The present disclosure relates to a specimen retrieval device. More particularly, the present disclosure relates to a specimen retrieval device including an integrated sliding grasper.
Laparoscopic and endoscopic surgical procedures are minimally invasive procedures in which operations are carried out within the body by means of elongated instruments inserted through small entrance or access openings in the body, e.g., an opening defined by a natural passageway of the body, an opening created by a tissue piercing instrument (e.g., a trocar), etc.
Minimally invasive procedures are often used to partially or totally remove body tissue or organs from the interior of the body, e.g. nephrectomy, cholecystectomy, duodenectomy, ileectomy, jejunectomy and other such procedures. During such procedures, it is common that affected tissue or organs must be removed via the access opening in the skin, or through a cannula. Various types of entrapment devices are known in the art to facilitate this procedure. Conventional entrapment devices typically include an elongated applicator including a handle at a proximal end that is operable to deploy a pouch or other suitable device from a distal end of the applicator. The pouch, typically, is formed from a thin sheet of material (e.g., nylon) that is impervious to prevent unwanted tissue cell migration.
One of the difficulties that may occur during minimally invasive procedures is when large excised tissue specimens are being positioned within the pouch, e.g., long specimens, into the pouch. For example, placing a relatively long excised specimen into an unsupported pouch using a separate implement (e.g., graspers) may sometimes prove difficult for a surgeon because the pouch may not maintain its unfolded configuration. Further, long excised specimens sometimes tend to “bunch up” when positioned inside the pouch, which may make it difficult to retrieve the pouch through the usually small laparoscopic incision. As can be appreciated, tissue specimen retrieval under such conditions can cause the pouch to rupture, which, in turn, may result in the excised specimen (or portion thereof) migrating out of the pouch.
As can be appreciated, a specimen retrieval device including an integrated sliding grasper that is provided within a pouch of the specimen retrieval device may prove useful in the surgical arena.
An aspect of the instant disclosure provides a specimen retrieval device. The specimen retrieval device includes a housing that includes an outer shaft extending distally therefrom. An inner shaft is disposed within the outer shaft. The inner shaft includes one or more tissue engaging devices configured to engage tissue and one or more springs. A pouch is coupled to the inner shaft and the at least one spring. The pouch includes an open proximal end and a closed distal end and is movable from a first configuration for deployment from the outer shaft to a second configuration for receiving tissue therein. The tissue engaging device is repositionable within the pouch and movable along the inner shaft for engaging tissue and pulling the tissue into the pouch.
The tissue engaging device may be movable along a rail of the inner shaft. The rail may include a channel configured to allow the tissue engaging device to move along the rail.
The tissue engaging device may be a pair of jaw members, a needle, a barbed suture or a suction device. The specimen retrieval device may include an actuation device that is configured to move the pair of jaw members from an open configuration for grasping tissue to a closed configuration for pulling the tissue within the pouch. Moreover, the actuation device also may be configured to move the pair of jaw members longitudinally along the inner shaft.
The spring may be configured to move the pouch from the first configuration to the second configuration. The specimen retrieval device may include a cinch handle including a cinch that couples to the open proximal end the pouch for cinching the pouch to a cinched configuration. The pouch may taper towards the closed distal end thereof when the pouch is in the second configuration.
An aspect of the instant disclosure provides a specimen retrieval device. The specimen retrieval device includes a housing that includes an outer shaft extending distally therefrom. An inner shaft is disposed within the outer shaft and is deployable therefrom. The inner shaft including one or more channels and one or more springs. The channel has one or more tissue engaging devices positioned therein for longitudinal movement therealong. A pouch is coupled to a distal end of the inner shaft and the spring so as to abut a portion of the channel of the inner shaft. The pouch includes an open proximal end and a closed distal end and is movable via the at least one spring from a first configuration for deployment from the outer shaft to a second configuration for receiving tissue therein. The tissue engaging device is movable within the pouch along the channel for engaging tissue and for pulling tissue into the pouch.
