Specimen retrieval device

Information

  • Patent Grant
  • 8172772
  • Patent Number
    8,172,772
  • Date Filed
    Thursday, December 11, 2008
    16 years ago
  • Date Issued
    Tuesday, May 8, 2012
    12 years ago
Abstract
A surgical instrument can be used to capture and retrieve tissue, or other specimens, from within the body of a patient through a single trocar port. The surgical instrument can include a grasper, wherein the grasper can be configured to capture a specimen, and a specimen retrieval bag, wherein the specimen retrieval bag can be configured to at least partially surround, or encapsulate, the captured specimen when the specimen retrieval bag is in a deployed position. In certain embodiments, the retrieval bag can be inverted as it is moved between undeployed and deployed positions. In various embodiments, the surgical instrument can further include a snare operably engaged with the specimen retrieval bag, wherein the snare can be configured to at least partially close the bag. A vacuum can be placed in communication with the bag to reduce the size of the bag before it is removed from the surgical site.
Description
BACKGROUND

i. Field of the Invention


The present invention generally relates to surgical devices and, more particularly, to surgical devices for capturing and retrieving tissue from within a patient's body.


ii. Description of the Related Art


Traditional, or open, surgical techniques may require a surgeon to make large incisions in a patient's body in order to access a tissue treatment region, or surgical site. In some instances, these large incisions may prolong the recovery time of and/or increase the scarring to the patient. As a result, minimally invasive surgical techniques are becoming more preferred among surgeons and patients owing to the reduced size of the incisions required for various procedures. In some circumstances, minimally invasive surgical techniques may reduce the possibility that the patient will suffer undesirable post-surgical conditions, such as scarring and/or infections, for example. Further, such minimally invasive techniques can allow the patient to recover more rapidly as compared to traditional surgical procedures.


Endoscopy is one minimally invasive surgical technique which allows a surgeon to view and evaluate a surgical site by inserting at least one cannula, or trocar, into the patient's body through a natural opening in the body and/or through a relatively small incision. In use, an endoscope can be inserted into, or through, the trocar so that the surgeon can observe the surgical site. In various embodiments, the endoscope may include a flexible or rigid shaft, a camera and/or other suitable optical device, and a handle portion. In at least one embodiment, the optical device can be located on a first, or distal, end of the shaft and the handle portion can be located on a second, or proximal, end of the shaft. In various embodiments, the endoscope may also be configured to assist a surgeon in taking biopsies, retrieving foreign objects, and introducing surgical instruments into the surgical site.


Laparoscopic surgery is another minimally invasive surgical technique where procedures in the abdominal or pelvic cavities can be performed through small incisions in the patient's body. A key element of laparoscopic surgery is the use of a laparoscope which typically includes a telescopic lens system that can be connected to a video camera. In various embodiments, a laparoscope can further include a fiber optic system connected to a halogen or xenon light source, for example, in order to illuminate the surgical site. In various laparoscopic, and/or endoscopic, surgical procedures, a body cavity of a patient, such as the abdominal cavity, for example, can be insufflated with carbon dioxide gas, for example, in order to create a temporary working space for the surgeon. In such procedures, a cavity wall can be elevated above the organs within the cavity by the carbon dioxide gas. Carbon dioxide gas is usually used for insufflation because it can be easily absorbed and removed by the body.


In at least one minimally invasive surgical procedure, an endoscope and/or laparoscope can be inserted through a natural opening of a patient to allow a surgeon to access a surgical site. Such procedures are generally referred to as Nature Orifice Transluminal Endoscopic Surgery or (NOTES)™ and can be utilized to treat tissue while reducing the number of incisions, and external scars, to a patient's body. In various NOTES procedures, for example, an endoscope can include at least one working channel defined therein which can be used to allow the surgeon to insert a surgical instrument therethrough in order to access the surgical site.


SUMMARY

According to at least one aspect, surgical instruments including a tissue holder and a specimen retrieval receptacle can be utilized to facilitate the capture and retrieval of a tissue specimen from a surgical site. In various embodiments, as described herein, such a surgical instrument can allow a surgeon to easily grasp and retrieve a specimen from a surgical site using a single trocar port, for example. In at least one embodiment, the surgical instrument can include a grasper, wherein the grasper can include one or more jaws which can be inserted through the trocar port. Once inserted therethrough, the jaws can be opened and closed, as needed, in order to capture tissue therebetween. A specimen retrieval bag can be slid relative to the grasper and positioned such that the specimen is at least partially surrounded by the specimen retrieval bag. In various embodiments, the surgical instrument can further include an actuator operably engaged with the specimen retrieval bag, wherein the actuator can be configured to move the specimen retrieval bag between undeployed and deployed positions. In certain embodiments, the actuator can comprise a snare loop which can be engaged with at least a portion of the perimeter of the specimen retrieval bag such that the snare loop can at least partially close the bag. Once the specimen retrieval bag has been suitably positioned and/or closed, the specimen retrieval bag can be removed from the surgical site though the trocar lumen. In at least one embodiment, the specimen retrieval bag and the grasper can be pulled through the trocar at the same time while, in other embodiments, the specimen retrieval bag and the grasper can be pulled through the trocar sequentially. In any event, in various embodiments, a specimen can be grasped, manipulated, and removed from a surgical site through a single trocar utilizing a single surgical instrument.





