Specimen retrieval device

Information

  • Patent Grant
  • 11065051
  • Patent Number
    11,065,051
  • Date Filed
    Monday, September 10, 2018
    5 years ago
  • Date Issued
    Tuesday, July 20, 2021
    2 years ago
Abstract
A specimen retrieval device for extraction of tissue includes a port having a specimen bag attached thereto. The specimen bag includes two openings: one opening attached to the port, and the other opening spaced from the first opening, which may remain open in a patient's body to permit introduction of a tissue specimen therein. The second opening may be closed after introduction of a tissue specimen into the specimen bag, and the tissue within the specimen bag may be broken up as it is passes out of the specimen bag and through the port of the specimen retrieval device.
Description
TECHNICAL FIELD

The present disclosure relates to a retrieval device and, more particularly, to a surgical retrieval device for removing tissue specimens from an internal body cavity.


BACKGROUND

Minimally invasive surgery, such as endoscopic surgery, reduces the invasiveness of surgical procedures. Endoscopic surgery involves surgery through body walls, for example, viewing and/or operating on the ovaries, uterus, gall bladder, bowels, kidneys, appendix, etc. There are many common endoscopic surgical procedures, including arthroscopy, laparoscopy, gastroentroscopy and laryngobronchoscopy, just to name a few. In these procedures, trocars are utilized for creating incisions through which the endoscopic surgery is performed. Trocar tubes or cannula devices are extended into and left in place in the abdominal wall to provide access for endoscopic surgical tools. A camera or endoscope is inserted through a trocar tube to permit the visual inspection and magnification of a body cavity. The surgeon can then perform diagnostic and/or therapeutic procedures at the surgical site with the aid of specialized instrumentation, such as forceps, graspers, cutters, applicators, and the like, which are designed to fit through additional cannulas.


When removing certain tissues from the body cavity, for example tumor tissue, it is important that the tumor tissue does not come into contact with healthy or uninvolved tissue. If tumor tissue or tissue parts have to be removed, they may be introduced into an “containment bag,” also referred to herein as a “specimen bag,” at the site where the tumor or diseased tissue has been detached from the surrounding tissue, after which the specimen bag is withdrawn from the body, thereby minimizing contact of the diseased tissue with healthy tissue.


Improved retrieval devices for use in minimally invasive surgical procedures remain desirable.


SUMMARY

The present disclosure is directed to surgical apparatuses and kits for use in minimally invasive surgery. In embodiments, the present disclosure provides a specimen retrieval device including a port defining a longitudinal bore and a channel, the port possessing a proximal portion, a distal portion, and a cutting element at the distal portion. Specimen retrieval devices of the present disclosure also include a specimen bag defining a reservoir and having a first opening at a proximal portion of the specimen bag and a second opening spaced from the first opening, the first and second openings communicating with the reservoir, the first opening affixed to and in fluid communication with the distal portion of the port, and the second opening defined by a mouth of the specimen bag.


In embodiments, the shape of the cutting element may be u-shaped, circular, partially circular, oblong, square, rectangular, or triangular. In some embodiments, the cutting element possesses a u-shape.


In embodiments, the cutting element is formed of an electrically conductive material and is attached to electrical leads.


In some embodiments, the distal portion of the port is attached to the cutting element by a method including adhesive bonding, welding, heat-sealing, or combinations thereof.


In other embodiments, the distal portion of the port is attached to the first opening of the specimen bag by a method including adhesive bonding, welding, heat-sealing, or combinations thereof.


In some embodiments, the port has a proximal portion including a flange.


A kit of the present disclosure includes a specimen retrieval device as described herein and at least one additional component, such as trocars, graspers, scalpels, vacuum tubes, inflation sources, or combinations thereof.


Methods of the present disclosure include, in embodiments, introducing a specimen retrieval device into a body opening such that a port of the specimen retrieval device extends through the body opening, and a specimen bag having a first opening affixed to and in fluid communication with a distal portion of the port is positioned within a body cavity. The method also includes passing a tissue specimen through a second opening of the specimen bag into the specimen bag, the second opening spaced from the first opening, and contacting the tissue specimen with a cutting element on the port as the tissue specimen is removed from the specimen bag through the port.


