This present disclosure relates to a sample or specimen container for use in collecting, processing and analyzing source materials, such as a biological or chemical specimen.
The collection and analysis of a source material, such as a biological fluid specimen, may be done for a variety of reasons from diagnosis of diseases to the detection of drugs or other substances. Generally, the collection and analysis of a source material such as blood or urine is typically initiated by collecting the specimen in a hard container typically made of a glass or plastic material. The collection and testing of a source material presents a number of challenges, especially in locations without sufficient health and laboratory facilities. Even in highly developed communities, the fragile or hazardous nature of many types of source materials require that the materials are either tested immediately or preserved until arrival at an adequate laboratory facility. Various clinical situations require a sample of a collected specimen to be isolated for use. For example, specimens are routinely collected at a point-of-care clinic where patients are suspected to have communicable disease. Often multiple tests are performed on the collected specimen. As a result, the collected specimen must be divided into multiple samples for the different tests as well as for storage for future tests or shipping to a centralized lab. Thus, when a source material cannot be immediately tested, there is a considerable amount of time between source material collection and eventual diagnosis, where an individual may be unknowingly transmitting a disease to others.
Separation of the collected specimen into different portions may generally pose an exposure risk to the health-care worker who handles the collected specimen. In many instances, the specimen may be collected in a cup or bag, and then the health-care worker must fully open the cup or bag and pour, pipette, or scoop out portion(s) of the sample for analysis. Further, this current practice may have a risk of contamination. It is desirable to reduce or eliminate such risks of exposure and contamination.
An example of where the present invention according to the disclosure is particularly useful is in the collection of specimens from a population where the patients are suspected of having tuberculosis. Typically, sputum is collected from the patient in a collection bag, and the health-care worker must be exposed to an open bag filled with potentially hazardous tuberculosis bacilli to conduct analysis of the specimen. In the present invention, multiple portions of the specimen may be separated into compartments for immediate testing or preservation while reducing the exposure during this step. For example, multiple compartments could be specified for use in typical diagnostics tests and optimized (e.g. for handling and sample volume) given consideration to the downstream tests to be performed. In one known alternative (U.S. Pat. No. 5,423,792) there is disclosed a fluid specimen plastic container for holding a biological fluid specimen wherein the container has a port opening for receipt of the specimen, means for mechanically sealing the container including a sealable cap, a heat seal, or a plug, with the specimen therein, and wherein the seal is effected after receipt of the specimen and can include formation of more than one sealed compartments for subsequent separation and analysis and at least one of the sealed compartments having a rigid or semi rigid element therein protruding from a hole in the compartment to dispense the specimen contained therein, and the container also has an identification element capable of inscription thereon.
Without sufficient laboratory capabilities, disease diagnosis is generally facilitated by obtaining a biological or chemical specimen from a patient at a point-of-care facility and then sending the specimen to a centralized laboratory for testing. During transfer, specimen samples, may degrade or be damaged which jeopardizes or compromises the integrity of the diagnostic results. Even if a specimen is received in an acceptable condition, days or even months may pass before a patient receives the results of the laboratory test of the specimen. In remote developing areas, it may be difficult, or even impossible, to locate and notify the patient of a positive diagnosis, only adding to the difficulty of controlling the spread of communicable diseases in these areas, particularly diseases that are more easily spread through human to human contact or interaction.
Despite the significant advances made in many developed countries to control and even eradicate certain diseases, controlling the spread of certain diseases remains a serious issue. One particular concern is the troubling high rates of tuberculosis that remain in many areas. The spread of tuberculosis in some regions continues as a serious issue given the ease with which the disease is transmitted and the vast number of individuals who are carriers of the disease but are asymptomatic. Tuberculosis is generally an airborne bacterium that is easily spread through close contact, making effective prevention of the spread of the disease nearly impossible.
As an added difficulty, the standard tests for tuberculosis diagnosis in many areas include smear microscopy and mycobacterial culture. While sensitive, culture typically requires six weeks or more to obtain growth and identification of the mycobacteria. While relatively inexpensive, smear microscopy is reported to identify only half the cases of tuberculosis (even less for HIV/AIDS co-infection) and is also unable to identify if a strain is drug-resistant. Thus, the current systems for tuberculosis diagnosis lead to low rates of disease identification in a timely and accurate manner, thereby limiting patient follow-up and proper treatment. These consequences perpetuate not only spread of the disease, but also the development of drug-resistant strains of tuberculosis.
