Specimen retrieval device including an integrated sliding grasper

Information

  • Patent Grant
  • 9987031
  • Patent Number
    9,987,031
  • Date Filed
    Tuesday, May 6, 2014
    10 years ago
  • Date Issued
    Tuesday, June 5, 2018
    6 years ago
Abstract
A specimen retrieval device is provided. The specimen retrieval device includes a housing including an outer shaft extending distally therefrom. An inner shaft is disposed within the outer shaft and includes at least one tissue engaging device configured to engage tissue and at least one spring. A pouch is coupled to the inner shaft and the at least one spring. The pouch includes an open proximal end and a closed distal end and is movable from a first configuration for deployment from the outer shaft to a second configuration for receiving tissue therein. The at least one tissue engaging device is positionable within the pouch and movable along the inner shaft for engaging tissue and pulling the tissue within the pouch.
Description
BACKGROUND

Technical Field


The present disclosure relates to a specimen retrieval device. More particularly, the present disclosure relates to a specimen retrieval device including an integrated sliding grasper.


Background of Related Art


Laparoscopic and endoscopic surgical procedures are minimally invasive procedures in which operations are carried out within the body by means of elongated instruments inserted through small entrance or access openings in the body, e.g., an opening defined by a natural passageway of the body, an opening created by a tissue piercing instrument (e.g., a trocar), etc.


Minimally invasive procedures are often used to partially or totally remove body tissue or organs from the interior of the body, e.g. nephrectomy, cholecystectomy, duodenectomy, ileectomy, jejunectomy and other such procedures. During such procedures, it is common that affected tissue or organs must be removed via the access opening in the skin, or through a cannula. Various types of entrapment devices are known in the art to facilitate this procedure. Conventional entrapment devices typically include an elongated applicator including a handle at a proximal end that is operable to deploy a pouch or other suitable device from a distal end of the applicator. The pouch, typically, is formed from a thin sheet of material (e.g., nylon) that is impervious to prevent unwanted tissue cell migration.


One of the difficulties that may occur during minimally invasive procedures is when large excised tissue specimens are being positioned within the pouch, e.g., long specimens, into the pouch. For example, placing a relatively long excised specimen into an unsupported pouch using a separate implement (e.g., graspers) may sometimes prove difficult for a surgeon because the pouch may not maintain its unfolded configuration. Further, long excised specimens sometimes tend to “bunch up” when positioned inside the pouch, which may make it difficult to retrieve the pouch through the usually small laparoscopic incision. As can be appreciated, tissue specimen retrieval under such conditions can cause the pouch to rupture, which, in turn, may result in the excised specimen (or portion thereof) migrating out of the pouch.


SUMMARY

As can be appreciated, a specimen retrieval device including an integrated sliding grasper that is provided within a pouch of the specimen retrieval device may prove useful in the surgical arena.


An aspect of the instant disclosure provides a specimen retrieval device. The specimen retrieval device includes a housing that includes an outer shaft extending distally therefrom. An inner shaft is disposed within the outer shaft. The inner shaft includes one or more tissue engaging devices configured to engage tissue and one or more springs. A pouch is coupled to the inner shaft and the at least one spring. The pouch includes an open proximal end and a closed distal end and is movable from a first configuration for deployment from the outer shaft to a second configuration for receiving tissue therein. The tissue engaging device is repositionable within the pouch and movable along the inner shaft for engaging tissue and pulling the tissue into the pouch.


The tissue engaging device may be movable along a rail of the inner shaft. The rail may include a channel configured to allow the tissue engaging device to move along the rail.


The tissue engaging device may be a pair of jaw members, a needle, a barbed suture or a suction device. The specimen retrieval device may include an actuation device that is configured to move the pair of jaw members from an open configuration for grasping tissue to a closed configuration for pulling the tissue within the pouch. Moreover, the actuation device also may be configured to move the pair of jaw members longitudinally along the inner shaft.