In embodiments, a grasper is used to contact the tissue specimen with the cutting element and remove the tissue specimen through the port. In some embodiments, the method also includes manipulating the port, the grasper, or both, to preserve continuity of the tissue specimen as it passes through the port. For example, in embodiments, the port is manipulated by rotating the port along its longitudinal axis. In other embodiments, the grasper is manipulated by laterally deflecting the grasper within the longitudinal bore of the port.


In some embodiments, methods of the present disclosure also include, prior to removing the tissue specimen through the port, introducing a second port through a second body opening and introducing a grasper through the second port into the body cavity. The grasper is used to grasp a mouth defining the second opening of the specimen bag and the mouth and the second opening of the specimen bag are removed through the second port to close off the specimen bag from the body cavity.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the presently disclosed specimen retrieval device are described herein with reference to the drawings wherein:



FIG. 1 is a perspective view of a specimen retrieval device in accordance with the present disclosure;



FIG. 2 is an exploded view of the specimen retrieval device shown in FIG. 1;



FIG. 3 is a perspective view of the specimen retrieval device shown in FIG. 1 positioned in a patient's body cavity, showing a second port to be used in conjunction with the specimen retrieval device;



FIG. 4 is a perspective view of the specimen retrieval device shown in FIG. 3, after placement of a tissue specimen into the specimen bag; and



FIG. 5 is a perspective view of the specimen retrieval device shown in FIG. 4, as the tissue specimen is removed from the specimen bag through the specimen retrieval device.





DETAILED DESCRIPTION

The present disclosure provides a specimen retrieval device for use in minimally invasive surgical procedures. As used herein with reference to the present disclosure, minimally invasive surgical procedures encompass laparoscopic procedures and endoscopic procedures, and refer to procedures utilizing scopes or similar devices having relatively narrow operating portions capable of insertion through a small incision in the skin.


The aspects of the present disclosure may be modified for use with various methods for retrieving tissue specimens during minimally invasive surgical procedures, sometimes referred to herein as minimally invasive procedures. Examples of minimally invasive procedures include, for example, cholecystectomies, appendectomies, nephrectomies, colectomies, splenectomies, and the like.


As used herein, the term “distal” refers to that portion of a specimen retrieval device which is farthest from the user, while the term “proximal” refers to that portion of the specimen retrieval device of the present disclosure which is closest to the user.


The present disclosure provides a specimen retrieval device including a port having a specimen bag attached thereto. The port has a cutting element, in embodiments in the shape of a U-shaped partial ring, capable of cutting tissue during placement of the port, as well as cutting tissue being removed from the specimen bag through the port.


Embodiments of the present disclosure will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


With reference to FIGS. 1-5, and initially with reference to FIGS. 1-2, a specimen retrieval device 10 according to an embodiment of the present disclosure is illustrated. The specimen retrieval device 10 includes a port 12 defining a longitudinal bore 20 and including a distal portion 14 and a proximal portion 16. In embodiments, the port 12 has a cutting element 18 at its distal portion 14, with a specimen bag 40 affixed to the distal portion 14 of the port 12. The port 12 may also include a flange 15 positioned about the proximal portion 16 and an end of the longitudinal bore 20. The flange 15 is configured to prevent the port 12 from passing into a patient's body cavity.


In embodiments, the port 12 of the specimen retrieval device 10 of the present disclosure is made of biocompatible materials within the purview of those skilled in the art, in embodiments, polymeric materials. For example, thermoplastic polyurethanes sold under the name PELLETHANE®, offer flexibility and a wide range of hardness. The port 12, for example, may be fabricated from PELLETHANE® 2363-80A, PELLETHANE® 2363-90A, PELLETHANE® 2363-55D, any combination thereof, or any alternatives within the purview of those skilled in the art.