The channel of the inner shaft may be provided on a rail of the inner shaft. The tissue engaging device may be a pair of jaw members or a needle. The specimen retrieval device may include an actuation device that is configured to move the pair of jaw members from an open configuration for grasping tissue to a closed configuration for pulling the tissue into the pouch. Moreover, the actuation device also may be configured to move the pair of jaw members
The specimen retrieval device may include a cinch handle including a cinch that couples to the open proximal end of the pouch for cinching the pouch to a cinched configuration. The pouch may taper towards the closed distal end thereof when the pouch is in the second configuration.
An aspect of the instant disclosure provides a method for removing tissue from a body of a patient. Initially, an outer shaft of a specimen retrieval device is inserted within a body cavity of a patient. Thereafter, an inner shaft of the specimen retrieval device is deployed from the outer shaft to move a pouch of the specimen retrieval device from a first configuration to a second configuration. Subsequently, at least one tissue engaging device provided on the inner shaft is positioned towards a proximal end of the pouch for engaging tissue. Then, tissue of interest is engaged. Next, the tissue engaging device is positioned towards a distal end of the pouch for pulling tissue into the pouch. Subsequently, the pouch is removed from the body cavity of the patient.
Prior to removing the pouch, the open end of the pouch may be cinched. Prior to inserting the outer shaft of the specimen retrieval device, an access port may be positioned on tissue of the patient.
The inner shaft of the specimen retrieval device may be provided with at least one channel that is configured to receive the at least one tissue engaging device therein. Moreover, the inner shaft of the specimen retrieval device may be provided with at least one spring that is configured to couple to the pouch. A pair of jaw members, a needle, a barbed suture or a suction device may be utilized for the at least one tissue engaging device.
Embodiments of the presently disclosed specimen retrieval device are described hereinbelow with reference to the drawings wherein:
Embodiments of the present disclosure will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term distal refers to the portion of the instrument which is farthest from the user, while the term proximal refers to that portion of the instrument which is closest to the user. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
As used herein with reference to the present disclosure, the terms laparoscopic and endoscopic are interchangeable and refer to instruments having a relatively narrow operating portion for insertion into a cannula or a small incision in the skin. They also refer to minimally invasive surgical procedures. It is believed that the present disclosure may find use in any procedure where access to the interior of the body is limited to a relatively small incision, with or without the use of a cannula as in minimally invasive procedures.
With reference to
An inner shaft 24 that extends within and along a length of the outer shaft 18 operably couples to a grasping member 26 (
A pull ring 28 is operably coupled to a proximal end of a cinch 30 (e.g., a suture “S,” thread, wire, cable or the like) by any suitable coupling method, e.g., tied, adhesive, etc., and is configured to facilitate pulling the cinch 30 proximally through the inner shaft 24. In the illustrated embodiment, pull ring 28 releasably couples, via one or more suitable coupling methods, e.g., a press or friction fit, to the grasping member 26. A distal end of the cinch 30 operably coupled to a portion, e.g., an open proximal portion 32 (
A deformable spring 34 (shown in phantom in
For a more detailed description of the specimen retrieval device 10 and operative components associated therewith, reference is made to commonly-owned U.S. Pat. No. 5,647,372 to Tovey et al., filed on Sep. 16, 1994, the entirety of which being incorporated herein by reference.
With reference again to
Continuing with reference to
Alternatively, in an embodiment, a cam member (not shown) may be positioned on the jaw members 38, 40 and to move the jaw members 38, 40 between the open and closed configurations. In this particular embodiment, rotation of the base 41 of the actuation device 36 in a first direction may actuate the cam member to cam the jaw members 38, 40 to the closed configuration and rotation of the base 41 in a second direction may actuate the cam member to cam the jaw members 38, 40 to the open configuration. Those skilled in the art will appreciate other methods and/or devices that may be utilized to move the jaw members 38, 40 between the open and closed configuration.