The spring may be configured to move the pouch from the first configuration to the second configuration. The specimen retrieval device may include a cinch handle including a cinch that couples to the open proximal end the pouch for cinching the pouch to a cinched configuration. The pouch may taper towards the closed distal end thereof when the pouch is in the second configuration.


An aspect of the instant disclosure provides a specimen retrieval device. The specimen retrieval device includes a housing that includes an outer shaft extending distally therefrom. An inner shaft is disposed within the outer shaft and is deployable therefrom. The inner shaft including one or more channels and one or more springs. The channel has one or more tissue engaging devices positioned therein for longitudinal movement therealong. A pouch is coupled to a distal end of the inner shaft and the spring so as to abut a portion of the channel of the inner shaft. The pouch includes an open proximal end and a closed distal end and is movable via the at least one spring from a first configuration for deployment from the outer shaft to a second configuration for receiving tissue therein. The tissue engaging device is movable within the pouch along the channel for engaging tissue and for pulling tissue into the pouch.


The channel of the inner shaft may be provided on a rail of the inner shaft. The tissue engaging device may be a pair of jaw members or a needle. The specimen retrieval device may include an actuation device that is configured to move the pair of jaw members from an open configuration for grasping tissue to a closed configuration for pulling the tissue into the pouch. Moreover, the actuation device also may be configured to move the pair of jaw members


The specimen retrieval device may include a cinch handle including a cinch that couples to the open proximal end of the pouch for cinching the pouch to a cinched configuration. The pouch may taper towards the closed distal end thereof when the pouch is in the second configuration.


An aspect of the instant disclosure provides a method for removing tissue from a body of a patient. Initially, an outer shaft of a specimen retrieval device is inserted within a body cavity of a patient. Thereafter, an inner shaft of the specimen retrieval device is deployed from the outer shaft to move a pouch of the specimen retrieval device from a first configuration to a second configuration. Subsequently, at least one tissue engaging device provided on the inner shaft is positioned towards a proximal end of the pouch for engaging tissue. Then, tissue of interest is engaged. Next, the tissue engaging device is positioned towards a distal end of the pouch for pulling tissue into the pouch. Subsequently, the pouch is removed from the body cavity of the patient.


Prior to removing the pouch, the open end of the pouch may be cinched. Prior to inserting the outer shaft of the specimen retrieval device, an access port may be positioned on tissue of the patient.


The inner shaft of the specimen retrieval device may be provided with at least one channel that is configured to receive the at least one tissue engaging device therein. Moreover, the inner shaft of the specimen retrieval device may be provided with at least one spring that is configured to couple to the pouch. A pair of jaw members, a needle, a barbed suture or a suction device may be utilized for the at least one tissue engaging device.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the presently disclosed specimen retrieval device are described hereinbelow with reference to the drawings wherein:



FIG. 1 is a side, perspective view of a specimen retrieval device according to an embodiment of the instant disclosure;



FIG. 2 is a partial, side view of a distal end of an inner shaft of the specimen retrieval device shown in FIG. 1 illustrating components of the distal end;



FIG. 3 is a perspective view of the inner shaft and a pouch of the specimen retrieval device shown in FIG. 1 positioned within a body cavity through an access port, wherein the pouch is in an open configuration for receiving tissue;



FIG. 4 is a perspective view of the inner shaft and pouch shown in FIG. 3 with tissue positioned within the pouch;



FIG. 5 is a perspective view of the inner shaft and pouch shown in FIGS. 3-4 with tissue positioned within the pouch and the pouch in a cinched configuration; and



FIGS. 6A-6C are sides views illustrating various tissue engaging devices that may be utilized with the specimen retrieval device shown in FIG. 1.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Embodiments of the present disclosure will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term distal refers to the portion of the instrument which is farthest from the user, while the term proximal refers to that portion of the instrument which is closest to the user. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


As used herein with reference to the present disclosure, the terms laparoscopic and endoscopic are interchangeable and refer to instruments having a relatively narrow operating portion for insertion into a cannula or a small incision in the skin. They also refer to minimally invasive surgical procedures. It is believed that the present disclosure may find use in any procedure where access to the interior of the body is limited to a relatively small incision, with or without the use of a cannula as in minimally invasive procedures.