BRIEF DESCRIPTION OF THE FIGURES

The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:



FIG. 1 is a diagram of a surgical instrument including an outer sheath, a specimen retrieval bag, and a grasper in accordance with one non-limiting embodiment of the present invention;



FIG. 2 is a diagram of the surgical instrument of FIG. 1 inserted through a trocar extending through a tissue wall in accordance with one non-limiting embodiment of the present invention;



FIG. 3 is a diagram of the surgical instrument of FIG. 1 after the grasper, outer sheath, and specimen retrieval bag have been inserted into a surgical site;



FIG. 4 is a diagram of the surgical instrument of FIG. 1 as the outer sheath is being retracted into the trocar;



FIG. 5 is a diagram of the surgical instrument of FIG. 1 after the outer sheath has been retracted relative to the specimen retrieval bag and the grasper;



FIG. 6 is a diagram of the surgical instrument of FIG. 1 illustrating the specimen retrieval bag being extended distally by an actuator;



FIG. 7 is a diagram of the surgical instrument of FIG. 1 illustrating the specimen retrieval bag in a partially extended position;



FIG. 8 is a diagram of the surgical instrument of FIG. 1 illustrating the specimen retrieval bag at least partially surrounding a tissue specimen;



FIG. 9 is a diagram of the surgical instrument of FIG. 1 as the specimen retrieval bag is being collapsed, or at least partially closed, to capture the specimen;



FIG. 10 is a diagram of the surgical instrument of FIG. 1 as the specimen retrieval bag is being retracted proximally into the trocar;



FIG. 11 is a diagram of the surgical instrument of FIG. 1 illustrating the specimen retrieval bag in a rotated position in accordance with at least one non-limiting embodiment of the present invention;



FIG. 12 is a diagram of the surgical instrument of FIG. 1 subsequent to the vacuum extraction of fluid from the specimen retrieval bag of FIG. 10 in accordance with one non-limiting embodiment of the present invention; and



FIG. 13 is a diagram of the surgical instrument of FIG. 1 subsequent to the vacuum extraction of fluid from the rotated specimen retrieval bag in accordance with one non-limiting embodiment of the present invention.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate preferred embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION

During the course of various surgical procedures, especially in intraluminal and transluminal procedures, there often exists a need to simultaneously introduce several surgical instruments into a surgical cavity, for example. Various surgical instruments include, for example, a grasper configured to gain control of a specimen and a specimen retrieval pouch configured to isolate and remove the specimen from the surgical cavity. According to various surgical procedures, a first trocar is inserted into the surgical cavity to introduce the grasper into the surgical cavity and, in addition, a second trocar is inserted into the surgical cavity to introduce the retrieval pouch into the surgical cavity.


Among the greatest difficulties in performing surgical procedures, especially in intraluminal and transluminal procedures, is limiting the number of peritoneal insults required to complete the surgical procedure. For example, intraluminal and transluminal procedures to retrieve tissue, or other specimens, from a peritoneal surgical site often incorporate the use of a grasper and a specimen retrieval bag, wherein each device is introduced through a separate trocar, and wherein each trocar can create an insult to a peritoneal cavity wall, for example. Stated another way, each additional trocar can introduce an additional peritoneal insult, thereby significantly increasing the time and complexity of the surgical procedure and, in addition, the risks for port site infection, herniation, and recovery time for the patient, for example.


Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.


In various embodiments, a surgical instrument, and/or surgical instrument kit, can include components which can be configured to grasp and retrieve a specimen from within the body of a patient such that a surgeon can easily access, and retrieve a specimen within, a surgical site using a single surgical instrument. In at least one embodiment, referring to FIG. 1, a surgical instrument 10 can include several components, such as an outer sheath 20, a specimen retrieval bag 30, and a grasper 40, for example, which can be cooperatively utilized in order to easily grasp and retrieve a specimen from a surgical cavity through a single peritoneal insult. Other surgical instruments are disclosed in co-pending, commonly-owned U.S. patent application Ser. No. 12/133,109, entitled ENDOSCOPIC DROP OFF BAG, which was filed on Jun. 4, 2008, the entire disclosure of which is hereby incorporated by reference herein.


In various embodiments, as outlined above, the surgical instrument 10 can include a grasper 40, and/or any other suitable grasping device, for example. The grasper 40 can be cylindrical, at least substantially cylindrical, and/or any other suitable shape and can define a grasper lumen (not shown) extending along the length thereof. According to at least one embodiment, the grasper 40 can be an approximately 5 mm diameter grasper. In certain embodiments, the grasper 40 can include one or more grasper jaws, such as grasper jaws 42 and 42′, for example. The grasper jaws 42 and 42′ can be configured to be transitioned from an expanded, or open, position, where the interior distal tips of jaws 42 and 42′ are apart from one another, to a collapsed, or closed, position, where the interior distal tips of jaws 42 and 42′ are in contact with one another, or at least adjacent to one another, in order to capture a specimen therebetween. In at least one embodiment, the grasper jaws 42 and 42′ can be configured to be slidably received within, and extendable from, the grasper lumen and, in various embodiments, grasper 40 can include suitable controls for manipulating grasper jaws 42 and 42′. In certain embodiments, a grasper can include a corkscrew, a hook, a vacuum source, a T-tag deployer and/or any other suitable device capable of capturing a specimen.


