end, such that material contained within the closed distal end of the tube is prompted to move into a test tube captured by the coupling structure. A specimen collection solution is contained within the tube body and captured by the cap. A test tube is coupled to the closed distal end of the tube body.
The present invention also comprises in part a method of making a specimen collection system. The method comprises the steps of:
The present invention also comprises, In part, a method for collecting a specimen comprising the steps of:
An embodiment of the invention comprises a specimen collection tube assembly comprising:
In an embodiment of the invention, the cap and the tube body comprise mating thread structures.
In an embodiment of the invention, the frangible section comprises at least one line of weakness, the at least one line of weakness comprising at least one thinned region of a wall of the tube body in the distal end having a thickness that is less than a thickness of adjacent regions of the wall of the tube body. In such an embodiment, the at least one thinned region extends at least one of radially from a bottommost reach of the tube body, in a circular path around a portion of the tube body.
In an embodiment of the invention, the specimen retriever comprises a stem having a proximal end and a distal end, with a grip disposed at the proximal end and a specimen-retaining tip disposed at the distal end, wherein the specimen-retaining tip comprises one of a swab, a capillary tube, a brush, a biopsy needle tip, and cannula. The proximal end of the tube body may comprise a recess on an outer surface thereof, shaped to receive the grip of the specimen retriever, such that the grip can be captured between an outer surface of the proximal end of the tube body, and an inner surface of the cap, when the cap is positioned on the proximal end of the tube body.
In an embodiment of the specimen collection tube assembly, a test tube is coupled to the closed distal end of the tube body.
An embodiment of the invention comprises a method of making a specimen collection system comprising the steps of:
An embodiment of the invention comprises a method for collecting a specimen comprising the steps of:
While this invention is susceptible of embodiment in many different forms, there are shown in the drawings and described in detail herein, specific embodiments, with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention, and is not intended to limit the invention to the embodiment(s) illustrated.
The invention and accompanying drawings will now be discussed in reference to the numerals provided therein to enable one skilled in the art to practice the present invention. The drawings and descriptions are exemplary of various aspects of the invention and are not intended to narrow the scope of the appended claims. Unless specifically noted, it is intended that the words and phrases in the specification and the claims be given their plain, ordinary and accustomed meaning to those of ordinary skill in the applicable arts. It is noted that the inventors can be their own lexicographers. The inventors expressly elect, as their own lexicographers, to use only the plain and ordinary meaning of terms in the specification and claims unless they dearly state otherwise and then further, expressly set forth the “special” definition of that term and explain how it differs from the plain and ordinary meaning. Absent such clear statements of intent to apply a “special” definition, it is the inventor's intent and desire that the simple, plain and ordinary meaning to the terms be applied to the interpretation of the specification and claims.
The inventors are also aware of the normal precepts of English grammar. Thus, if a noun, term, or phrase is intended to be further characterized, specified, or narrowed in some way, then such noun, term, or phrase will expressly include additional adjectives, descriptive terms, or other modifiers in accordance with the normal precepts of English grammar. Absent the use of such adjectives, descriptive terms, or modifiers, it is the intent that such nouns, terms, or phrases be given their plain, and ordinary English meaning to those skilled in the applicable arts as set forth above.
Further, the Inventors are fully informed of the standards and application of the special provisions of 35 U.S.C. § 112(f) or pre-AIA 35 U.S.C. § 112˜6. Thus, the use of the words “function,” “means” or “step” in the Detailed Description of the Invention or claims is not Intended to somehow indicate a desire to invoke the special provisions of 35 U.S.C. § 112(f) or pre-AIA 35 U.S.C. § 112˜6 to define the invention. To the contrary, if the provisions of 35 U.S.C. § 112(f) or pre-AIA 35 U.S.C. § 112˜6 are sought to be invoked to define the inventions, the claims will specifically and expressly state the exact phrases “means for” or “step for” and the specific function (e.g., “means for roasting”), without also reciting in such phrases any structure, material or act in support of the function, Thus, even when the claims recite a “means for . . . ” or “step for . . . ” if the claims also recite any structure, material or acts in support of that means or step, or that perform the recited function, then it is the clear intention of the inventor not to invoke the provisions of 35 U.S.C. § 112(f) or pre-AIA 35 U.S.C. § 112˜6. Moreover, even if the provisions of 35 U.S.C. § 112(f) or pre-AIA 35 U.S.C. § 112˜6 are invoked to define the claimed inventions, it is intended that the inventions not be limited only to the specific structure, material or acts that are described in the illustrated embodiments, but in addition, include any and all structures, materials or acts that perform the claimed function as described in alternative embodiments or forms of the invention, or that are well known present or later-developed, equivalent structures, material or acts for performing the claimed function.