In the illustrated embodiment, a channel 48 is provided at the distal end of the rail 46 and extends at least partially along a length thereof 46 (
Pouch 22 may be made from any suitable biocompatible materials (e.g., nylon) capable of forming an impermeable flexible membrane. Pouch 22 includes a generally tubular or elongated configuration that is defined by the openable and closable proximal portion 32 and closed distal portion 44. A channel of suitable configuration extends along the pouch 22 and includes a portion of the cinch 30 therein that is utilized to cinch the pouch 22 after tissue is positioned within the pouch 22. Moreover, proximal portion 32 includes a sleeve (not explicitly shown) that is configured to receive the resilient members of the spring 34. The sleeve may be formed on pouch 22 via folding the proximal portion 32 into an interior of the pouch 22 and, subsequently, gluing the proximal portion 32 thereto. Alternatively, in embodiments, the spring 34 may not be utilized and the proximal portion 32 of the pouch 22 may be formed from a compressible material that allows the proximal portion 32 of the pouch 22 to move between a compressed condition to a non-compressed condition. In the non-compressed condition, proximal portion 32 defines an opening that is configured to allow a clinician to position tissue of interest within the pouch 22. Moreover, in the non-compressed condition, the pouch 22 may taper towards the closed distal end 44 thereof when the pouch 22. Alternatively, the pouch 22 may not taper towards the closed distal end 44 thereof when the pouch 22.
A pair of sidewalls 52, 54 of the pouch 22 are coupled to the rail 46 adjacent the channel 48 of the rail by suitable coupling methods (
With reference to
In the open configuration, the jaw members 38, 40 may be moved towards the open proximal end 32 of the pouch 22. In this position, the jaw members 38, 40 are in the open configuration and set to grasp excised tissue. In embodiments, such as the illustrated embodiment, a surgeon may grasp the excised tissue with a separate implement (e.g., graspers) and position the excised tissue between the jaw members 38, 40. Alternatively, a surgeon may move the pouch 22 including the jaw members 38, 40 adjacent excised tissue and grasp the excised tissue with the jaw members 38, 40.
Once tissue is positioned between the jaw members 38, 40 the base portion 41 of the actuation device may be moved distally, which, in turn, moves the jaw members 38, 40 along the channel 48 of the rail 46 toward the closed distal portion 44 of the pouch 22 and to the closed configuration (
A surgeon may then pull the pull ring 28 proximally which cinches the pouch 22 (
The specimen retrieval device 10 of the present disclosure allows a user to insert excised tissue (e.g., relatively large samples of excised tissue) within the pouch 22 while maintaining the compactness (e.g., unfolded configuration) of the pouch 22. Moreover, because the excised tissue is pulled into the pouch 22, the likelihood of the excised tissue bunching up when being positioned inside the pouch is reduced, if not eliminated, which, in turn, may make it easier to retrieve the pouch 22 through the usually a small laparoscopic incision or access port 19.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, while the jaw members 38, 40 have been described herein as being utilized as the tissue engaging device, other tissue engaging devices may also be utilized. For example, any type of needle 56 (