With reference to FIGS. 1-5, and initially with reference to FIG. 1, a specimen retrieval device 10 according to an embodiment of the present disclosure is illustrated. Briefly, specimen retrieval device 10 includes a housing 12 that includes handle portions 14 and 16 (FIG. 1) that are fixedly joined together. An elongated tube or outer shaft 18 extends from the housing 12 and is dimensioned for insertion through a trocar cannula or access port 19 (FIG. 3) for endoscopic or laparoscopic procedures. In certain embodiments, the outer shaft 18 may be configured to articulate. A longitudinal axis “A-A” is defined through the outer shaft 18 and is oriented in a substantially parallel direction with respect to a longitudinal axis “B-B” that is defined through a pouch 22 when the pouch 22 is in the deployed state (FIGS. 3-5).


An inner shaft 24 that extends within and along a length of the outer shaft 18 operably couples to a grasping member 26 (FIG. 1). Grasping member 26 is configured for engagement by a user's fingers and is configured to translate or move the inner shaft 24 within the outer shaft 18.


A pull ring 28 is operably coupled to a proximal end of a cinch 30 (e.g., a suture “S,” thread, wire, cable or the like) by any suitable coupling method, e.g., tied, adhesive, etc., and is configured to facilitate pulling the cinch 30 proximally through the inner shaft 24. In the illustrated embodiment, pull ring 28 releasably couples, via one or more suitable coupling methods, e.g., a press or friction fit, to the grasping member 26. A distal end of the cinch 30 operably coupled to a portion, e.g., an open proximal portion 32 (FIGS. 3-4), of the pouch 22.


A deformable spring 34 (shown in phantom in FIG. 3) operably couples to the inner shaft 24 via one or more suitable coupling methods (e.g., the spring 34 may be overmolded to the inner shaft 16) and includes two generally flexible or resilient strips 35a, 35b (shown in phantom in FIG. 3) that move from a stressed or non-expanded state (FIG. 5) to an unstressed or freely expanded state (FIGS. 3-4) when the pouch 22 is deployed from the outer shaft 18. In the stressed or non-expanded state, the pouch 22 is wound or wrapped around the resilient strips of the inner shaft 24. Wrapping the pouch 22 around the resilient strips facilitates deploying the pouch 22 from the relatively small area within the outer shaft 18. In an unstressed or freely expanded condition, the two resilient strips collectively form a generally circumferential or triangular configuration for supporting a periphery of the open proximal portion 32 of the pouch 22 (see FIGS. 3-4 for example).


For a more detailed description of the specimen retrieval device 10 and operative components associated therewith, reference is made to commonly-owned U.S. Pat. No. 5,647,372 to Tovey et al., filed on Sep. 16, 1994, the entirety of which being incorporated herein by reference.


With reference again to FIG. 1, and with reference to FIG. 2, inner shaft 24 includes an actuation device 36 that is configured to control operation of a tissue engaging device, e.g., a pair of jaw members 38, 40 (FIG. 2). To this end, actuation device 36 includes a base portion 41 that may be configured for grasping by a user and a flexible rod 42 (or other suitable device, e.g., a wire). Base portion 41 releasably couples, via one or more suitable coupling methods, e.g., a press or friction fit, to the grasping member 26. Rod 42 includes a proximal end that couples to a distal end of the base 41 and extends distally from the base portion 41. A distal end of the rod 42 is positioned through an aperture (not explicitly shown) provided at a proximal end of the grasping member 26. The distal end of the rod 42 extends from the grasping member 26 to a rail 46 disposed on the inner shaft 24 and couples to the jaw members 38, 40 by suitable coupling methods (FIG. 2).


