The present disclosure relates to a retrieval device and, more particularly, to a surgical retrieval device for removing tissue specimens from an internal body cavity.
Minimally invasive surgery, such as endoscopic surgery, reduces the invasiveness of surgical procedures. Endoscopic surgery involves surgery through body walls, for example, viewing and/or operating on the ovaries, uterus, gall bladder, bowels, kidneys, appendix, etc. There are many common endoscopic surgical procedures, including arthroscopy, laparoscopy, gastroentroscopy and laryngobronchoscopy, just to name a few. In these procedures, trocars are utilized for creating incisions through which the endoscopic surgery is performed. Trocar tubes or cannula devices are extended into and left in place in the abdominal wall to provide access for endoscopic surgical tools. A camera or endoscope is inserted through a trocar tube to permit the visual inspection and magnification of a body cavity. The surgeon can then perform diagnostic and/or therapeutic procedures at the surgical site with the aid of specialized instrumentation, such as forceps, graspers, cutters, applicators, and the like, which are designed to fit through additional cannulas.
When removing certain tissues from the body cavity, for example tumor tissue, it is important that the tumor tissue does not come into contact with healthy or uninvolved tissue. If tumor tissue or tissue parts have to be removed, they may be introduced into an “containment bag,” also referred to herein as a “specimen bag,” at the site where the tumor or diseased tissue has been detached from the surrounding tissue, after which the specimen bag is withdrawn from the body, thereby minimizing contact of the diseased tissue with healthy tissue.
Improved retrieval devices for use in minimally invasive surgical procedures remain desirable.
The present disclosure is directed to surgical apparatuses and kits for use in minimally invasive surgery. In embodiments, the present disclosure provides a specimen retrieval device including a port defining a longitudinal bore and a channel, the port possessing a proximal portion, a distal portion, and a cutting element at the distal portion. Specimen retrieval devices of the present disclosure also include a specimen bag defining a reservoir and having a first opening at a proximal portion of the specimen bag and a second opening spaced from the first opening, the first and second openings communicating with the reservoir, the first opening affixed to and in fluid communication with the distal portion of the port, and the second opening defined by a mouth of the specimen bag.
In embodiments, the shape of the cutting element may be u-shaped, circular, partially circular, oblong, square, rectangular, or triangular. In some embodiments, the cutting element possesses a u-shape.
In embodiments, the cutting element is formed of an electrically conductive material and is attached to electrical leads.
In some embodiments, the distal portion of the port is attached to the cutting element by a method including adhesive bonding, welding, heat-sealing, or combinations thereof.
In other embodiments, the distal portion of the port is attached to the first opening of the specimen bag by a method including adhesive bonding, welding, heat-sealing, or combinations thereof.
In some embodiments, the port has a proximal portion including a flange.
A kit of the present disclosure includes a specimen retrieval device as described herein and at least one additional component, such as trocars, graspers, scalpels, vacuum tubes, inflation sources, or combinations thereof.
Methods of the present disclosure include, in embodiments, introducing a specimen retrieval device into a body opening such that a port of the specimen retrieval device extends through the body opening, and a specimen bag having a first opening affixed to and in fluid communication with a distal portion of the port is positioned within a body cavity. The method also includes passing a tissue specimen through a second opening of the specimen bag into the specimen bag, the second opening spaced from the first opening, and contacting the tissue specimen with a cutting element on the port as the tissue specimen is removed from the specimen bag through the port.
In embodiments, a grasper is used to contact the tissue specimen with the cutting element and remove the tissue specimen through the port. In some embodiments, the method also includes manipulating the port, the grasper, or both, to preserve continuity of the tissue specimen as it passes through the port. For example, in embodiments, the port is manipulated by rotating the port along its longitudinal axis. In other embodiments, the grasper is manipulated by laterally deflecting the grasper within the longitudinal bore of the port.
In some embodiments, methods of the present disclosure also include, prior to removing the tissue specimen through the port, introducing a second port through a second body opening and introducing a grasper through the second port into the body cavity. The grasper is used to grasp a mouth defining the second opening of the specimen bag and the mouth and the second opening of the specimen bag are removed through the second port to close off the specimen bag from the body cavity.