Existing polymerase chain reaction (PCR) technology has also been used for the diagnosis of tuberculosis, but has been hindered by its highly complex preparative steps and long amplification times in the range of hours. In many clinical settings, typical diagnostic methods (including PCR) are comprised of a considerable number of steps and a considerable number of lab devices to prepare and analyze the sample to obtain an actual diagnostic result. While there have been advances in the sample collection to results process (typically by consolidating and automating certain steps), the fact remains that molecular diagnostics are typically confined to high-complexity labs. Even where PCR testing has been shown somewhat effective, most health care facilities cannot support the funding or staffing needs for an operational PCR lab. Additionally, the expense and complexity of conventional PCR technology has prohibited it from being widely applied for diagnosis in areas where tuberculosis is most prevalent. The cost requirements for a high complexity laboratory simply cannot be met in many remote, underdeveloped or economically struggling areas.
In response, there has been a push for point-of-care diagnostic devices that will accurately diagnose tuberculosis while substantially reducing the time required for diagnosis. However, point-of-care diagnostics of tuberculosis pose additional challenges. The risk of infection for any health care worker or lab technician becomes potentially extremely high with tuberculosis samples. Most laboratories that regularly handle infected tuberculosis samples are equipped with fume hoods, biohazard safety cabinets, air sanitation systems or isolated rooms so that anyone in contact with the samples is at least reasonably protected from infection. Health facilities in developing countries that would serve as point-of-care testing locations are simply not equipped with this safety equipment, further increasing the infection risk of health-care workers. Further, current PCR diagnostics requires expensive machinery and/or has slow processing times making existing PCR technology unsuitable for point-of-care use in some areas. Thus, any point-of-care device should also minimize the need for high-technology equipment and technicians.
Notwithstanding the above, there long remains a need for point-of care diagnostic equipment that reduces the risk of infection to healthcare workers, improves the accuracy and speed of diagnostic testing and results, and does so with relatively simplified and lower cost equipment. There is a further remaining need for diagnostic tools that aid in accurate diagnosis while a patient is still at the point-of-care facility so that infected individuals can be treated immediately to help reduce the risk of infecting others. There also remains a need that the diagnoses also provide data regarding drug-resistant strains of a disease so that patients are not treated with a medication that they are resistant to, which will also reduce the risk of transmission to others. There also long remains a need for diagnostic equipment that provides a closed system so healthcare workers will have no direct contact with any specimen. There also long remains a need for diagnostic equipment having low-cost, simplified components so that the equipment can be easily repaired in developing areas.
The present disclosure provides for a point-of-care specimen collection device that is useful as part of a method to provide quick and accurate disease diagnosis as part of a closed system having low cost and simplified components. The present disclosure further provides for the collection, treatment and analysis of a sample material in the form of a biological or chemical specimen wherein the specimen is collected and sealed in a specimen container for testing for a disease or other characteristic.
In one exemplary embodiment, the present disclosure provides a specimen container that may be used virtually anywhere including for use at a medical point-of-care facility, wherein the specimen container can receive a source material and can then enable the transfer of some of the source material to a processing device while substantially reducing exposure risks to the health care worker. In particular, the specimen container will receive a source material, in particular a sputum sample, from an individual. The specimen container includes a containing portion having a flexible wall and at least one opening.
The present disclosure also contemplates a processing device for detection of a disease, the processing device including a body configured to include a processing well, a fluid transport path, at least one heating element, a temperature sensing device and a covering. The processing well may be adapted to receive a device for mixing and pumping a source material. The fluid transport path may include a valve. The at least one heating element may be disposed proximate the processing well. The temperature sensing device may be disposed proximate the processing well. The covering may be placed over the processing well so that the contents of the processing well remain within the body.
The present invention provides a device and method for collection of a patient sample and separating the sample into various portions for further testing. The specimen container includes a containing portion having a flexible wall and at least one opening that may be sealed after specimen collection. In addition to the main body, the container may be comprised of at least one additional compartment in which some of the sample may be transferred internally and contained. More particularly, at least one compartment of the bag with some specimen may be isolated by forming at least one interior seal of the bag.
Without needing to re-open the bag, the compartmentalized aliquot(s) of the specimen may be physically separated from the main body. The compartmentalization is achieved through a variety of means, such as a mechanical interlock, heat sealing, pressure sensitive adhesive, or any combination thereof. The compartments may be pre-formed during the manufacturing of the collection bag, or formed subsequent to sample collection.