In various embodiments, as also outlined above, the surgical instrument 10 can include specimen retrieval bag 30 and/or any other suitable specimen receptacle, for example. In at least one embodiment, the distal end of the specimen retrieval bag 30 can be configured to be attached to the distal end of the grasper 40 by an attachment mechanism 36. In various embodiments, attachment mechanism 36 can comprise a closable device which can apply a compressive force to bag 30 and grasper 40, such as a zip tie, for example. In certain embodiments, retrieval bag 30 can be affixed to grasper 40 by an adhesive and/or a fastener, for example. In various embodiments, retrieval bag 30 can include a first end 31 affixed to grasper 40 and a second end 33 which can be moved relative to the first end 31. As will be described in greater detail below, the second end 33 of retrieval bag 30 can be repositioned such that retrieval bag 30 can at least partially cover or encapsulate the targeted specimen.


In various embodiments, further to the above, surgical instrument 10 can include an actuator operably engaged with retrieval bag 30, wherein the actuator can be configured to move second end 33 relative to first end 31. In at least one embodiment, the actuator can be affixed to second end 33 such that the actuator can be utilized to push second end 33 distally until second end 33 at least partially covers the targeted specimen. In certain embodiments, referring primarily to FIG. 1, the actuator can comprise a snare 32 having a snare loop 34 at least partially engaged with the perimeter of retrieval bag 30. In at least one embodiment, snare 32 can extend through trocar 12 alongside grasper 40 such that a surgeon can manipulate snare 32 and, accordingly, manipulate retrieval bag 30. In use, as described in greater detail below, snare 32 can be manipulated to extend the specimen retrieval bag 30 distally toward the grasper jaws 42 and 42′, for example, and/or proximally away from the grasper jaws 42 and 42′, for example. In certain embodiments, the snare 32 can be configured to pass through a coupler 44 associated with and/or extending from the grasper 40 such that snare 32 can be slidably guided by coupler 44. In at least one such embodiment, the coupler 44 can maintain the snare 32 in parallel alignment, or at least substantially parallel alignment, with the grasper 40.


In various embodiments, referring to FIGS. 1 and 2, the surgical instrument 10, and/or a kit including surgical instrument 10, for example, can further include a trocar, such as trocar 12, for example, which can be utilized to access the peritoneal cavity of a patient. The trocar 12 can be cylindrical, at least substantially cylindrical, and/or any other suitable shape and can define a trocar lumen 14 extending along at least a portion thereof. According to at least one embodiment, the trocar can be an approximately 10-12 mm diameter trocar. In certain embodiments, as described in greater detail below, the surgical instrument 10 can be configured to be slidably received within the trocar lumen 14 such that the grasper 40, specimen retrieval bag 30, and/or outer sheath 20 can be inserted into the surgical cavity.


In various embodiments, further to the above and referring to FIG. 2, trocar 12 can be inserted into a patient's body and advanced through a tissue wall “T”. In at least one such embodiment, the distal tip 16 of trocar 12 can be advanced through the tissue wall T from the proximal tissue wall surface “TP” and beyond the distal tissue wall surface “TD”. In certain embodiments, the distal tip 16 of trocar 12 can be configured to incise tissue wall T as it is inserted into a surgical cavity. In various embodiments, as outlined above, surgical instrument 10 can further include a sheath 20 which can be configured to cover at least a portion of specimen retrieval bag 30 and/or grasper 40, for example, as they are inserted through trocar 12. The sheath 20 can be cylindrical, at least substantially cylindrical, and/or any other suitable shape and can define a sheath lumen extending along the length thereof. In certain embodiments, outer sheath 20 can be formed of a rigid, or at least a substantially rigid, material and can be configured to maintain the position and integrity of the specimen retrieval bag 30, for example, as surgical instrument 10 is inserted through the trocar 12 and into the surgical cavity.


In various embodiments, referring to FIG. 3, the outer sheath 20, specimen retrieval bag 30, and/or grasper 40 can be advanced through the trocar lumen 14 of trocar 12 and, accordingly, tissue wall T, until the proximal end 21 of the outer sheath 20 is positioned substantially beyond the distal end 16 of the trocar 12. In at least one embodiment, the surgical instrument 10 can be moved into the surgical cavity and the grasper jaws 42 and 42′ can be brought into contact with the specimen “S” such that the specimen can be retrieved from the surgical cavity as described in greater detail below. Prior to, during, and/or subsequent to the capture of the specimen S, referring to FIG. 4, outer sheath 20 can be retracted proximally into the trocar lumen 14 of trocar 12 in order to expose the specimen retrieval bag 30. In at least one embodiment, outer sheath 20 can be retracted by a pull string, or ribbon, 22, and/or any other suitable device, attached to or otherwise operably engaged with outer sheath 20. As a result of the above, referring to FIG. 5, at least a portion of the specimen retrieval bag 30 and/or snare 32 can be exposed. In certain embodiments, snare loop 34 of snare 32 can be stored within sheath 20 such that, when sheath 20 is slid proximally, snare loop 34 can resiliently expand in order to open, or at least substantially open, second end 33 of retrieval bag 30. In some embodiments, snare 32 can be utilized to open and/or close snare loop 34 by expanding or contracting its diameter and/or circumference.