Embodiments of the presently disclosed specimen retrieval device are described herein with reference to the drawings wherein:
The present disclosure provides a specimen retrieval device for use in minimally invasive surgical procedures. As used herein with reference to the present disclosure, minimally invasive surgical procedures encompass laparoscopic procedures and endoscopic procedures, and refer to procedures utilizing scopes or similar devices having relatively narrow operating portions capable of insertion through a small incision in the skin.
The aspects of the present disclosure may be modified for use with various methods for retrieving tissue specimens during minimally invasive surgical procedures, sometimes referred to herein as minimally invasive procedures. Examples of minimally invasive procedures include, for example, cholecystectomies, appendectomies, nephrectomies, colectomies, splenectomies, and the like.
As used herein, the term “distal” refers to that portion of a specimen retrieval device which is farthest from the user, while the term “proximal” refers to that portion of the specimen retrieval device of the present disclosure which is closest to the user.
The present disclosure provides a specimen retrieval device including a port having a specimen bag attached thereto. The port has a cutting element, in embodiments in the shape of a U-shaped partial ring, capable of cutting tissue during placement of the port, as well as cutting tissue being removed from the specimen bag through the port.
Embodiments of the present disclosure will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
With reference to
In embodiments, the port 12 of the specimen retrieval device 10 of the present disclosure is made of biocompatible materials within the purview of those skilled in the art, in embodiments, polymeric materials. For example, thermoplastic polyurethanes sold under the name PELLETHANE®, offer flexibility and a wide range of hardness. The port 12, for example, may be fabricated from PELLETHANE® 2363-80A, PELLETHANE® 2363-90A, PELLETHANE® 2363-55D, any combination thereof, or any alternatives within the purview of those skilled in the art.
The specimen bag 40 has two openings: a first opening 46 at a proximal portion 42 of the specimen bag 40 attached to the distal portion 14 of the port 12, and a second opening 48 of the specimen bag 40 spaced at a distance from the first opening 46. The first opening 46 at the proximal portion 42 of the specimen bag 40 is in fluid communication with the longitudinal bore 20 of the port 12, and, permits passage of surgical instruments (not shown) through the longitudinal bore 20 of the port 12 into a reservoir 47 defined by the specimen bag 40. The distal portion 14 of the port 12 may be received within the first opening 46 of the specimen bag 40 and attached to the proximal portion 42 of the specimen bag 40 by any suitable method, including adhesive bonding, welding, heat-sealing, combinations thereof, and the like.
As depicted in
The specimen bag 40 is made is resilient, antistatic, pyrogen-free, non-toxic, and sterilizable. In embodiments, materials used to form the port 12 described above may be used to form the specimen bag 40. In other embodiments, the specimen bag 40 is formed of materials that are different from those used to form the port 12. The specimen bag 40 may be opaque or clear.
The distal portion 14 of the port 12 may be attached to the cutting element 18 by any suitable method, including adhesive bonding, welding, heat-sealing, combinations thereof, and the like. The cutting element 18 is formed of a hard material such as a metal, which allows the cutting element 18 to cut tissue during placement of the port 12 into a patient's body (not shown) as well as cut tissue during removal of tissue from a patient's body after placement of the tissue into the specimen bag 40. In certain embodiments, the cutting element 18 is formed of a conductive material and is attached to electrical leads (not shown) such that electricity may be introduced to the cutting element 18, thereby facilitating cutting of tissue as part of an electrosurgical procedure. In these embodiments, the port 12 may be formed of an insulating or non-conductive material.
As depicted in
Kits of the present disclosure may include both the specimen retrieval device described herein, as well as trocars, scalpels, vacuum sources (tubes), inflation sources, additional ports, combinations thereof, and the like.