In embodiments, one or more support members 50 (see
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application is a continuation of U.S. patent application Ser. No. 14/270,658 filed on May 6, 2014, now U.S. Pat. No. 9,987,031, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/834,948, filed Jun. 14, 2013, and the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
30471 | Dudley | Oct 1860 | A |
35164 | Logan et al. | May 1862 | A |
156477 | Bradford | Nov 1874 | A |
1609014 | Dowd | Nov 1926 | A |
3800781 | Zalucki | Apr 1974 | A |
4557255 | Goodman | Dec 1985 | A |
4611594 | Grayhack et al. | Sep 1986 | A |
4744363 | Hasson | May 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4852586 | Haines | Aug 1989 | A |
4927427 | Kriauciunas et al. | May 1990 | A |
4977903 | Haines | Dec 1990 | A |
4991593 | LeVahn | Feb 1991 | A |
4997435 | Demeter | Mar 1991 | A |
5037379 | Clayman et al. | Aug 1991 | A |
5074867 | Wilk | Dec 1991 | A |
5084054 | Bencini et al. | Jan 1992 | A |
5143082 | Kindberg et al. | Sep 1992 | A |
5147371 | Washington et al. | Sep 1992 | A |
5176687 | Hasson et al. | Jan 1993 | A |
5190542 | Nakao et al. | Mar 1993 | A |
5190555 | Wetter et al. | Mar 1993 | A |
5190561 | Graber | Mar 1993 | A |
5192284 | Pleatman | Mar 1993 | A |
5192286 | Phan et al. | Mar 1993 | A |
5201740 | Nakao et al. | Apr 1993 | A |
5215521 | Cochran et al. | Jun 1993 | A |
5224930 | Spaeth et al. | Jul 1993 | A |
5234439 | Wilk et al. | Aug 1993 | A |
5279539 | Bohan et al. | Jan 1994 | A |
5312416 | Spaeth et al. | May 1994 | A |
5330483 | Heaven et al. | Jul 1994 | A |
5336227 | Nakao et al. | Aug 1994 | A |
5337754 | Heaven et al. | Aug 1994 | A |
5341815 | Cofone et al. | Aug 1994 | A |
5352184 | Goldberg et al. | Oct 1994 | A |
5354303 | Spaeth et al. | Oct 1994 | A |
5368545 | Schaller et al. | Nov 1994 | A |
5368597 | Pagedas | Nov 1994 | A |
5370647 | Graber et al. | Dec 1994 | A |
5443472 | Li | Aug 1995 | A |
5465731 | Bell et al. | Nov 1995 | A |
5480404 | Kammerer et al. | Jan 1996 | A |
5486182 | Nakao et al. | Jan 1996 | A |
5486183 | Middleman et al. | Jan 1996 | A |
5499988 | Espiner et al. | Mar 1996 | A |
5524633 | Heaven et al. | Jun 1996 | A |
5535759 | Wilk | Jul 1996 | A |
5611803 | Heaven et al. | Mar 1997 | A |
5618296 | Sorensen et al. | Apr 1997 | A |
5630822 | Hermann et al. | May 1997 | A |
5642282 | Sonehara | Jun 1997 | A |
5643282 | Kieturakis | Jul 1997 | A |
5643283 | Younker | Jul 1997 | A |
5645083 | Essig et al. | Jul 1997 | A |
5647372 | Tovey et al. | Jul 1997 | A |
5649902 | Yoon | Jul 1997 | A |
5658296 | Bates et al. | Aug 1997 | A |
5679423 | Shah | Oct 1997 | A |
5681324 | Kammerer et al. | Oct 1997 | A |
5735289 | Pfeffer et al. | Apr 1998 | A |
5755724 | Yoon | May 1998 | A |
5759187 | Nakao et al. | Jun 1998 | A |
5769794 | Conlan et al. | Jun 1998 | A |
5785677 | Auweiler | Jul 1998 | A |
5788709 | Riek et al. | Aug 1998 | A |
5792145 | Bates et al. | Aug 1998 | A |
5814044 | Hooven | Sep 1998 | A |
5829440 | Broad, Jr. | Nov 1998 | A |
5836953 | Yoon | Nov 1998 | A |
5853374 | Hart et al. | Dec 1998 | A |
5895392 | Riek et al. | Apr 1999 | A |
5906621 | Secrest et al. | May 1999 | A |
5908429 | Yoon | Jun 1999 | A |