In various embodiments, referring to FIG. 6, the second end 33 of specimen retrieval bag 30 can be pushed distally toward the distal end of the surgical instrument 10 and, accordingly, toward the specimen “S” captured between grasper jaws 42 and 42′. According to various embodiments, the snare loop 34 associated with the specimen retrieval bag 30 can be maintained in a plane oriented substantially perpendicular to the line of longitudinal orientation of the grasper 40. In various embodiments, referring to FIG. 8, the specimen retrieval bag 30 can be further extended distally over the grasper jaws 42 and 42′ of the grasper 40, beyond the distal end of the surgical instrument 10, and beyond the distal end of the specimen S to capture the specimen within the specimen retrieval bag 30. In various embodiments, referring to FIG. 7, second end 33 can be moved distally by snare 32 until specimen S is entirely covered by retrieval bag 30 as illustrated in FIG. 8. As described above, first end 31 of retrieval bag 30 can be affixed to grasper 40 such that, when second end 33 is pushed distally from its undeployed position, or configuration, into its deployed position, or configuration, retrieval bag 30 can be turned-inside-out, or inverted. In various circumstances, surgical instrument 10 and specimen S can then be removed from the surgical cavity through trocar 12. In other circumstances, trocar 12 can be withdrawn from the surgical site and the tissue wall T such that instrument 10 and specimen S can be withdrawn from the surgical cavity through the incision, or defect, previously made by or for trocar 12.


In certain circumstances, it may be desirable to enclose, or at least substantially enclose, specimen S before it is removed from the surgical cavity. In such circumstances, the open, second end 33 of bag 30 can be closed before bag 30 and specimen S are removed from the surgical cavity. In certain embodiments, second end 33 can be closed by snare 32, for example. More particularly, snare loop 34 can be engaged with the perimeter of bag 30, or at least a portion of the perimeter of bag 30, such that, when the diameter, and/or circumference, of snare loop 34 is decreased, the perimeter of bag 30 can be drawn together, as illustrated in FIG. 9, thereby at least partially closing second end 33. In certain embodiments, second end 33 can be cinched such that it is completely closed. In embodiments where second end 33 is completely closed, bag 30 can comprise a fluid-tight arrangement where little, if any, fluids can leak out of the bag 30. In certain embodiments, bag 30 can be comprised of polyurethane and/or any other suitable material which can prevent, or at least limit, fluid from escaping from bag 30. In some embodiments, snare 32 can include a knotting or cinching element which can be configured to decrease the length of snare loop 34 when a pulling force is applied to snare 32, for example. Stated another way, a length of snare loop 34 can be pulled through the knotting or cinching element in order to reduce the diameter of the snare loop 34 and collapse the specimen retrieval bag 30 around the specimen S. Correspondingly, in various embodiments, the diameter and/or circumference of snare loop 34 can be increased by pushing a length of snare loop 34 through the cinching or knotting element such that the bag 30 can be selectively opened and/or closed.


As outlined above, a portion of retrieval bag 30 can be affixed to grasper 40, for example. In various alternative embodiments, a specimen retrieval bag may not be affixed to a grasper. In at least one embodiment, although not illustrated, the entire specimen retrieval bag can be slidable relative to the grasper such that the bag can be slid between a proximal position and a distal position. In certain circumstances, the grasper can be utilized to capture and control a specimen and the retrieval bag can be slid along the grasper until it at least partially covers the specimen. Accordingly, a surgical instrument can advantageously guide the retrieval bag as it is moved along the grasper such that the bag can be delivered directly to the specimen. Stated another way, the grasper, and/or any other suitable portion of a surgical instrument, can define a path for the specimen retrieval bag. As a result, such surgical instruments can provide an accurate and repeatable means by which to deliver a specimen retrieval bag and/or other suitable cover to a surgical site. In various embodiments, the proximal end of the bag can be at least partially closed before it is slid into place. In certain embodiments, the proximal end and/or the distal end of the bag can be at least partially closed after the bag has been suitably positioned relative to the specimen. In at least one embodiment, a surgical instrument can include a first actuator for positioning and/or closing a first end of a retrieval bag and a second actuator for positioning and/or closing a second end of the retrieval bag, wherein the first and second actuators can be selectively actuated in order to collapse, cover, and/or otherwise envelop the targeted specimen. In certain embodiments, at least a portion of a specimen retrieval bag can be detachably affixed to a surgical instrument such that the bag can be slid relative to a grasper, for example, after the bag has been detached from therefrom. In at least one embodiment, the retrieval bag can include at least one perforation, for example, which can be configured to allow the bag to release from the surgical instrument.