In use, as depicted in
With specific reference to
As depicted in
As shown in
While not shown, it is to be appreciated that the port 12, the second grasper 300, or both, may be manipulated, for example by rotating the port 12 along its longitudinal axis and/or laterally deflecting the grasper 300 within the longitudinal bore 20 of the port 12, to enhance contact of the tissue specimen “TS” with the cutting element 18, thereby enhancing cutting of the tissue specimen “TS” and formation of elongated tissue specimen strips “TSS.”
After the tissue specimen “TS” is entirely extracted from the specimen bag 40, the port 12 and the specimen bag 40 may be withdrawn out through the incision “I”.
Alternatively, in some embodiments, small portions of tissue specimen “TS” may remain in the specimen bag 40 during removal of the specimen bag 40 through the incision “I” (not shown). Any such small portions of tissue specimen “TS” may then be removed from the specimen bag 40 for further examination and the specimen bag 40 may be discarded.
The specimen bags of the present disclosure may be useful for the removal of large tissue specimens from a body cavity. While previous specimen bags may be utilized to remove smaller tissue samples, the dual openings on the specimen bags of the present disclosure permit the construction of larger specimen bags in combination with ports that remain small to minimize trauma to a patient upon placement in an incision. The second opening of the specimen bag permits the introduction of tissue specimens therein, which may then be closed, permitting breaking down the tissue specimen as described above.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 62/581,171 filed Nov. 3, 2017, the entire disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
30471 | Dudley | Oct 1860 | A |
31564 | Logan et al. | May 1862 | A |
156477 | Bradford | Nov 1874 | A |
1609014 | Dowd | Nov 1926 | A |
3800781 | Zalucki | Apr 1974 | A |
4557255 | Goodman | Dec 1985 | A |
4611594 | Grayhack et al. | Sep 1986 | A |
4744363 | Hasson | May 1988 | A |
4790812 | Hawkins, Jr. et al. | Dec 1988 | A |
4852586 | Haines | Aug 1989 | A |
4927427 | Kriauciunas et al. | May 1990 | A |
4977903 | Haines | Dec 1990 | A |
4991593 | LeVahn | Feb 1991 | A |
4997435 | Demeter | Mar 1991 | A |
5037379 | Clayman et al. | Aug 1991 | A |
5074867 | Wilk | Dec 1991 | A |
5084054 | Bencini et al. | Jan 1992 | A |
5143082 | Kindberg et al. | Sep 1992 | A |
5147371 | Washington et al. | Sep 1992 | A |
5176687 | Hasson et al. | Jan 1993 | A |
5190542 | Nakao et al. | Mar 1993 | A |
5190555 | Wetter et al. | Mar 1993 | A |
5190561 | Graber | Mar 1993 | A |
5192284 | Pleatman | Mar 1993 | A |
5192286 | Phan et al. | Mar 1993 | A |
5201740 | Nakao et al. | Apr 1993 | A |
5215521 | Cochran et al. | Jun 1993 | A |
5224930 | Spaeth et al. | Jul 1993 | A |
5234439 | Wilk et al. | Aug 1993 | A |
5279539 | Bohan et al. | Jan 1994 | A |