Continuing with reference to FIG. 2, in accordance with the instant disclosure, proximal and distal movement of the actuation device 36 moves the jaw members 38, 40 proximally and distally within the pouch 22 along the inner shaft 24. Actuation device 36 is configured such that as the base portion 41 of the actuation device 36 is moved proximally, the jaw members 38, 40 move towards the open proximal portion 32 and automatically to an open configuration (FIGS. 2-3). Likewise, as the base portion 41 of the actuation device 36 is moved distally, the jaw members 38, 40 move towards a closed distal portion 44 of the pouch 22 and automatically to a closed configuration (see FIGS. 2 and 4-5). A spring or other suitable device (not shown) may be coupled to the jaw members 38, 40 to bias the jaw members to the open or closed configuration.


Alternatively, in an embodiment, a cam member (not shown) may be positioned on the jaw members 38, 40 and to move the jaw members 38, 40 between the open and closed configurations. In this particular embodiment, rotation of the base 41 of the actuation device 36 in a first direction may actuate the cam member to cam the jaw members 38, 40 to the closed configuration and rotation of the base 41 in a second direction may actuate the cam member to cam the jaw members 38, 40 to the open configuration. Those skilled in the art will appreciate other methods and/or devices that may be utilized to move the jaw members 38, 40 between the open and closed configuration.


In the illustrated embodiment, a channel 48 is provided at the distal end of the rail 46 and extends at least partially along a length thereof 46 (FIG. 2). In an embodiment, such as the illustrated embodiment, the channel 48 extends along the inner shaft and is positioned to abut the pouch 22. Specifically, the channel 48 extends along the rail 46 and abuts the open proximal portion 32 and the closed distal portion 44 of the pouch 22. As can be appreciated, by not allowing the channel 48 to extend proximally past the open upper portion 32 helps to ensure that the jaw members 38, 40 (and excised tissue grasped therebetween) do not extend beyond the confines of the pouch 22, which, in turn, helps to ensure that the excised tissue does not migrate from the pouch 22.


Pouch 22 may be made from any suitable biocompatible materials (e.g., nylon) capable of forming an impermeable flexible membrane. Pouch 22 includes a generally tubular or elongated configuration that is defined by the openable and closable proximal portion 32 and closed distal portion 44. A channel of suitable configuration extends along the pouch 22 and includes a portion of the cinch 30 therein that is utilized to cinch the pouch 22 after tissue is positioned within the pouch 22. Moreover, proximal portion 32 includes a sleeve (not explicitly shown) that is configured to receive the resilient members of the spring 34. The sleeve may be formed on pouch 22 via folding the proximal portion 32 into an interior of the pouch 22 and, subsequently, gluing the proximal portion 32 thereto. Alternatively, in embodiments, the spring 34 may not be utilized and the proximal portion 32 of the pouch 22 may be formed from a compressible material that allows the proximal portion 32 of the pouch 22 to move between a compressed condition to a non-compressed condition. In the non-compressed condition, proximal portion 32 defines an opening that is configured to allow a clinician to position tissue of interest within the pouch 22. Moreover, in the non-compressed condition, the pouch 22 may taper towards the closed distal end 44 thereof when the pouch 22. Alternatively, the pouch 22 may not taper towards the closed distal end 44 thereof when the pouch 22.


A pair of sidewalls 52, 54 of the pouch 22 are coupled to the rail 46 adjacent the channel 48 of the rail by suitable coupling methods (FIG. 2). Each of the sidewalls 52, 54 abuts a corresponding side of the channel 48 to allow unobstructed movement of the jaw members 38, 40 within the pouch 22.