In various embodiments, as outlined above, the surgical instrument 10, including the grasper 40 and specimen retrieval bag 30, for example, can be retracted proximally into the trocar lumen 14 of the trocar 12, for example, in order to retrieve the specimen S from the surgical cavity. In certain embodiments, referring to FIG. 11, the bag actuator, or snare 32, can be utilized to rotate the specimen retrieval bag 30 within the surgical site. According to at least one such embodiment, snare 32 can be utilized to pull on second end 33 and move it proximally toward first end 31 thereby rotating retrieval bag 30. In certain embodiments, both ends 31 and 33 can be pulled into trocar 12 at the same time, or at least nearly the same time, in order to reduce the loss of tissue or fluid from the retrieval bag 30 during the retrieval procedure. In certain embodiments, although not depicted, the grasper 40 can be rotated, and/or otherwise suitably moved, relative to the other portions of the surgical instrument 10 in order to compress the specimen and/or reduce the volume of the specimen retrieval bag 30 and facilitate the removal of the captured specimen S through trocar 12. In certain embodiments, retrieval bag 30 can be detached from grasper 40 after the specimen has been at least partially captured within bag 30, for example, such that trocar 12 and/or the rest of surgical instrument 10 can be removed from the surgical site. In at least one such embodiment, the retrieval bag 30 can remain behind in the surgical site until snare 32, and/or any other suitable pull string, for example, is used to pull the retrieval bag 30 out of the surgical site.


In various embodiments, referring to FIG. 12, a vacuum, or any suitable source of negative pressure (not shown), can be placed in fluid communication with retrieval bag 30 in order to draw air and/or other fluids out of retrieval bag 30. Removing air or other fluids from the specimen retrieval bag 30 can reduce the overall volume and/or size of the specimen retrieval bag 30 and facilitate the removal of the captured specimen “S” through the trocar lumen 14, for example. In certain embodiments, the vacuum can be placed in communication with bag 30 via at least one port, or aperture, in grasper 40, for example. In certain embodiments, the port or aperture can comprise the grasper lumen described above, for example. In use, the vacuum can be communicated to the retrieval bag 30 prior to rotating bag 30 as illustrated in FIG. 12 and/or after bag 30 has been rotated as illustrated in FIG. 13. In certain embodiments, a surgical instrument can further include a conduit which can be extended along and/or through grasper 40, for example, to supply bag 30 with the vacuum.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, the invention described herein will be processed before surgery. First, a new or used instrument can be obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument can be placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument can then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.