5957884 | Hooven | Sep 1999 | A |
5971995 | Rousseau | Oct 1999 | A |
5980544 | Vaitekunas | Nov 1999 | A |
5997547 | Nakao et al. | Dec 1999 | A |
6004330 | Middleman et al. | Dec 1999 | A |
6007512 | Hooven | Dec 1999 | A |
6007546 | Snow et al. | Dec 1999 | A |
6019770 | Christoudias | Feb 2000 | A |
6036681 | Hooven | Mar 2000 | A |
6059793 | Pagedas | May 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
6152932 | Ternstrom | Nov 2000 | A |
6162235 | Vaitekunas | Dec 2000 | A |
6165121 | Alferness | Dec 2000 | A |
6168603 | Leslie et al. | Jan 2001 | B1 |
6228095 | Dennis | May 2001 | B1 |
6270505 | Yoshida et al. | Aug 2001 | B1 |
6277083 | Eggers et al. | Aug 2001 | B1 |
6280450 | McGuckin, Jr. | Aug 2001 | B1 |
6344026 | Burbank et al. | Feb 2002 | B1 |
6348056 | Bates et al. | Feb 2002 | B1 |
6350266 | White et al. | Feb 2002 | B1 |
6350267 | Stefanchik | Feb 2002 | B1 |
6383195 | Richard | May 2002 | B1 |
6383196 | Leslie et al. | May 2002 | B1 |
6383197 | Conlon et al. | May 2002 | B1 |
6406440 | Stefanchik | Jun 2002 | B1 |
6409733 | Conlon et al. | Jun 2002 | B1 |
6419639 | Walther et al. | Jul 2002 | B2 |
6447523 | Middleman et al. | Sep 2002 | B1 |
6471659 | Eggers et al. | Oct 2002 | B2 |
6506166 | Hendler et al. | Jan 2003 | B1 |
6508773 | Burbank et al. | Jan 2003 | B2 |
6537273 | Sosiak et al. | Mar 2003 | B1 |
6589252 | McGuckin, Jr. | Jul 2003 | B2 |
6752811 | Chu et al. | Jun 2004 | B2 |
6755779 | Vanden Hoek et al. | Jun 2004 | B2 |
6780193 | Leslie et al. | Aug 2004 | B2 |
6805699 | Shimm | Oct 2004 | B2 |
6840948 | Albrecht et al. | Jan 2005 | B2 |
6872211 | White et al. | Mar 2005 | B2 |
6887255 | Shimm | May 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6994696 | Suga | Feb 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7052501 | McGuckin, Jr. | May 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7115125 | Nakao et al. | Oct 2006 | B2 |
7270663 | Nakao | Sep 2007 | B2 |
7273488 | Nakamura et al. | Sep 2007 | B2 |
7410491 | Hopkins et al. | Aug 2008 | B2 |
7547310 | Whitfield | Jun 2009 | B2 |
7670346 | Whitfield | Mar 2010 | B2 |
7762959 | Bilsbury | Jul 2010 | B2 |
7819121 | Amer | Oct 2010 | B2 |
7837612 | Gill et al. | Nov 2010 | B2 |
8057485 | Hollis et al. | Nov 2011 | B2 |
8579914 | Menn et al. | Nov 2013 | B2 |
8906036 | Farascioni | Dec 2014 | B2 |
9987031 | Menn | Jun 2018 | B2 |
20020068943 | Chu et al. | Jun 2002 | A1 |
20020082516 | Stefanchik | Jun 2002 | A1 |
20020137988 | Shipp | Sep 2002 | A1 |
20030055417 | Truckai | Mar 2003 | A1 |
20030073970 | Suga | Apr 2003 | A1 |
20030100909 | Suzuki | May 2003 | A1 |
20030100919 | Hopkins et al. | May 2003 | A1 |
20030199915 | Shimm | Oct 2003 | A1 |
20030216773 | Shimm | Nov 2003 | A1 |
20040097960 | Terachi et al. | May 2004 | A1 |
20040138587 | Lyons | Jul 2004 | A1 |
20040225192 | Young | Nov 2004 | A1 |
20040242960 | Orban, III | Dec 2004 | A1 |
20050085808 | Nakao | Apr 2005 | A1 |
20050165411 | Orban | Jul 2005 | A1 |
20050267492 | Poncet et al. | Dec 2005 | A1 |
20060025781 | Young et al. | Feb 2006 | A1 |
20060030750 | Amer | Feb 2006 | A1 |
20060052799 | Middleman et al. | Mar 2006 | A1 |
20060058776 | Bilsbury | Mar 2006 | A1 |
20060169287 | Harrison et al. | Aug 2006 | A1 |
20060200169 | Sniftin | Sep 2006 | A1 |
20060200170 | Aranyi | Sep 2006 | A1 |
20060229639 | Whitfield | Oct 2006 | A1 |