In a preferred embodiment, a port is present on a portion of the bag which can be sealingly attached to a processing device to transfer an aliquot of the specimen thereto for example diagnostic processing. Additionally, inclusion of ID tags to both to the main bag and the compartment may aid in sample tracking.
The invention herein contemplates a device and method for the collection, treatment and analysis of a source material wherein all collection, treatment and analysis steps may take place at one point-of-care medical facility. The diagnostic equipment disclosed herein may allow for the collection of the source material to be performed in a closed system with minimal transfer of source material and minimal technician participation so that risk of infection to health care workers is minimized. Collection of source material may occur so that the source material is sealed within a specimen container. The collection system may further allow for multiple sealed specimen compartments within a specimen container. All collection, treatment, and analysis may occur in a shortened time frame so that patients can provide a sample and receive a diagnosis in one trip to a health care facility.
In general, this disclosure contemplates a device and method for the collection, and later treatment and analysis of a source material such as a biological or chemical specimen. The specimen container disclosed herein allows for the improved collection of the source material as well as the subsequent treatment and analysis. The collection occurs so that the specimen is sealed within the specimen container. The specimen container is particularly useful as it provides a closed system for collecting source materials so that risk of infection to health care workers and others is reduced and preferably minimized. The specimen container and method are designed such that source material collection is particularly useful and analysis of specimen may occur in an improved manner and in a shortened time frame so that a patient can provide a biological sample and receive a diagnosis in one trip to a health care facility. The specimen container disclosed is particularly useful in the collection and subsequent treatment and analysis may take place at one point-of-care medical facility.
Referring generally to the drawings and in particular to
The opening 11 of the specimen container 10 is preferably located at or near a first side, edge or end 12 of the specimen container 10 to enable directly receiving the source material 35 within the specimen container 10 from the subject to be tested. The specimen container 10 further includes a second side, end or edge 16 and a third side, end or edge 17 that extend from the opening 11 and define a first portion 4. While the specimen container 10 of
Collection of a material sample in the form of a source material 35 such as sputum from an individual is accomplished by having the individual either cough and/or expectorate into the opening 11 of the specimen container 10. In one exemplary embodiment, as shown in
The specimen container 10 of the subject disclosure is intended to be a complete and closed system such that all features and functions are integral with the specimen container 10 and there is little or no need for manual tasks (such as a pouring, drawing or suctioning with a pipette, or scooping) to be performed with the seal 15 re-opened for sampling the source material 35 which further reduces the risks of exposure and contamination. Further, in one embodiment as best shown in
To further avoid a need for an additional device, the specimen container has a flexible wall, bag-type structure which allows the collected source material 35 to be moved within the specimen container 10. The source material 35 is moveable within the first and second portions of the specimen container 10 to prepare and/or subdivide (or apportion) the source material 35 into one or more specimen sample compartment 30. The specimen container 10 further includes a second (or lower) portion 14 which is divided or segmented from the first portion 12 of the specimen container 10 by at least one separator, wall, divider or seal 18. The first seal 18 extends laterally (as shown in
Each separator, wall, divider or seal 18 and 20 may be made integral with the specimen container 10 similar to the seal 15 for closing the opening 11 or the seals 18 may alternatively be added or created at a later time, as desired. Each separator, wall, divider or seal 18 or 20 may include two appropriate sealable structures (such as a plastic zipper-type or interlocking element structure) that provide a fluid-tight seal on each side of the seal 18 and 20 locations. By sealing each portion of the specimen container 10, there is an improved containment of the source material 35 and a reduced likelihood of exposure and risk of infection to a healthcare worker and others who handle the specimen container 10 and the portions 14, 24.
To improve the usability and function of the specimen container 10, a tearable, removable or cutable structure, such as a line of etched or weakened spots or perforations 22 may be included between the sealable structures, as shown in
The source material 35 is apportioned among the main bag portion 4 and bag portions 14 and 24. While the specimen container 10 is designed so the opening 11 will properly and adequately receive the source material 35 in the portion 4, the specimen container 10 preferably has a flexible wall portion or structure, such as a plastic bag, so the source material 35 can be moved within the specimen container 10 by applying pressure to the bag of the specimen container 10 to force the source material 35 to be distributed though out the extent of the interior of the specimen container 10. It is possible to use any known or appropriate force generating mechanism to apply the pressure to move the source material 35. In one embodiment, pressure may be applied by the patient or a healthcare work using her hands or using a device. In an exemplary embodiment the specimen container is placed on a surface and a roller or other similar structure is used for applying pressure to the bag and moving the specimen 35 within interior of the main portion 4 of the specimen container 10 and toward the portions 14 and 24.