Claims
  • 1. A surgical instrument for use in removing a specimen from within the body of a patient, the surgical instrument comprising: a grasper comprising: a shaft;a distal end;a first jaw;a second jaw, wherein said grasper is configured to capture a specimen between said first jaw and said second jaw;a specimen retrieval bag movable between an undeployed position and a deployed position, wherein said specimen retrieval bag comprises a first opening and a second opening, wherein said grasper extends through said first opening and said second opening, and wherein said specimen retrieval bag comprises a covering surface and an outer surface,an attachment member, wherein at least a portion of said specimen retrieval bag surrounding said first opening is fixedly mounted to said shaft of said grasper by said attachment member at a bag attachment location, wherein said first jaw and said second jaw are closer to said distal end than said bag attachment location, wherein said second opening is movable relative to said first opening, wherein said second opening is larger than said first opening when said specimen retrieval bag is in said deployed position, and wherein said specimen retrieval bag is configured to at least partially surround the captured specimen when said specimen retrieval bag is in said deployed position; andan actuator operably engaged with said specimen retrieval bag at an actuator attachment location, wherein said actuator extends along said shaft of said grasper, wherein said specimen retrieval bag is inverted when said specimen retrieval bag is moved between said undeployed position and said deployed position, wherein said specimen retrieval bag is turned-inside-out when it is inverted, wherein said outer surface of said specimen retrieval bag is positioned adjacent to said shaft when said specimen retrieval bag is in said undeployed position, wherein said covering surface faces away from said shaft when said specimen retrieval bag is in said undeployed position, wherein said covering surface of said specimen retrieval bag is positioned adjacent to said shaft when said specimen retrieval bag is in said deployed position, wherein said outer surface faces away from said shaft when said specimen retrieval bag is in said deployed position, wherein said bag attachment location is closer to said distal end than said actuator attachment location when said specimen retrieval bag is in said undeployed position, and wherein said actuator attachment location is closer to said distal end than said bag attachment location when said specimen retrieval bag is in said deployed position.
  • 2. The surgical instrument of claim 1, wherein said actuator comprises a snare loop configured to at least partially close said specimen retrieval bag.
  • 3. The surgical instrument of claim 1, wherein said specimen retrieval bag defines a perimeter, and wherein said actuator comprises a snare engaged with at least a portion of said perimeter.
  • 4. The surgical instrument of claim 1, further comprising an outer sheath, wherein said outer sheath is configured to at least partially surround said specimen retrieval bag when said specimen retrieval bag is in said undeployed position.
  • 5. The surgical instrument of claim 4, wherein said outer sheath is slidable between a distal position in which said outer sheath at least partially surrounds said specimen retrieval bag and a proximal position in which said specimen retrieval bag can be moved between said undeployed position and said deployed position.
  • 6. The surgical instrument of claim 1, further comprising a trocar including a trocar lumen, wherein said grasper and said specimen retrieval bag are slidably received within said trocar lumen.
  • 7. The surgical instrument of claim 1, wherein said grasper further includes a grasper lumen, and wherein said grasper lumen is configured to place said specimen retrieval bag in fluid communication with a vacuum source.
  • 8. The surgical instrument of claim 1, wherein said grasper is at least partially positioned within said specimen retrieval bag when said specimen retrieval bag is in said undeployed position.
  • 9. The surgical instrument of claim 1, wherein said grasper is at least partially positioned within said specimen retrieval bag when said specimen retrieval bag is in said deployed position.
  • 10. The surgical instrument of claim 1, wherein said shaft comprises: a shaft outer surface; anda distal guide extending from said shaft outer surface, wherein said actuator extends through said distal guide.
  • 11. A surgical instrument for use in removing a specimen from within the body of a patient, the surgical instrument comprising: a grasper comprising a shaft and at least one movable jaw, wherein said at least one movable jaw is configured to capture a specimen; anda specimen retrieval bag movable between an undeployed position and a deployed position, wherein said specimen retrieval bag comprises a first opening and a second opening, wherein said grasper extends through said first opening and said second opening, wherein said specimen retrieval bag comprises a covering surface and an outer surface, and wherein said specimen retrieval bag is configured to at least partially surround the captured specimen when said specimen retrieval bag is in said deployed position; andan attachment member, wherein said specimen retrieval bag includes a first end and a second end, wherein said first end is affixed to said grasper by said attachment member at a bag attachment location, wherein said second end is positioned proximal with respect to said first end when said specimen retrieval bag is in said undeployed position, and wherein said second end is positioned distal with respect to said first end when said specimen retrieval bag is in said deployed position; andan actuator operably engaged with said specimen retrieval bag at an actuator attachment location, wherein said actuator extends along said grasper, wherein said specimen retrieval bag is inverted when said specimen retrieval bag is moved between said undeployed position and said deployed position, wherein said specimen retrieval bag is turned-inside-out when it is inverted, wherein said outer surface of said specimen retrieval bag is positioned adjacent to said shaft when said specimen retrieval bag is in said undeployed position, wherein said covering surface faces away from said shaft when said specimen retrieval bag is in said undeployed position, wherein said covering surface of said specimen retrieval bag is positioned adjacent to said shaft when said specimen retrieval bag is in said deployed position, wherein said outer surface faces away from said shaft when said specimen retrieval bag is in said deployed position, wherein said bag attachment location is closer to said at least one movable jaw than said actuator attachment location when said specimen retrieval bag is in said undeployed position, and wherein said actuator attachment location is closer to said at least one movable jaw than said bag attachment location when said specimen retrieval bag is in said deployed position.