In the following description, and for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various aspects of the invention. It will be understood, however, by those skilled in the relevant arts, that the present invention may be practiced without these specific details. In other instances, known structures and apparatus are shown or discussed more generally in order to avoid obscuring the invention. In many cases, a description of the operation is sufficient to enable one to Implement the various forms of the invention, particularly when the operation is to be implemented in software. It should be noted that there are many different and alternative configurations, apparatus and technologies to which the disclosed inventions may be applied. Thus, the full scope of the inventions is not limited to the examples that are described below.
Various aspects of the present invention may be described in terms of functional block components and various processing steps. Such functional blocks may be realized by any number of hardware or software components configured to perform the specified functions and achieve the various results.
A lower end of specimen collection tube assembly 10 is illustrated in
Collar 36 is shaped and sized to be able to receive, with a snug friction fit, the top end of a test tube 40, which may be an Eppendorf type test tube. Such a tube 40 is known in the art, and includes a body 42, an open top end 44, which may be surrounded by a radially outwardly projecting flange. A cap 46, which sealing engages top end 44, is joined to top end 44 by a web or living hinge 48. Tube 40 may further include volume indicia 50.
In an embodiment of the invention, a test tube 40 is then coupled to collar 38 of tube assembly 10, to create a specimen collection kit 60, as shown in
Upon collection of the specimen, at the time of conducting a test procedure, tube assembly 10 with coupled test tube 40 will be placed into a centrifuge (not shown). In an embodiment of the invention, the coupled tube assembly 10 and test tube 40 will be supported at one or more locations, e.g., at the bottom of test tube 40, at the radially projecting flange adjacent top end 44, and/or below threads 16 on tube body 12. As the centrifuge accelerates to operating speed, centripetal forces acting on fluid 26 will exert pressure on frangible section 38 and cause it to break, along the lines of weakness, thus opening the end of tube body 12, and allowing the fluid 26, with specimen materials, to move into test tube 40, as shown in
In an embodiment of the invention, specimen retriever tip 32 will be a swab-type tip 52, coupled to a stem of a specimen retriever 22a, as shown in
While the embodiments of the invention disclosed herein are presently considered to be preferred, various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is indicated in the appended claims, and all changes and modifications that come within the meaning and range of equivalents are intended to be embraced therein.
For example, instead of screw cap 14, test tube assembly 10 may be provided with a snap-on type cap (not shown). Further, whether the cap is a screw-on cap 14, or a snap fit, a breachable iris-type web or membrane may be provided on the cap, through which a specimen retriever as described herein, or a conventional long-stemmed specimen swab may be thrust, to position the swab tip into the fluid 26. With respect to the coupling between the specimen tube body and the test tube, as an alternative to the press- or friction-fit that has been shown or described, an arrangement of mating threads may be formed on the collar and the inner surface of the mouth of the test tube. As a still further alternative, a series of mating projections may be positioned on the outside of the collar and on the inside of the test tube, to create an interference-type snap-on fit. As a still further alternative, a bayonet-type arrangement may be provided. With regard to the frangible section 38, as illustrated, a plurality of lines of weakness may be provided in the closed end of tube body 12, wherein the lines extend radially from a bottommost reach of the tube body 12. In an alternative embodiment, the lines of weakness may be in the form of a single circle or a series of concentric circles. In another embodiment of the invention, the lines of weakness may have other regular or nonregular geometric shapes.
While the term “specimen tube” is used herein to describe the several embodiments of the invention, it is to be understood that the principles of the present invention may be applied to a wide variety of laboratory type containers having a range of shapes and configurations. Accordingly, the term “specimen tube” is to be construed in the broadest possible context as simply referring to a container for use in a laboratory or other setting for assaying, sampling, or other testing procedures.
Although the invention has been described with reference to the above examples, it will be understood that many modifications and variations are contemplated within the true spirit and scope of the embodiments of the invention as disclosed herein. Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention shall not be limited to the specific embodiments disclosed and that modifications and other embodiments are intended and contemplated to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application is a continuation of U.S. patent application Ser. No. 16/877,013, filed May 18, 2020, which is hereby expressly incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 16877013 | May 2020 | US |
Child | 18195083 | US |