5312416 | Spaeth et al. | May 1994 | A |
5320627 | Sorensen et al. | Jun 1994 | A |
5330483 | Heaven et al. | Jul 1994 | A |
5336227 | Nakao et al. | Aug 1994 | A |
5337754 | Heaven et al. | Aug 1994 | A |
5341815 | Cofone et al. | Aug 1994 | A |
5352184 | Goldberg et al. | Oct 1994 | A |
5354303 | Spaeth et al. | Oct 1994 | A |
5368545 | Schaller et al. | Nov 1994 | A |
5368597 | Pagedas | Nov 1994 | A |
5370647 | Graber et al. | Dec 1994 | A |
5443472 | Li | Aug 1995 | A |
5465731 | Bell et al. | Nov 1995 | A |
5480404 | Kammerer et al. | Jan 1996 | A |
5486182 | Nakao et al. | Jan 1996 | A |
5486183 | Middleman et al. | Jan 1996 | A |
5499988 | Espiner et al. | Mar 1996 | A |
5524633 | Heaven et al. | Jun 1996 | A |
5535759 | Wilk | Jul 1996 | A |
5611803 | Heaven et al. | Mar 1997 | A |
5618296 | Sorensen et al. | Apr 1997 | A |
5630822 | Hermann et al. | May 1997 | A |
5642282 | Sonehara | Jun 1997 | A |
5643282 | Kieturakis | Jul 1997 | A |
5643283 | Younker | Jul 1997 | A |
5645083 | Essig et al. | Jul 1997 | A |
5647372 | Tovey et al. | Jul 1997 | A |
5649902 | Yoon | Jul 1997 | A |
5658296 | Bates et al. | Aug 1997 | A |
5679423 | Shah | Oct 1997 | A |
5681324 | Kammerer et al. | Oct 1997 | A |
5720754 | Middleman et al. | Feb 1998 | A |
5735289 | Pfeffer et al. | Apr 1998 | A |
5741271 | Nakao et al. | Apr 1998 | A |
5755724 | Yoon | May 1998 | A |
5759187 | Nakao et al. | Jun 1998 | A |
5769794 | Conlan et al. | Jun 1998 | A |
5782840 | Nakao | Jul 1998 | A |
5785677 | Auweiler | Jul 1998 | A |
5788709 | Riek et al. | Aug 1998 | A |
5792145 | Bates et al. | Aug 1998 | A |
5814044 | Hooven | Sep 1998 | A |
5829440 | Broad, Jr. | Nov 1998 | A |
5836953 | Yoon | Nov 1998 | A |
5853374 | Hart et al. | Dec 1998 | A |
5895392 | Riek et al. | Apr 1999 | A |
5904690 | Middleman et al. | May 1999 | A |
5906621 | Secrest et al. | May 1999 | A |
5908429 | Yoon | Jun 1999 | A |
5957884 | Hooven | Sep 1999 | A |
5971995 | Rousseau | Oct 1999 | A |
5980544 | Vaitekunas | Nov 1999 | A |
5997547 | Nakao et al. | Dec 1999 | A |
6004330 | Middleman et al. | Dec 1999 | A |
6007512 | Hooven | Dec 1999 | A |
6007546 | Snow et al. | Dec 1999 | A |
6019770 | Christoudias | Feb 2000 | A |
6036681 | Hooven | Mar 2000 | A |
6059793 | Pagedas | May 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
6152932 | Ternstrom | Nov 2000 | A |
6156055 | Ravenscroft | Dec 2000 | A |
6162235 | Vaitekunas | Dec 2000 | A |
6165121 | Alferness | Dec 2000 | A |
6168603 | Leslie et al. | Jan 2001 | B1 |
6206889 | Bennardo | Mar 2001 | B1 |
6228095 | Dennis | May 2001 | B1 |
6258102 | Pagedas | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6270505 | Yoshida et al. | Aug 2001 | B1 |
6277083 | Eggers et al. | Aug 2001 | B1 |
6280450 | McGuckin, Jr. | Aug 2001 | B1 |
6344026 | Burbank et al. | Feb 2002 | B1 |
6348056 | Bates et al. | Feb 2002 | B1 |
6350266 | White et al. | Feb 2002 | B1 |
6350267 | Stefanchik | Feb 2002 | B1 |