Once an acceptable portion of the source material 35 is located within the portions 14 and 24, the seals 18 and 20 can be completed. The specimen container 10 can be subdivided into a number of sealed and separated portions 14, 24 each of which contain at least a portion of the source material 35 for further testing and processing and the collecting or main portion 4 of the specimen container 10 can also be preserved or disposed in a more safe manner since it is also sealed by the seal 15 to limit and prevent others from contacting the portion of the source material 35 remaining therein. The disposable nature of all of the portions 4, 14, 24 of the specimen container 10 assists in improving the overall safety of the collection of the source material 35 as well as the related testing which reduces the risk of infection of healthcare workers and others that would traditionally come into contact with the patient during collection and testing for a disease.
In one exemplary embodiment, the bag of the specimen container 10 can be sealed using a heat source applied at any of the seal locations, including at the opening 11 at the one edge to close the specimen container 10 and create a fluid-tight seal and thereby preserve the integrity of the source material 35 before apportioning the specimen in the various portions of the bag of the specimen container 10. Alternative seal designs and means can be implemented by various known means such as heat or sonic staking or welding or pressure sensitive adhesive or mechanical interlock or other similar means or any combination thereof which may be automated or manually implemented.
Further, the bag of the specimen container 10 may include any number of optional seals 18 located in any appropriate or alternative patterns disposed on the specimen container 10. In one alternative exemplary embodiment as shown in
As noted above, the specimen container 10 may have shapes other than the rectangular shapes of the exemplary embodiments shown in the figures. In particular, the use of the sub-container 40 or the portions 14, 24 allow for a greater variety of alternative shapes for the specimen container 10 as well as allows for a variety of configurations useful for a greater variety of applications. For example, the specimen container 10 of
In the exemplary embodiment of
As best shown in
Though not necessarily drawn to scale, geometries, relative proportions and dimensions shown in the drawings are also part of the teachings herein, even if not explicitly recited. However, unless otherwise stated, nothing shall limit the teachings herein to the geometries, relative proportions and dimensions shown in the drawing.
Unless stated otherwise, dimensions and geometries of the various structures depicted herein are not intended to be restrictive of the invention, and other dimensions or geometries are possible. Plural structural components can be provided by a single integrated structure. Alternatively, a single integrated structure might be divided into separate plural components. In addition, while a feature of the present invention may have been described in the context of only one of the illustrated embodiments, such feature may be combined with one or more other features of other embodiments, for any given application. It will also be appreciated from the above that the fabrication of the unique structures herein and the operation thereof also constitute methods in accordance with the present invention.
The preferred embodiment of the present invention has been disclosed. A person of ordinary skill in the art would realize however, that certain modifications would come within the teachings of this invention. Therefore, the following claims should be studied to determine the true scope and content of the invention.
The explanations and illustrations presented herein are intended to acquaint others skilled in the art with the invention, its principles, and its practical application. Those skilled in the art may adapt and apply the invention in its numerous forms, as may be best suited to the requirements of a particular use. Accordingly, the specific embodiments of the present invention as set forth are not intended as being exhaustive or limiting of the invention. The scope of the invention should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. Other combinations are also possible as will be gleaned from the following claims, which are also hereby incorporated by reference into this written description.
This U.S. Application is related to PCT Application Serial No. PCT/US2010/______, and U.S. application Ser. No. 12/______, both filed May 14, 2010, to Viljoen et al., and entitled SAMPLE PROCESSING CASSETTE, SYSTEM, AND METHOD; and is related to PCT Application Serial No. 12/______, filed May 14, 2010, to Viljoen et al., and entitled SPECIMEN CONTAINER, SYSTEM, AND METHOD, the entirety of the contents of these applications being incorporated by reference herein for all purposes. This application claims the benefit of the filing date of U.S. Provisional Application Ser. No. 61/216,225, filed on May 14, 2009, entitled SAMPLE SEPARATION DEVICE, SYSTEM AND METHOD, to Viljoen et al.; and U.S. Provisional Application Ser. No. 61/216,360, filed on May 15, 2009, entitled SAMPLE PROCESSING CASSETTE, SYSTEM, AND METHOD, to Viljoen et al.; the entirety of the contents of the applications being incorporated by reference herein for all purposes.
Number | Date | Country | |
---|---|---|---|
61216225 | May 2009 | US | |
61216360 | May 2009 | US |