The specimen bag 40 has two openings: a first opening 46 at a proximal portion 42 of the specimen bag 40 attached to the distal portion 14 of the port 12, and a second opening 48 of the specimen bag 40 spaced at a distance from the first opening 46. The first opening 46 at the proximal portion 42 of the specimen bag 40 is in fluid communication with the longitudinal bore 20 of the port 12, and, permits passage of surgical instruments (not shown) through the longitudinal bore 20 of the port 12 into a reservoir 47 defined by the specimen bag 40. The distal portion 14 of the port 12 may be received within the first opening 46 of the specimen bag 40 and attached to the proximal portion 42 of the specimen bag 40 by any suitable method, including adhesive bonding, welding, heat-sealing, combinations thereof, and the like.


As depicted in FIG. 1, the specimen bag 40 has a tubular trunk 49 that has a first end 49a that communicates with the reservoir 47 and a second end 49b that has a mouth 50 defining the second opening 48. The mouth 50 of the second opening 48 of the specimen bag 40 permits the introduction of surgical instruments/devices utilized in minimally invasive surgical procedures (not shown), including, for example, graspers, trocars, knives, scalpels, vacuum sources, inflation sources, or any other surgical device used by the clinician, into the reservoir 47 defined by the specimen bag 40.


The specimen bag 40 is made is resilient, antistatic, pyrogen-free, non-toxic, and sterilizable. In embodiments, materials used to form the port 12 described above may be used to form the specimen bag 40. In other embodiments, the specimen bag 40 is formed of materials that are different from those used to form the port 12. The specimen bag 40 may be opaque or clear.


The distal portion 14 of the port 12 may be attached to the cutting element 18 by any suitable method, including adhesive bonding, welding, heat-sealing, combinations thereof, and the like. The cutting element 18 is formed of a hard material such as a metal, which allows the cutting element 18 to cut tissue during placement of the port 12 into a patient's body (not shown) as well as cut tissue during removal of tissue from a patient's body after placement of the tissue into the specimen bag 40. In certain embodiments, the cutting element 18 is formed of a conductive material and is attached to electrical leads (not shown) such that electricity may be introduced to the cutting element 18, thereby facilitating cutting of tissue as part of an electrosurgical procedure. In these embodiments, the port 12 may be formed of an insulating or non-conductive material.


As depicted in FIGS. 1-5, in embodiments the cutting element 18 may be U-shaped. The U-shaped cutting element 18 may be a semi-circle or any similar u-shape having any desirable arc length. In other embodiments, the cutting element 18 may be of a different suitable shape, including, for example, circular or partially circular, i.e., a length longer than a semi-circle, but not a complete circle. Other suitable shapes include oblong, square, rectangular, or triangular, so long as the shape does not impede the attachment of the specimen bag 40 to the port 12 or the use of the port 12.


Kits of the present disclosure may include both the specimen retrieval device described herein, as well as trocars, scalpels, vacuum sources (tubes), inflation sources, additional ports, combinations thereof, and the like.


In use, as depicted in FIGS. 3-5, the specimen retrieval device 10 is inserted through an incision “I” into a patient's body cavity “BC”. The flange 15 prevents passage of the port 12 through the incision “I” into the body cavity “BC”. The distal portion 14 of the port 12 of the specimen retrieval device 10, having the specimen bag 40 affixed thereto, is inserted through the incision “I”. While no figure herein shows the actual insertion of the specimen bag, a detailed description of a method of inserting a specimen bag into a body cavity can be found, for example, in U.S. Pat. No. 5,647,372, the entire disclosure of which is incorporated by reference herein. A gas by way of an inflation source (not shown) can be supplied to the specimen bag 40 to increase a volume of the specimen bag 40.


With specific reference to FIG. 3, in embodiments, a kit of the present disclosure includes a second port 112 placed through a second incision “II” and a grasper 200 configured to pass through the second port 112. The grasper 200 facilitates placement of a tissue specimen “TS” within the reservoir 47 (FIG. 3) defined by the specimen bag 40 through the mouth 50 defining the second opening 48 of the specimen bag 40 (not shown).


As depicted in FIG. 4, after a tissue sample “TS” has been placed in the specimen bag 40, the grasper 200 is pulled proximally up (in the direction indicated by arrows “A”) to pull the mouth 50 and the second opening 48 of the specimen bag 40 out of the body cavity “BC” through the second port 112, fully closing off the specimen bag 40 from the body cavity “BC”.