6368328 | Chu et al. | Apr 2002 | B1 |
6383195 | Richard | May 2002 | B1 |
6383196 | Leslie et al. | May 2002 | B1 |
6383197 | Conlon et al. | May 2002 | B1 |
6387102 | Pagedas | May 2002 | B2 |
6406440 | Stefanchik | Jun 2002 | B1 |
6409733 | Conlon et al. | Jun 2002 | B1 |
6419639 | Walther et al. | Jul 2002 | B2 |
6447523 | Middleman et al. | Sep 2002 | B1 |
6471659 | Eggers et al. | Oct 2002 | B2 |
6506166 | Hendler et al. | Jan 2003 | B1 |
6508773 | Burbank et al. | Jan 2003 | B2 |
6537273 | Sosiak et al. | Mar 2003 | B1 |
6547310 | Myers | Apr 2003 | B2 |
6589252 | McGuckin, Jr. | Jul 2003 | B2 |
6752811 | Chu et al. | Jun 2004 | B2 |
6755779 | Vanden Hoek et al. | Jun 2004 | B2 |
6780193 | Leslie et al. | Aug 2004 | B2 |
6805699 | Shimm | Oct 2004 | B2 |
6840948 | Albrecht et al. | Jan 2005 | B2 |
6872211 | White et al. | Mar 2005 | B2 |
6887255 | Shimm | May 2005 | B2 |
6958069 | Shipp et al. | Oct 2005 | B2 |
6971988 | Orban, III | Dec 2005 | B2 |
6994696 | Suga | Feb 2006 | B2 |
7014648 | Ambrisco et al. | Mar 2006 | B2 |
7018373 | Suzuki | Mar 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7052501 | McGuckin, Jr. | May 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7115125 | Nakao et al. | Oct 2006 | B2 |
7270663 | Nakao | Sep 2007 | B2 |
7273488 | Nakamura et al. | Sep 2007 | B2 |
7410491 | Hopkins et al. | Aug 2008 | B2 |
7547310 | Whitfield | Jun 2009 | B2 |
7618437 | Nakao | Nov 2009 | B2 |
7670346 | Whitfield | Mar 2010 | B2 |
7722626 | Middleman et al. | May 2010 | B2 |
7762959 | Bilsbury | Jul 2010 | B2 |
7785251 | Wilk | Aug 2010 | B2 |
7819121 | Amer | Oct 2010 | B2 |
7837612 | Gill et al. | Nov 2010 | B2 |
RE42050 | Richard | Jan 2011 | E |
7892242 | Goldstein | Feb 2011 | B2 |
8016771 | Orban, III | Sep 2011 | B2 |
8057485 | Hollis et al. | Nov 2011 | B2 |
8075567 | Taylor et al. | Dec 2011 | B2 |
8097001 | Nakao | Jan 2012 | B2 |
8152820 | Mohamed et al. | Apr 2012 | B2 |
8172772 | Zwolinski et al. | May 2012 | B2 |
8206401 | Nakao | Jun 2012 | B2 |
8337510 | Rieber et al. | Dec 2012 | B2 |
8343031 | Gertner | Jan 2013 | B2 |
8348827 | Zwolinski | Jan 2013 | B2 |
8388630 | Teague et al. | Mar 2013 | B2 |
8409112 | Wynne et al. | Apr 2013 | B2 |
8409216 | Parihar et al. | Apr 2013 | B2 |
8409217 | Parihar et al. | Apr 2013 | B2 |
8414596 | Parihar et al. | Apr 2013 | B2 |
8419749 | Shelton, IV et al. | Apr 2013 | B2 |
8425533 | Parihar et al. | Apr 2013 | B2 |
8430826 | Uznanski et al. | Apr 2013 | B2 |
8435237 | Bahney | May 2013 | B2 |
8444655 | Parihar et al. | May 2013 | B2 |
8579914 | Menn et al. | Nov 2013 | B2 |
8585712 | O'Prey et al. | Nov 2013 | B2 |
8591521 | Cherry et al. | Nov 2013 | B2 |
8652147 | Hart | Feb 2014 | B2 |
8696683 | LeVert | Apr 2014 | B2 |
8721658 | Kahle et al. | May 2014 | B2 |
8734464 | Grover et al. | May 2014 | B2 |
8777961 | Cabrera et al. | Jul 2014 | B2 |
8795291 | Davis et al. | Aug 2014 | B2 |