  • 12. The surgical instrument of claim 11, wherein said grasper comprises: a grasper outer surface; anda distal guide extending from said grasper outer surface, wherein said actuator extends through said distal guide.
  • 13. A surgical kit for use in removing a specimen within the body of a patient, the kit comprising: a grasper comprising a shaft, wherein said grasper is configured to capture a specimen;a specimen retrieval bag slidable relative to said grasper, wherein said specimen retrieval bag comprises a covering surface and an outer surface, wherein said specimen retrieval bag is movable between an undeployed position and a deployed position, wherein said specimen retrieval bag comprises a first opening and a second opening, wherein said grasper is configured to extend through said first opening and said second opening, wherein at least a portion of said specimen retrieval bag surrounding said first opening is affixed to said shaft of said grasper at a bag attachment location, wherein said second opening is movable relative to said first opening, and wherein said specimen retrieval bag is configured to at least partially surround the captured specimen when said specimen retrieval bag is in said deployed position; andan actuator operably engaged with said specimen retrieval bag at an actuator attachment portion, wherein said actuator extends along said shaft of said grasper, and wherein said actuator is movable between: a first position in which said actuator attachment portion is positioned proximally with respect to said bag attachment location and said specimen retrieval bag is in said undeployed position; anda second position in which said actuator attachment portion is positioned distally with respect to said bag attachment location and said specimen retrieval bag is in said deployed position, wherein said specimen retrieval bag is inverted when said specimen retrieval bag is moved between said undeployed position and said deployed position, wherein said specimen retrieval bag is turned-inside-out when it is inverted, wherein said outer surface of said specimen retrieval bag is positioned adjacent to said shaft when said specimen retrieval bag is in said undeployed position, wherein said covering surface faces away from said shaft when said specimen retrieval bag is in said undeployed position, wherein said covering surface of said specimen retrieval bag is positioned adjacent to said shaft when said specimen retrieval bag is in said deployed position, and wherein said outer surface faces away from said shaft when said specimen retrieval bag is in said deployed position.
  • 14. The surgical kit of claim 13, wherein said grasper further includes a grasper lumen, and wherein said grasper lumen is configured to place said specimen retrieval bag in fluid communication with a vacuum source.
  • 15. The surgical kit of claim 13, wherein said grasper is at least partially positioned within said specimen retrieval bag when said specimen retrieval bag is in said undeployed position.
  • 16. The surgical kit of claim 13, wherein said grasper is at least partially positioned within said specimen retrieval bag when said specimen retrieval bag is in said deployed position.
  • 17. The surgical kit of claim 13, wherein said shaft comprises: a shaft outer surface; anda distal guide extending from said shaft outer surface, wherein said actuator extends through said distal guide.
US Referenced Citations (1074)
Number Name Date Kind
645576 Telsa Mar 1900 A
649621 Tesla May 1900 A
787412 Tesla Apr 1905 A
1127948 Wappler Feb 1915 A
1482653 Lilly Feb 1924 A
1625602 Gould et al. Apr 1927 A
2028635 Wappler Jan 1936 A
2113246 Wappler Apr 1938 A
2155365 Rankin Apr 1939 A
2191858 Moore Feb 1940 A
2196620 Attarian Apr 1940 A
2388137 Graumlich Oct 1945 A
2493108 Casey, Jr. Jan 1950 A
2504152 Riker et al. Apr 1950 A
2938382 De Graaf May 1960 A
2952206 Becksted Sep 1960 A
3069195 Buck Dec 1962 A
3170471 Schnitzer Feb 1965 A
3435824 Gamponia Apr 1969 A
3470876 Barchilon Oct 1969 A
3669487 Roberts et al. Jun 1972 A
3746881 Fitch et al. Jul 1973 A
3799672 Vurek Mar 1974 A
3854473 Matsuo Dec 1974 A
3946740 Bassett Mar 1976 A
3948251 Hosono Apr 1976 A
3994301 Agris Nov 1976 A
4011872 Komiya Mar 1977 A
4012812 Black Mar 1977 A
4164225 Johnson et al. Aug 1979 A
4178920 Cawood, Jr. et al. Dec 1979 A
4207873 Kruy Jun 1980 A
4235238 Ogiu et al. Nov 1980 A
4258716 Sutherland Mar 1981 A
4278077 Mizumoto Jul 1981 A
4285344 Marshall Aug 1981 A
4311143 Komiya Jan 1982 A
4329980 Terada May 1982 A
4396021 Baumgartner Aug 1983 A
4452246 Bader et al. Jun 1984 A
4461281 Carson Jul 1984 A
4491132 Aikins Jan 1985 A
4527331 Lasner et al. Jul 1985 A
4527564 Eguchi et al. Jul 1985 A
4538594 Boebel et al. Sep 1985 A
D281104 Davison Oct 1985 S
4569347 Frisbie Feb 1986 A
4580551 Siegmund et al. Apr 1986 A
4646722 Silverstein et al. Mar 1987 A
4653476 Bonnet Mar 1987 A
4669470 Brandfield Jun 1987 A
4671477 Cullen Jun 1987 A
4685447 Iversen et al. Aug 1987 A
4711240 Goldwasser et al. Dec 1987 A
4712545 Honkanen Dec 1987 A
4721116 Schintgen et al. Jan 1988 A
4733662 DeSatnick et al. Mar 1988 A
D295894 Sharkany et al. May 1988 S
4763669 Jaeger Aug 1988 A
4770188 Chikama Sep 1988 A
4815450 Patel Mar 1989 A
4823794 Pierce Apr 1989 A
4829999 Auth May 1989 A
4873979 Hanna Oct 1989 A
4880015 Nierman Nov 1989 A