As shown in FIG. 5, a second grasper 300 is then introduced through the port 12 and grasps the tissue specimen “TS.” The second grasper 300 is pulled proximally to remove the tissue specimen “TS” from the specimen bag 40. As the tissue specimen “TS” passes through the distal portion 14 of the port 12, it comes into contact with the cutting element 18, which cuts the tissue specimen “TS,” thereby permitting passage of the tissue sample out the proximal portion 16 of the port 12 in the form of elongated tissue specimen strips “TSS.”


While not shown, it is to be appreciated that the port 12, the second grasper 300, or both, may be manipulated, for example by rotating the port 12 along its longitudinal axis and/or laterally deflecting the grasper 300 within the longitudinal bore 20 of the port 12, to enhance contact of the tissue specimen “TS” with the cutting element 18, thereby enhancing cutting of the tissue specimen “TS” and formation of elongated tissue specimen strips “TSS.”


After the tissue specimen “TS” is entirely extracted from the specimen bag 40, the port 12 and the specimen bag 40 may be withdrawn out through the incision “I”.


Alternatively, in some embodiments, small portions of tissue specimen “TS” may remain in the specimen bag 40 during removal of the specimen bag 40 through the incision “I” (not shown). Any such small portions of tissue specimen “TS” may then be removed from the specimen bag 40 for further examination and the specimen bag 40 may be discarded.