With reference to FIGS. 3-5, operation of the specimen retrieval device 10 is now described. In use, the access port 19 may be positioned on a patient to allow access of the specimen retrieval device 10 into a body cavity of a patient (FIG. 3). Thereafter, inner shaft 24 may be deployed from the outer shaft 18 and the outer shaft 18 may be removed from the body cavity of the patient while the inner shaft 24 is kept within the body cavity. As can be appreciated, after deployment of the inner shaft 24, the outer shaft 18 may also be kept within the body cavity. Once the inner shaft 24 is deployed from the outer shaft 18, the openable proximal end 32 of the pouch 22 is forced to the open configuration via the biasing force of the resilient members of the spring 30 (FIG. 3).


In the open configuration, the jaw members 38, 40 may be moved towards the open proximal end 32 of the pouch 22. In this position, the jaw members 38, 40 are in the open configuration and set to grasp excised tissue. In embodiments, such as the illustrated embodiment, a surgeon may grasp the excised tissue with a separate implement (e.g., graspers) and position the excised tissue between the jaw members 38, 40. Alternatively, a surgeon may move the pouch 22 including the jaw members 38, 40 adjacent excised tissue and grasp the excised tissue with the jaw members 38, 40.


Once tissue is positioned between the jaw members 38, 40 the base portion 41 of the actuation device may be moved distally, which, in turn, moves the jaw members 38, 40 along the channel 48 of the rail 46 toward the closed distal portion 44 of the pouch 22 and to the closed configuration (FIG. 4).


A surgeon may then pull the pull ring 28 proximally which cinches the pouch 22 (FIG. 5). Thereafter, the inner shaft 24 including the cinched pouch 22 may be removed from the body cavity of the patient through access port 19.


The specimen retrieval device 10 of the present disclosure allows a user to insert excised tissue (e.g., relatively large samples of excised tissue) within the pouch 22 while maintaining the compactness (e.g., unfolded configuration) of the pouch 22. Moreover, because the excised tissue is pulled into the pouch 22, the likelihood of the excised tissue bunching up when being positioned inside the pouch is reduced, if not eliminated, which, in turn, may make it easier to retrieve the pouch 22 through the usually a small laparoscopic incision or access port 19.


From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, while the jaw members 38, 40 have been described herein as being utilized as the tissue engaging device, other tissue engaging devices may also be utilized. For example, any type of needle 56 (FIG. 6A), a barbed suture 58 (FIG. 6B), a suction device 60 (FIG. 6C) or other suitable device may be utilized in place of the jaw members 38, 40. As can be appreciated, certain modifications may need to be made to specimen retrieval device 10 to accommodate the different tissue engaging devices implemented.