8821377 | Collins | Sep 2014 | B2 |
8827968 | Taylor et al. | Sep 2014 | B2 |
8870894 | Taylor et al. | Oct 2014 | B2 |
8906035 | Zwolinski et al. | Dec 2014 | B2 |
8906036 | Farascioni | Dec 2014 | B2 |
8956370 | Taylor et al. | Feb 2015 | B2 |
8968329 | Cabrera | Mar 2015 | B2 |
20020068943 | Chu et al. | Jun 2002 | A1 |
20020082516 | Stefanchik | Jun 2002 | A1 |
20030073970 | Suga | Apr 2003 | A1 |
20030100909 | Suzuki | May 2003 | A1 |
20030100919 | Hopkins et al. | May 2003 | A1 |
20030199915 | Shimm | Oct 2003 | A1 |
20030216773 | Shimm | Nov 2003 | A1 |
20040097960 | Terachi et al. | May 2004 | A1 |
20040138587 | Lyons | Jul 2004 | A1 |
20050085808 | Nakao | Apr 2005 | A1 |
20050165411 | Orban | Jul 2005 | A1 |
20050267492 | Poncet et al. | Dec 2005 | A1 |
20060030750 | Amer | Feb 2006 | A1 |
20060052799 | Middleman et al. | Mar 2006 | A1 |
20060058776 | Bilsbury | Mar 2006 | A1 |
20060169287 | Harrison et al. | Aug 2006 | A1 |
20060200169 | Sniffin | Sep 2006 | A1 |
20060200170 | Aranyi | Sep 2006 | A1 |
20060229639 | Whitfield | Oct 2006 | A1 |
20060229640 | Whitfield | Oct 2006 | A1 |
20070016224 | Nakao | Jan 2007 | A1 |
20070016225 | Nakao | Jan 2007 | A1 |
20070073251 | Zhou et al. | Mar 2007 | A1 |
20070088370 | Kahle et al. | Apr 2007 | A1 |
20070135780 | Pagedas | Jun 2007 | A1 |
20070135781 | Hart | Jun 2007 | A1 |
20070186935 | Wang et al. | Aug 2007 | A1 |
20080188766 | Gertner | Aug 2008 | A1 |
20080221587 | Schwartz | Sep 2008 | A1 |
20080221588 | Hollis et al. | Sep 2008 | A1 |
20080234696 | Taylor et al. | Sep 2008 | A1 |
20080255597 | Pravong et al. | Oct 2008 | A1 |
20080300621 | Hopkins et al. | Dec 2008 | A1 |
20080312496 | Zwolinski | Dec 2008 | A1 |
20090043315 | Moon | Feb 2009 | A1 |
20090082779 | Nakao | Mar 2009 | A1 |
20090182292 | Egle et al. | Jul 2009 | A1 |
20090192510 | Bahney | Jul 2009 | A1 |
20090240238 | Grodrian et al. | Sep 2009 | A1 |
20100000471 | Hibbard | Jan 2010 | A1 |
20100152746 | Ceniccola et al. | Jun 2010 | A1 |
20110087235 | Taylor et al. | Apr 2011 | A1 |
20110184311 | Parihar et al. | Jul 2011 | A1 |
20110184434 | Parihar et al. | Jul 2011 | A1 |
20110184435 | Parihar et al. | Jul 2011 | A1 |
20110184436 | Shelton, IV et al. | Jul 2011 | A1 |
20110190779 | Gell et al. | Aug 2011 | A1 |
20110190781 | Collier et al. | Aug 2011 | A1 |
20110190782 | Fleming et al. | Aug 2011 | A1 |
20110264091 | Koppleman et al. | Oct 2011 | A1 |
20110299799 | Towe | Dec 2011 | A1 |
20120046667 | Cherry et al. | Feb 2012 | A1 |
20120083795 | Fleming et al. | Apr 2012 | A1 |
20120083796 | Grover et al. | Apr 2012 | A1 |
20120203241 | Williamson, IV | Aug 2012 | A1 |
20130023895 | Saleh | Jan 2013 | A1 |
20130103042 | Davis | Apr 2013 | A1 |
20130116592 | Whitfield | May 2013 | A1 |
20130184536 | Shibley et al. | Jul 2013 | A1 |
20130190773 | Carlson | Jul 2013 | A1 |
20130218170 | Uznanski et al. | Aug 2013 | A1 |
20130245636 | Jansen | Sep 2013 | A1 |