The specimen bags of the present disclosure may be useful for the removal of large tissue specimens from a body cavity. While previous specimen bags may be utilized to remove smaller tissue samples, the dual openings on the specimen bags of the present disclosure permit the construction of larger specimen bags in combination with ports that remain small to minimize trauma to a patient upon placement in an incision. The second opening of the specimen bag permits the introduction of tissue specimens therein, which may then be closed, permitting breaking down the tissue specimen as described above.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A specimen retrieval device, comprising: a port defining a longitudinal bore and a channel, the port possessing a proximal portion, a distal portion, and a cutting element fixedly attached to the distal portion; anda specimen bag defining a reservoir and having a first opening at a proximal portion of the specimen bag and a second opening spaced from the first opening, the first and second openings communicating with the reservoir, the first opening affixed to and in fluid communication with the distal portion of the port, and the second opening defined by a mouth of the specimen bag.
  • 2. The specimen retrieval device of claim 1, wherein the cutting element possesses a shape including u-shaped, circular, partially circular, oblong, square, rectangular, or triangular.
  • 3. The specimen retrieval device of claim 1, wherein the cutting element possesses a u-shape.
  • 4. The specimen retrieval device of claim 1, wherein the cutting element is formed of an electrically conductive material and is attached to electrical leads.
  • 5. The specimen retrieval device of claim 1, wherein the distal portion of the port is fixedly attached to the cutting element by a method including adhesive bonding, welding, heat-sealing, or combinations thereof.
  • 6. The specimen retrieval device of claim 1, wherein the distal portion of the port is attached to the first opening of the specimen bag by a method including adhesive bonding, welding, heat-sealing, or combinations thereof.
  • 7. The specimen retrieval device of claim 1, wherein the port has a proximal portion including a flange.
  • 8. A kit comprising: the specimen retrieval device of claim 1; andat least one additional component including trocars, graspers, scalpels, vacuum tubes, inflation sources, or combinations thereof.
  • 9. A method comprising: introducing a specimen retrieval device into a body opening such that a port of the specimen retrieval device extends through the body opening and a specimen bag having a first opening affixed to and in fluid communication with a distal portion of the port is positioned within a body cavity;passing a tissue specimen through a second opening of the specimen bag into the specimen bag, the second opening spaced from the first opening; andcontacting the tissue specimen with a cutting element on the port as the tissue specimen is removed from the specimen bag through the port.
  • 10. The method of claim 9, wherein the cutting element is formed of an electrically conductive material and attached to electrical leads which facilitate the cutting element cutting tissue.
  • 11. The method of claim 9, wherein the cutting element possesses a shape including u-shaped, circular, partially circular, oblong, square, rectangular, or triangular.
  • 12. The method of claim 9, wherein the cutting element possesses a u-shape.
  • 13. The method of claim 9, wherein a grasper is used to contact the tissue specimen with the cutting element and remove the tissue specimen through the port.
  • 14. The method of claim 13, further including manipulating the port, the grasper, or both, to preserve continuity of the tissue specimen as it passes through the port.