In embodiments, one or more support members 50 (see FIG. 3 for example) may be provided along a surface of the pouch 22 and may be configured to facilitate moving the pouch 22 to the open configuration. For example, a resilient bar, wire or the like may extend along the surface of the pouch 22 that is provided opposite the side walls 52, 54 of the pouch 22. In this particular embodiment, the bar and/or wire may be woven or other attached to an interior or exterior of the pouch 22.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A specimen retrieval device comprising: an inner shaft having a proximal portion, a distal portion and an outer surface;a pouch supported on the distal portion of the inner shaft, the pouch having an open proximal end and a closed distal end;a tissue engaging device supported on the inner shaft, the tissue engaging device being movable along the outer surface of the inner shaft from a position outside of the pouch through the open proximal end of the pouch to a position located within the pouch; anda rail disposed on the inner shaft, the tissue engaging device being movable along the rail and the inner shaft, the rail defining a channel that extends between the open and closed ends of the pouch, the tissue engaging device being movable along the channel of the rail, wherein the tissue engaging device is configured to engage tissue and move the tissue through the open proximal end of the pouch while the open proximal end of the pouch is positioned proximally of the closed distal end of the pouch, wherein the rail extends from the inner shaft, through the open proximal end of the pouch, and into the pouch.
  • 2. The specimen retrieval device of claim 1, wherein the open end of the pouch is supported at a position proximally of the closed end of the pouch.
  • 3. The specimen retrieval device of claim 2, wherein the pouch tapers from the open end towards the closed end.
  • 4. The specimen retrieval device of claim 1, wherein the closed end of the pouch is supported adjacent a distal end of the inner shaft.
  • 5. The specimen retrieval device of claim 1, wherein the pouch is tubular.
  • 6. The specimen retrieval device of claim 1, wherein the tissue engaging device includes a pair of jaw members.
  • 7. The specimen retrieval device of claim 1, wherein the pouch interfaces with a spring, the spring being configured to open the open end of the pouch.
  • 8. The specimen retrieval device of claim 1, wherein the specimen retrieval device includes a cinch for cinching the pouch to a cinched configuration.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/834,948, filed Jun. 14, 2013, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (188)
Number Name Date Kind
30471 Dudley Oct 1860 A
35164 Logan et al. May 1862 A
156477 Bradford Nov 1874 A
1609014 Dowd Nov 1926 A
3800781 Zalucki Apr 1974 A
4557255 Goodman Dec 1985 A
4611594 Grayhack et al. Sep 1986 A
4744363 Hasson May 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4852586 Haines Aug 1989 A
4927427 Kriauciunas et al. May 1990 A
4977903 Haines Dec 1990 A
4991593 LeVahn Feb 1991 A
4997435 Demeter Mar 1991 A
5037379 Clayman et al. Aug 1991 A
5074867 Wilk Dec 1991 A
5084054 Bencini et al. Jan 1992 A
5143082 Kindberg et al. Sep 1992 A
5147371 Washington et al. Sep 1992 A
5176687 Hasson et al. Jan 1993 A
5190542 Nakao et al. Mar 1993 A
5190555 Wetter et al. Mar 1993 A
5190561 Graber Mar 1993 A
5192284 Pleatman Mar 1993 A
5192286 Phan et al. Mar 1993 A