20130274758 | Young et al. | Oct 2013 | A1 |
20130325025 | Hathaway et al. | Dec 2013 | A1 |
20140046337 | O'Prey et al. | Feb 2014 | A1 |
20140058403 | Menn et al. | Feb 2014 | A1 |
20140180303 | Duncan et al. | Jun 2014 | A1 |
20140222016 | Grover et al. | Aug 2014 | A1 |
20140236110 | Taylor et al. | Aug 2014 | A1 |
20140243865 | Swayze et al. | Aug 2014 | A1 |
20140249541 | Kahle et al. | Sep 2014 | A1 |
20140276913 | Tah et al. | Sep 2014 | A1 |
20140303640 | Davis et al. | Oct 2014 | A1 |
20140309656 | Gal et al. | Oct 2014 | A1 |
20140330285 | Rosenblatt et al. | Nov 2014 | A1 |
20140350567 | Schmitz et al. | Nov 2014 | A1 |
20140371759 | Hartoumbekis | Dec 2014 | A1 |
20140371760 | Menn | Dec 2014 | A1 |
20150018837 | Sartor et al. | Jan 2015 | A1 |
20150045808 | Farascioni | Feb 2015 | A1 |
20170049427 | Do et al. | Feb 2017 | A1 |
20170215904 | Wassef et al. | Aug 2017 | A1 |
20170224321 | Kessler et al. | Aug 2017 | A1 |
20180049771 | Rhemrev-Pieters | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
3542667 | Jun 1986 | DE |
8435489 | Aug 1986 | DE |
4204210 | Aug 1992 | DE |
19624826 | Jan 1998 | DE |
0947166 | Oct 1999 | EP |
1685802 | Aug 2006 | EP |
1707126 | Oct 2006 | EP |
2005900 | Dec 2008 | EP |
2184014 | May 2010 | EP |
2436313 | Apr 2012 | EP |
2474270 | Jul 2012 | EP |
1272412 | Sep 1961 | FR |
246009 | Jan 1926 | GB |
9315675 | Aug 1993 | WO |
9509666 | Apr 1995 | WO |
0135831 | May 2001 | WO |
2004002334 | Jan 2004 | WO |
2004112571 | Dec 2004 | WO |
2005112783 | Dec 2005 | WO |
2006110733 | Oct 2006 | WO |
2007048078 | Apr 2007 | WO |
2007048085 | Apr 2007 | WO |
2008114234 | Sep 2008 | WO |
2009149146 | Dec 2009 | WO |
2011090862 | Jul 2011 | WO |
Entry |
---|
Matthew Bin Han Ong, “FDA Allows Containment Bags for Power Morcellators; Paper Reports Leakage”, Apr. 18, 2016, The Cancer Letter, pp. 1-9. (Year: 2016). |
Hanh Tran, “Safety and Efficacy of Single Incision Laparoscopic Surgery for Total Extraperitoneal Inguinal Hernia Repair”, 2011, JSLS, 15:47-52. (Year: 2011). |
European Search Report EP 12191639.9 dated Feb. 20, 2013. |
European Search Report EP 11250837.9 dated Sep. 10, 2013. |
European Search Report EP 11250838.7 dated Sep. 10, 2013. |
European Search Report EP 13170118.7 dated Dec. 5, 2013. |
European Search Report EP 12165852 dated Jun. 20, 2012. |
http://www.biomaterials.org/week/bio17.cfm, definition and examples of hydrogels. |
European Search Report EP 12150271 dated Jan. 14, 2013. |
European Search Report EP 12193450 dated Feb. 27, 2013. |
European Search Report EP 12189517.1 dated Mar. 6, 2013. |
European Search Report EP 12158873 dated Jul. 19, 2012. |
European Search Report EP 11250836 dated Sep. 12, 2013. |
International Search Report issued in corresponding Appl. No. PCT/US2018/058609 dated Feb. 22, 2019. |
Number | Date | Country | |
---|---|---|---|
20190133677 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62581171 | Nov 2017 | US |