  • 15. The method of claim 14, wherein the port is manipulated by rotating the port along its longitudinal axis.
  • 16. The method of claim 14, wherein the grasper is manipulated by laterally deflecting the grasper within a longitudinal bore of the port.
  • 17. The method of claim 9, further including, prior to removing the tissue specimen through the port: introducing a second port through a second body opening;introducing a grasper through the second port into the body cavity;grasping a mouth defining the second opening of the specimen bag with the grasper; andremoving the mouth and the second opening of the specimen bag through the second port to close off the specimen bag from the body cavity.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/581,171 filed Nov. 3, 2017, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (270)
Number Name Date Kind
30471 Dudley Oct 1860 A
31564 Logan et al. May 1862 A
156477 Bradford Nov 1874 A
1609014 Dowd Nov 1926 A
3800781 Zalucki Apr 1974 A
4557255 Goodman Dec 1985 A
4611594 Grayhack et al. Sep 1986 A
4744363 Hasson May 1988 A
4790812 Hawkins, Jr. et al. Dec 1988 A
4852586 Haines Aug 1989 A
4927427 Kriauciunas et al. May 1990 A
4977903 Haines Dec 1990 A
4991593 LeVahn Feb 1991 A
4997435 Demeter Mar 1991 A
5037379 Clayman et al. Aug 1991 A
5074867 Wilk Dec 1991 A
5084054 Bencini et al. Jan 1992 A
5143082 Kindberg et al. Sep 1992 A
5147371 Washington et al. Sep 1992 A
5176687 Hasson et al. Jan 1993 A
5190542 Nakao et al. Mar 1993 A
5190555 Wetter et al. Mar 1993 A
5190561 Graber Mar 1993 A
5192284 Pleatman Mar 1993 A
5192286 Phan et al. Mar 1993 A
5201740 Nakao et al. Apr 1993 A
5215521 Cochran et al. Jun 1993 A
5224930 Spaeth et al. Jul 1993 A
5234439 Wilk et al. Aug 1993 A
5279539 Bohan et al. Jan 1994 A
5312416 Spaeth et al. May 1994 A
5320627 Sorensen et al. Jun 1994 A
5330483 Heaven et al. Jul 1994 A
5336227 Nakao et al. Aug 1994 A
5337754 Heaven et al. Aug 1994 A
5341815 Cofone et al. Aug 1994 A
5352184 Goldberg et al. Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5368545 Schaller et al. Nov 1994 A
5368597 Pagedas Nov 1994 A
5370647 Graber et al. Dec 1994 A
5443472 Li Aug 1995 A
5465731 Bell et al. Nov 1995 A
5480404 Kammerer et al. Jan 1996 A
5486182 Nakao et al. Jan 1996 A
5486183 Middleman et al. Jan 1996 A
5499988 Espiner et al. Mar 1996 A
5524633 Heaven et al. Jun 1996 A
5535759 Wilk Jul 1996 A
5611803 Heaven et al. Mar 1997 A
5618296 Sorensen et al. Apr 1997 A
5630822 Hermann et al. May 1997 A
5642282 Sonehara Jun 1997 A
5643282 Kieturakis Jul 1997 A
5643283 Younker Jul 1997 A
5645083 Essig et al. Jul 1997 A
5647372 Tovey et al. Jul 1997 A
5649902 Yoon Jul 1997 A
5658296 Bates et al. Aug 1997 A
5679423 Shah Oct 1997 A
5681324 Kammerer et al. Oct 1997 A
5720754 Middleman et al. Feb 1998 A
5735289 Pfeffer et al. Apr 1998 A
5741271 Nakao et al. Apr 1998 A
5755724 Yoon May 1998 A
5759187 Nakao et al. Jun 1998 A
5769794 Conlan et al. Jun 1998 A
5782840 Nakao Jul 1998 A
5785677 Auweiler Jul 1998 A
5788709 Riek et al. Aug 1998 A
5792145 Bates et al. Aug 1998 A
5814044 Hooven Sep 1998 A
5829440 Broad, Jr. Nov 1998 A
5836953 Yoon Nov 1998 A
5853374 Hart et al. Dec 1998 A
5895392 Riek et al. Apr 1999 A
5904690 Middleman et al. May 1999 A
5906621 Secrest et al. May 1999 A
5908429 Yoon Jun 1999 A
5957884 Hooven Sep 1999 A
5971995 Rousseau Oct 1999 A
5980544 Vaitekunas Nov 1999 A
5997547 Nakao et al. Dec 1999 A
6004330 Middleman et al. Dec 1999 A
6007512 Hooven Dec 1999 A
6007546 Snow et al. Dec 1999 A
6019770 Christoudias Feb 2000 A
6036681 Hooven Mar 2000 A
6059793 Pagedas May 2000 A
6123701 Nezhat Sep 2000 A
6152932 Ternstrom Nov 2000 A
6156055 Ravenscroft Dec 2000 A
6162235 Vaitekunas Dec 2000 A
6165121 Alferness Dec 2000 A
6168603 Leslie et al. Jan 2001 B1
6206889 Bennardo Mar 2001 B1
6228095 Dennis May 2001 B1