5201740 Nakao et al. Apr 1993 A
5215521 Cochran et al. Jun 1993 A
5224930 Spaeth et al. Jul 1993 A
5234439 Wilk et al. Aug 1993 A
5279539 Bohan et al. Jan 1994 A
5312416 Spaeth et al. May 1994 A
5330483 Heaven et al. Jul 1994 A
5336227 Nakao et al. Aug 1994 A
5337754 Heaven et al. Aug 1994 A
5341815 Cofone et al. Aug 1994 A
5352184 Goldberg et al. Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5368545 Schaller et al. Nov 1994 A
5368597 Pagedas Nov 1994 A
5370647 Graber et al. Dec 1994 A
5443472 Li Aug 1995 A
5465731 Bell et al. Nov 1995 A
5480404 Kammerer et al. Jan 1996 A
5486182 Nakao et al. Jan 1996 A
5486183 Middleman et al. Jan 1996 A
5499988 Espiner et al. Mar 1996 A
5524633 Heaven et al. Jun 1996 A
5535759 Wilk Jul 1996 A
5611803 Heaven et al. Mar 1997 A
5618296 Sorensen et al. Apr 1997 A
5630822 Hermann et al. May 1997 A
5642282 Sonehara Jun 1997 A
5643282 Kieturakis Jul 1997 A
5643283 Younker Jul 1997 A
5645083 Essig et al. Jul 1997 A
5647372 Tovey et al. Jul 1997 A
5649902 Yoon Jul 1997 A
5658296 Bates et al. Aug 1997 A
5679423 Shah Oct 1997 A
5681324 Kammerer et al. Oct 1997 A
5735289 Pfeffer et al. Apr 1998 A
5755724 Yoon May 1998 A
5759187 Nakao et al. Jun 1998 A
5769794 Conlan et al. Jun 1998 A
5785677 Auweiler Jul 1998 A
5788709 Riek et al. Aug 1998 A
5792145 Bates et al. Aug 1998 A
5814044 Hooven Sep 1998 A
5829440 Broad, Jr. Nov 1998 A
5836953 Yoon Nov 1998 A
5853374 Hart et al. Dec 1998 A
5895392 Riek et al. Apr 1999 A
5906621 Secrest et al. May 1999 A
5908429 Yoon Jun 1999 A
5957884 Hooven Sep 1999 A
5971995 Rousseau Oct 1999 A
5980544 Vaitekunas Nov 1999 A
5997547 Nakao et al. Dec 1999 A
6004330 Middleman et al. Dec 1999 A
6007512 Hooven Dec 1999 A
6007546 Snow et al. Dec 1999 A
6019770 Christoudias Feb 2000 A
6036681 Hooven Mar 2000 A
6059793 Pagedas May 2000 A
6123701 Nezhat Sep 2000 A
6152932 Ternstrom Nov 2000 A
6162235 Vaitekunas Dec 2000 A
6165121 Alferness Dec 2000 A
6168603 Leslie et al. Jan 2001 B1
6228095 Dennis May 2001 B1
6270505 Yoshida et al. Aug 2001 B1
6277083 Eggers et al. Aug 2001 B1
6280450 McGuckin, Jr. Aug 2001 B1
6344026 Burbank et al. Feb 2002 B1
6348056 Bates et al. Feb 2002 B1
6350266 White et al. Feb 2002 B1
6350267 Stefanchik Feb 2002 B1
6383195 Richard May 2002 B1
6383196 Leslie et al. May 2002 B1
6383197 Conlon et al. May 2002 B1
6406440 Stefanchik Jun 2002 B1
6409733 Conlon et al. Jun 2002 B1
6419639 Walther et al. Jul 2002 B2
6447523 Middleman et al. Sep 2002 B1
6471659 Eggers et al. Oct 2002 B2
6506166 Hendler et al. Jan 2003 B1
6508773 Burbank et al. Jan 2003 B2
6537273 Sosiak et al. Mar 2003 B1
6589252 McGuckin, Jr. Jul 2003 B2
6752811 Chu et al. Jun 2004 B2
6755779 Vanden Hoek et al. Jun 2004 B2
6780193 Leslie et al. Aug 2004 B2
6805699 Shimm Oct 2004 B2
6840948 Albrecht et al. Jan 2005 B2
6872211 White et al. Mar 2005 B2
6887255 Shimm May 2005 B2
6905497 Truckai Jun 2005 B2
6994696 Suga Feb 2006 B2
7052454 Taylor May 2006 B2
7052501 McGuckin, Jr. May 2006 B2
7090637 Danitz et al. Aug 2006 B2
7115125 Nakao et al. Oct 2006 B2
7270663 Nakao Sep 2007 B2
7273488 Nakamura et al. Sep 2007 B2
7410491 Hopkins et al. Aug 2008 B2
7547310 Whitfield Jun 2009 B2
7670346 Whitfield Mar 2010 B2
7762959 Bilsbury Jul 2010 B2
7819121 Amer Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
8057485 Hollis et al. Nov 2011 B2
8579914 Menn et al. Nov 2013 B2
8906036 Farascioni Dec 2014 B2
20020068943 Chu et al. Jun 2002 A1
20020082516 Stefanchik Jun 2002 A1
20030055417 Truckai Mar 2003 A1