20060229640 | Whitfield | Oct 2006 | A1 |
20070016224 | Nakao | Jan 2007 | A1 |
20070016225 | Nakao | Jan 2007 | A1 |
20070073251 | Zhou et al. | Mar 2007 | A1 |
20070088370 | Kahle et al. | Apr 2007 | A1 |
20070135780 | Pagedas | Jun 2007 | A1 |
20070135781 | Hart | Jun 2007 | A1 |
20070186935 | Wang et al. | Aug 2007 | A1 |
20080188766 | Gertner | Aug 2008 | A1 |
20080221588 | Hollis et al. | Sep 2008 | A1 |
20080234696 | Taylor et al. | Sep 2008 | A1 |
20080300621 | Hopkins | Dec 2008 | A1 |
20080312496 | Zwolinski | Dec 2008 | A1 |
20090082779 | Nakao | Mar 2009 | A1 |
20090182292 | Egle et al. | Jul 2009 | A1 |
20090192510 | Bahney | Jul 2009 | A1 |
20090240238 | Grodrian et al. | Sep 2009 | A1 |
20100000471 | Hibbard | Jan 2010 | A1 |
20100152609 | Zwolinski et al. | Jun 2010 | A1 |
20100256522 | Zhou | Oct 2010 | A1 |
20110184430 | Parihar et al. | Jul 2011 | A1 |
20110184431 | Parihar et al. | Jul 2011 | A1 |
20110184434 | Parihar et al. | Jul 2011 | A1 |
20110184436 | Shelton, IV et al. | Jul 2011 | A1 |
20110190781 | Collier et al. | Aug 2011 | A1 |
20110190782 | Fleming et al. | Aug 2011 | A1 |
20110299799 | Towe | Dec 2011 | A1 |
20120046667 | Cherry et al. | Feb 2012 | A1 |
20120083795 | Fleming et al. | Apr 2012 | A1 |
20120277758 | Davis | Nov 2012 | A1 |
20130023895 | Saleh | Jan 2013 | A1 |
20130267950 | Rosa et al. | Oct 2013 | A1 |
20130325025 | Hathaway | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
2792692 | Apr 2013 | CA |
102755177 | Oct 2012 | CN |
3542667 | Jun 1986 | DE |
8435489 | Aug 1986 | DE |
4204210 | Aug 1992 | DE |
19624826 | Jan 1998 | DE |
0947166 | Oct 1999 | EP |
1685802 | Aug 2006 | EP |
1707126 | Oct 2006 | EP |
2005900 | Dec 2008 | EP |
2184014 | May 2010 | EP |
1272412 | Sep 1961 | FR |
246009 | Jan 1926 | GB |
9315675 | Aug 1993 | WO |
9509666 | Apr 1995 | WO |
0135831 | May 2001 | WO |
2004002334 | Jan 2004 | WO |
2004082462 | Sep 2004 | WO |
2004112571 | Dec 2004 | WO |
2005112783 | Dec 2005 | WO |
2006110733 | Oct 2006 | WO |
2007048078 | Apr 2007 | WO |
2007048085 | Apr 2007 | WO |
2008114234 | Sep 2008 | WO |
2009149146 | Dec 2009 | WO |
2011049918 | Apr 2011 | WO |
2011090862 | Jul 2011 | WO |
Entry |
---|
European Search Report EP 12191639.9 dated Feb. 20, 2013. |
European Search Report EP 11250837.9 dated Sep. 10, 2013. |
European Search Report EP 11250838.7 dated Sep. 10, 2013. |
European Search Report EP 13170118.7 dated Dec. 5, 2013. |
European Search Report EP 12165852 dated Jun. 20, 2012. |
http://www.biomaterials.org/week/bio17.cfm, definition and examples of hydrogels. |
European Search Report EP 12150271 dated Jan. 14, 2013. |
European Search Report EP 12193450 dated Feb. 27, 2013. |
European Search Report EP 12189517.1 dated Mar. 6, 2013. |
European Search Report EP 12158873 dated Jul. 19, 2012. |
European Search Report EP 11250836 dated Sep. 12, 2013. |
European Search Report dated Nov. 26, 2014 issued in European Application No. 14172314. |
European Search Report dated Oct. 22, 2015, issued in European Application No. 15171981. |
Chinese Office Action dated Dec. 4, 2017, issued in CN Application No. 2014102678160. |
Number | Date | Country | |
---|---|---|---|
20180250026 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
61834948 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14270658 | May 2014 | US |
Child | 15972368 | US |