6258102 Pagedas Jul 2001 B1
6264663 Cano Jul 2001 B1
6270505 Yoshida et al. Aug 2001 B1
6277083 Eggers et al. Aug 2001 B1
6280450 McGuckin, Jr. Aug 2001 B1
6344026 Burbank et al. Feb 2002 B1
6348056 Bates et al. Feb 2002 B1
6350266 White et al. Feb 2002 B1
6350267 Stefanchik Feb 2002 B1
6368328 Chu et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383196 Leslie et al. May 2002 B1
6383197 Conlon et al. May 2002 B1
6387102 Pagedas May 2002 B2
6406440 Stefanchik Jun 2002 B1
6409733 Conlon et al. Jun 2002 B1
6419639 Walther et al. Jul 2002 B2
6447523 Middleman et al. Sep 2002 B1
6471659 Eggers et al. Oct 2002 B2
6506166 Hendler et al. Jan 2003 B1
6508773 Burbank et al. Jan 2003 B2
6537273 Sosiak et al. Mar 2003 B1
6547310 Myers Apr 2003 B2
6589252 McGuckin, Jr. Jul 2003 B2
6752811 Chu et al. Jun 2004 B2
6755779 Vanden Hoek et al. Jun 2004 B2
6780193 Leslie et al. Aug 2004 B2
6805699 Shimm Oct 2004 B2
6840948 Albrecht et al. Jan 2005 B2
6872211 White et al. Mar 2005 B2
6887255 Shimm May 2005 B2
6958069 Shipp et al. Oct 2005 B2
6971988 Orban, III Dec 2005 B2
6994696 Suga Feb 2006 B2
7014648 Ambrisco et al. Mar 2006 B2
7018373 Suzuki Mar 2006 B2
7052454 Taylor May 2006 B2
7052501 McGuckin, Jr. May 2006 B2
7090637 Danitz et al. Aug 2006 B2
7115125 Nakao et al. Oct 2006 B2
7270663 Nakao Sep 2007 B2
7273488 Nakamura et al. Sep 2007 B2
7410491 Hopkins et al. Aug 2008 B2
7547310 Whitfield Jun 2009 B2
7618437 Nakao Nov 2009 B2
7670346 Whitfield Mar 2010 B2
7722626 Middleman et al. May 2010 B2
7762959 Bilsbury Jul 2010 B2
7785251 Wilk Aug 2010 B2
7819121 Amer Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
RE42050 Richard Jan 2011 E
7892242 Goldstein Feb 2011 B2
8016771 Orban, III Sep 2011 B2
8057485 Hollis et al. Nov 2011 B2
8075567 Taylor et al. Dec 2011 B2
8097001 Nakao Jan 2012 B2
8152820 Mohamed et al. Apr 2012 B2
8172772 Zwolinski et al. May 2012 B2
8206401 Nakao Jun 2012 B2
8337510 Rieber et al. Dec 2012 B2
8343031 Gertner Jan 2013 B2
8348827 Zwolinski Jan 2013 B2
8388630 Teague et al. Mar 2013 B2
8409112 Wynne et al. Apr 2013 B2
8409216 Parihar et al. Apr 2013 B2
8409217 Parihar et al. Apr 2013 B2
8414596 Parihar et al. Apr 2013 B2
8419749 Shelton, IV et al. Apr 2013 B2
8425533 Parihar et al. Apr 2013 B2
8430826 Uznanski et al. Apr 2013 B2
8435237 Bahney May 2013 B2
8444655 Parihar et al. May 2013 B2
8579914 Menn et al. Nov 2013 B2
8585712 O'Prey et al. Nov 2013 B2
8591521 Cherry et al. Nov 2013 B2
8652147 Hart Feb 2014 B2
8696683 LeVert Apr 2014 B2
8721658 Kahle et al. May 2014 B2
8734464 Grover et al. May 2014 B2
8777961 Cabrera et al. Jul 2014 B2
8795291 Davis et al. Aug 2014 B2
8821377 Collins Sep 2014 B2
8827968 Taylor et al. Sep 2014 B2
8870894 Taylor et al. Oct 2014 B2
8906035 Zwolinski et al. Dec 2014 B2
8906036 Farascioni Dec 2014 B2
8956370 Taylor et al. Feb 2015 B2
8968329 Cabrera Mar 2015 B2
20020068943 Chu et al. Jun 2002 A1
20020082516 Stefanchik Jun 2002 A1
20030073970 Suga Apr 2003 A1
20030100909 Suzuki May 2003 A1
20030100919 Hopkins et al. May 2003 A1
20030199915 Shimm Oct 2003 A1
20030216773 Shimm Nov 2003 A1
20040097960 Terachi et al. May 2004 A1
20040138587 Lyons Jul 2004 A1
20050085808 Nakao Apr 2005 A1
20050165411 Orban Jul 2005 A1
20050267492 Poncet et al. Dec 2005 A1
20060030750 Amer Feb 2006 A1
20060052799 Middleman et al. Mar 2006 A1
20060058776 Bilsbury Mar 2006 A1
20060169287 Harrison et al. Aug 2006 A1
20060200169 Sniffin Sep 2006 A1
20060200170 Aranyi Sep 2006 A1
20060229639 Whitfield Oct 2006 A1
20060229640 Whitfield Oct 2006 A1
20070016224 Nakao Jan 2007 A1
20070016225 Nakao Jan 2007 A1
20070073251 Zhou et al. Mar 2007 A1
20070088370 Kahle et al. Apr 2007 A1
20070135780 Pagedas Jun 2007 A1
20070135781 Hart Jun 2007 A1
20070186935 Wang et al. Aug 2007 A1
20080188766 Gertner Aug 2008 A1
20080221587 Schwartz Sep 2008 A1