20030073970 Suga Apr 2003 A1
20030100909 Suzuki May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030199915 Shimm Oct 2003 A1
20030216773 Shimm Nov 2003 A1
20040097960 Terachi et al. May 2004 A1
20040138587 Lyons Jul 2004 A1
20040225192 Young Nov 2004 A1
20040242960 Orban, III Dec 2004 A1
20050085808 Nakao Apr 2005 A1
20050165411 Orban Jul 2005 A1
20050267492 Poncet et al. Dec 2005 A1
20060025781 Young Feb 2006 A1
20060030750 Amer Feb 2006 A1
20060052799 Middleman et al. Mar 2006 A1
20060058776 Bilsbuiy Mar 2006 A1
20060169287 Harrison et al. Aug 2006 A1
20060200169 Sniffin Sep 2006 A1
20060200170 Aranyi Sep 2006 A1
20060229639 Whitfield Oct 2006 A1
20060229640 Whitfield Oct 2006 A1
20070016224 Nakao Jan 2007 A1
20070016225 Nakao Jan 2007 A1
20070073251 Zhou et al. Mar 2007 A1
20070088370 Kahle et al. Apr 2007 A1
20070135780 Pagedas Jun 2007 A1
20070135781 Hart Jun 2007 A1
20070186935 Wang et al. Aug 2007 A1
20080188766 Gertner Aug 2008 A1
20080221588 Hollis et al. Sep 2008 A1
20080234696 Taylor et al. Sep 2008 A1
20080300621 Hopkins et al. Dec 2008 A1
20080312496 Zwolinski Dec 2008 A1
20090082779 Nakao Mar 2009 A1
20090182292 Egle et al. Jul 2009 A1
20090192510 Bahney Jul 2009 A1
20090240238 Grodrian et al. Sep 2009 A1
20100000471 Hibbard Jan 2010 A1
20100152609 Zwolinski Jun 2010 A1
20100256522 Zhou Oct 2010 A1
20110184430 Parihar et al. Jul 2011 A1
20110184431 Parihar Jul 2011 A1
20110184434 Parihar et al. Jul 2011 A1
20110184436 Shelton, IV et al. Jul 2011 A1
20110190781 Collier et al. Aug 2011 A1
20110190782 Fleming Aug 2011 A1
20110299799 Towe Dec 2011 A1
20120046667 Cherry et al. Feb 2012 A1
20120083795 Fleming et al. Apr 2012 A1
20120277758 Davis Nov 2012 A1
20130023895 Saleh Jan 2013 A1
20130267950 Rosa Oct 2013 A1
Foreign Referenced Citations (27)
Number Date Country
2792692 Apr 2013 CA
102755177 Oct 2012 CN
3542667 Jun 1986 DE
8435489 Aug 1986 DE
4204210 Aug 1992 DE
19624826 Jan 1998 DE
0947166 Oct 1999 EP
1685802 Aug 2006 EP
1707126 Oct 2006 EP
2005900 Dec 2008 EP
2184014 May 2010 EP
1272412 Sep 1961 FR
246009 Jan 1926 GB
9315675 Aug 1993 WO
9509666 Apr 1995 WO
0135831 May 2001 WO
2004002334 Jan 2004 WO
2004082462 Sep 2004 WO
2004112571 Dec 2004 WO
2005112783 Dec 2005 WO
2006110733 Oct 2006 WO
2007048078 Apr 2007 WO
2007048085 Apr 2007 WO
2008114234 Sep 2008 WO
2009149146 Dec 2009 WO
2011049918 Apr 2011 WO
2011090862 Jul 2011 WO
Non-Patent Literature Citations (14)
Entry
European Search Report dated Nov. 26, 2014 issued in European Application No. 14172314.
European Search Report EP 12191639.9 dated Feb. 20, 2013.
European Search Report EP 11250837.9 dated Sep. 10, 2013.
European Search Report EP 11250838.7 dated Sep. 10, 2013.
European Search Report EP 13170118.7 dated Dec. 5, 2013.
European Search Report EP 12165852 dated Jun. 20, 2012.
http://www.biomaterials.org/week/bio17.cfm, definition and examples of hydrogels.
European Search Report EP 12150271 dated Jan. 14, 2013.
European Search Report EP 12193450 dated Feb. 27, 2013.
European Search Report EP 12189517.1 dated Mar. 6, 2013.
European Search Report EP 12158873 dated Jul. 19, 2012.
European Search Report EP 11250836 dated Sep. 12, 2013.
European Search Report dated Oct. 22, 2015, issued in European Application No. 15171981.
Chinese Office Action dated Dec. 4, 2017, issued in CN Application No. 2014102678160.
Related Publications (1)
Number Date Country
20140371760 A1 Dec 2014 US
Provisional Applications (1)
Number Date Country
61834948 Jun 2013 US