20080221588 Hollis et al. Sep 2008 A1
20080234696 Taylor et al. Sep 2008 A1
20080255597 Pravong et al. Oct 2008 A1
20080300621 Hopkins et al. Dec 2008 A1
20080312496 Zwolinski Dec 2008 A1
20090043315 Moon Feb 2009 A1
20090082779 Nakao Mar 2009 A1
20090182292 Egle et al. Jul 2009 A1
20090192510 Bahney Jul 2009 A1
20090240238 Grodrian et al. Sep 2009 A1
20100000471 Hibbard Jan 2010 A1
20100152746 Ceniccola et al. Jun 2010 A1
20110087235 Taylor et al. Apr 2011 A1
20110184311 Parihar et al. Jul 2011 A1
20110184434 Parihar et al. Jul 2011 A1
20110184435 Parihar et al. Jul 2011 A1
20110184436 Shelton, IV et al. Jul 2011 A1
20110190779 Gell et al. Aug 2011 A1
20110190781 Collier et al. Aug 2011 A1
20110190782 Fleming et al. Aug 2011 A1
20110264091 Koppleman et al. Oct 2011 A1
20110299799 Towe Dec 2011 A1
20120046667 Cherry et al. Feb 2012 A1
20120083795 Fleming et al. Apr 2012 A1
20120083796 Grover et al. Apr 2012 A1
20120203241 Williamson, IV Aug 2012 A1
20130023895 Saleh Jan 2013 A1
20130103042 Davis Apr 2013 A1
20130116592 Whitfield May 2013 A1
20130184536 Shibley et al. Jul 2013 A1
20130190773 Carlson Jul 2013 A1
20130218170 Uznanski et al. Aug 2013 A1
20130245636 Jansen Sep 2013 A1
20130274758 Young et al. Oct 2013 A1
20130325025 Hathaway et al. Dec 2013 A1
20140046337 O'Prey et al. Feb 2014 A1
20140058403 Menn et al. Feb 2014 A1
20140180303 Duncan et al. Jun 2014 A1
20140222016 Grover et al. Aug 2014 A1
20140236110 Taylor et al. Aug 2014 A1
20140243865 Swayze et al. Aug 2014 A1
20140249541 Kahle et al. Sep 2014 A1
20140276913 Tah et al. Sep 2014 A1
20140303640 Davis et al. Oct 2014 A1
20140309656 Gal et al. Oct 2014 A1
20140330285 Rosenblatt et al. Nov 2014 A1
20140350567 Schmitz et al. Nov 2014 A1
20140371759 Hartoumbekis Dec 2014 A1
20140371760 Menn Dec 2014 A1
20150018837 Sartor et al. Jan 2015 A1
20150045808 Farascioni Feb 2015 A1
20170049427 Do et al. Feb 2017 A1
20170215904 Wassef et al. Aug 2017 A1
20170224321 Kessler et al. Aug 2017 A1
20180049771 Rhemrev-Pieters Feb 2018 A1
Foreign Referenced Citations (25)
Number Date Country
3542667 Jun 1986 DE
8435489 Aug 1986 DE
4204210 Aug 1992 DE
19624826 Jan 1998 DE
0947166 Oct 1999 EP
1685802 Aug 2006 EP
1707126 Oct 2006 EP
2005900 Dec 2008 EP
2184014 May 2010 EP
2436313 Apr 2012 EP
2474270 Jul 2012 EP
1272412 Sep 1961 FR
246009 Jan 1926 GB
9315675 Aug 1993 WO
9509666 Apr 1995 WO
0135831 May 2001 WO
2004002334 Jan 2004 WO
2004112571 Dec 2004 WO
2005112783 Dec 2005 WO
2006110733 Oct 2006 WO
2007048078 Apr 2007 WO
2007048085 Apr 2007 WO
2008114234 Sep 2008 WO
2009149146 Dec 2009 WO
2011090862 Jul 2011 WO
Non-Patent Literature Citations (14)
Entry
Matthew Bin Han Ong, “FDA Allows Containment Bags for Power Morcellators; Paper Reports Leakage”, Apr. 18, 2016, The Cancer Letter, pp. 1-9. (Year: 2016).
Hanh Tran, “Safety and Efficacy of Single Incision Laparoscopic Surgery for Total Extraperitoneal Inguinal Hernia Repair”, 2011, JSLS, 15:47-52. (Year: 2011).
European Search Report EP 12191639.9 dated Feb. 20, 2013.
European Search Report EP 11250837.9 dated Sep. 10, 2013.
European Search Report EP 11250838.7 dated Sep. 10, 2013.
European Search Report EP 13170118.7 dated Dec. 5, 2013.
European Search Report EP 12165852 dated Jun. 20, 2012.
http://www.biomaterials.org/week/bio17.cfm, definition and examples of hydrogels.
European Search Report EP 12150271 dated Jan. 14, 2013.
European Search Report EP 12193450 dated Feb. 27, 2013.
European Search Report EP 12189517.1 dated Mar. 6, 2013.
European Search Report EP 12158873 dated Jul. 19, 2012.
European Search Report EP 11250836 dated Sep. 12, 2013.
International Search Report issued in corresponding Appl. No. PCT/US2018/058609 dated Feb. 22, 2019.
Related Publications (1)
Number Date Country
20190133677 A1 May 2019 US
Provisional Applications (1)
Number Date Country
62581171 Nov 2017 US