4911148 Sosnowski et al. Mar 1990 A
4926860 Stice et al. May 1990 A
4938214 Specht et al. Jul 1990 A
4950273 Briggs Aug 1990 A
4950285 Wilk Aug 1990 A
4977887 Gouda Dec 1990 A
4984581 Stice Jan 1991 A
5007917 Evans Apr 1991 A
5010876 Henley et al. Apr 1991 A
5020514 Heckele Jun 1991 A
5020535 Parker et al. Jun 1991 A
5025778 Silverstein et al. Jun 1991 A
5033169 Bindon Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5050585 Takahashi Sep 1991 A
5052372 Shapiro Oct 1991 A
5065516 Dulebohn Nov 1991 A
5066295 Kozak et al. Nov 1991 A
5123913 Wilk et al. Jun 1992 A
5123914 Cope Jun 1992 A
5133727 Bales et al. Jul 1992 A
5147374 Fernandez Sep 1992 A
5174300 Bales et al. Dec 1992 A
5176126 Chikama Jan 1993 A
5190050 Nitzsche Mar 1993 A
5190555 Wetter et al. Mar 1993 A
5192284 Pleatman Mar 1993 A
5201752 Brown et al. Apr 1993 A
5201908 Jones Apr 1993 A
5203785 Slater Apr 1993 A
5203787 Noblitt et al. Apr 1993 A
5209747 Knoepfler May 1993 A
5217003 Wilk Jun 1993 A
5217453 Wilk Jun 1993 A
5219357 Honkanen et al. Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5222362 Maus et al. Jun 1993 A
5222965 Haughton Jun 1993 A
5234437 Sepetka Aug 1993 A
5234453 Smith et al. Aug 1993 A
5235964 Abenaim Aug 1993 A
5242456 Nash et al. Sep 1993 A
5246424 Wilk Sep 1993 A
5259366 Reydel et al. Nov 1993 A
5263958 deGuillebon et al. Nov 1993 A
5273524 Fox et al. Dec 1993 A
5275607 Lo et al. Jan 1994 A
5284128 Hart Feb 1994 A
5284162 Wilk Feb 1994 A
5287845 Faul et al. Feb 1994 A
5290299 Fain et al. Mar 1994 A
5290302 Pericic Mar 1994 A
5295977 Cohen et al. Mar 1994 A
5297536 Wilk Mar 1994 A
5301061 Nakada et al. Apr 1994 A
5312333 Churinetz et al. May 1994 A
5312351 Gerrone May 1994 A
5312416 Spaeth et al. May 1994 A
5312423 Rosenbluth et al. May 1994 A
5320636 Slater Jun 1994 A
5325845 Adair Jul 1994 A
5330471 Eggers Jul 1994 A
5330486 Wilk Jul 1994 A
5330488 Goldrath Jul 1994 A
5330496 Alferness Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5334198 Hart et al. Aug 1994 A
5344428 Griffiths Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352184 Goldberg et al. Oct 1994 A
5352222 Rydell Oct 1994 A
5354302 Ko Oct 1994 A
5354311 Kambin et al. Oct 1994 A
5356408 Rydell Oct 1994 A
5364408 Gordon Nov 1994 A
5364410 Failla et al. Nov 1994 A
5366466 Christian et al. Nov 1994 A
5366467 Lynch et al. Nov 1994 A
5368605 Miller, Jr. Nov 1994 A
5370647 Graber et al. Dec 1994 A
5374273 Nakao et al. Dec 1994 A
5374275 Bradley et al. Dec 1994 A
5374277 Hassler Dec 1994 A
5377695 An Haack Jan 1995 A
5383877 Clarke Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5391174 Weston Feb 1995 A
5392789 Slater et al. Feb 1995 A
5395386 Slater Mar 1995 A
5401248 Bencini Mar 1995 A
5403328 Shallman Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5403348 Bonutti Apr 1995 A
5405073 Porter Apr 1995 A
5405359 Pierce Apr 1995 A
5409478 Gerry et al. Apr 1995 A
5417699 Klein et al. May 1995 A
5423821 Pasque Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5439471 Kerr Aug 1995 A
5439478 Palmer Aug 1995 A
5441059 Dannan Aug 1995 A
5441499 Fritzsch Aug 1995 A
5449021 Chikama Sep 1995 A
5456667 Ham et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5460168 Masubuchi et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462561 Voda Oct 1995 A
5465731 Bell et al. Nov 1995 A
5467763 McMahon et al. Nov 1995 A
5468250 Paraschac et al. Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5470320 Tiefenbrun et al. Nov 1995 A
5478347 Aranyi Dec 1995 A
5480404 Kammerer et al. Jan 1996 A
5482054 Slater et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5489256 Adair Feb 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499990 Schülken et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5501692 Riza Mar 1996 A
5503616 Jones Apr 1996 A
5505686 Willis et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514157 Nicholas et al. May 1996 A
5522829 Michalos Jun 1996 A
5522830 Aranyi Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5540648 Yoon Jul 1996 A
5554151 Hinchliffe Sep 1996 A
5555883 Avitall Sep 1996 A
5558133 Bortoli et al. Sep 1996 A
5562693 Devlin et al. Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5569298 Schnell Oct 1996 A
5573540 Yoon Nov 1996 A
5578030 Levin Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5584845 Hart Dec 1996 A
5591179 Edelstein Jan 1997 A
5593420 Eubanks, Jr et al. Jan 1997 A
5595562 Grier Jan 1997 A
5597378 Jervis Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601588 Tonomura et al. Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5607389 Edwards et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5613975 Christy Mar 1997 A
5618303 Marlow et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5624399 Ackerman Apr 1997 A
5624431 Gerry et al. Apr 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5630782 Adair May 1997 A
5643283 Younker Jul 1997 A
5643292 Hart Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5644798 Shah Jul 1997 A
5645083 Essig et al. Jul 1997 A
5649372 Souza Jul 1997 A
5653677 Okada et al. Aug 1997 A
5653722 Kieturakis Aug 1997 A
5662663 Shallman Sep 1997 A
5669875 van Eerdenburg Sep 1997 A
5681324 Kammerer et al. Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5685820 Riek et al. Nov 1997 A
5690656 Cope et al. Nov 1997 A
5690660 Kauker et al. Nov 1997 A
5695448 Kimura et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5695511 Cano et al. Dec 1997 A
5700275 Bell et al. Dec 1997 A
5704892 Adair Jan 1998 A
5709708 Thal Jan 1998 A
5716326 Dannan Feb 1998 A
5730740 Wales et al. Mar 1998 A
5741278 Stevens Apr 1998 A
5741285 McBrayer et al. Apr 1998 A
5746759 Meade et al. May 1998 A
5749881 Sackier et al. May 1998 A
5749889 Bacich et al. May 1998 A
5752951 Yanik May 1998 A
5755731 Grinberg May 1998 A
5766167 Eggers et al. Jun 1998 A
5766170 Eggers Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769849 Eggers Jun 1998 A
5779701 McBrayer et al. Jul 1998 A
5779716 Cano et al. Jul 1998 A
5779727 Orejola Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5782866 Wenstrom, Jr. Jul 1998 A
5791022 Bohman Aug 1998 A
5792113 Kramer et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5797835 Green Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797939 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5803903 Athas et al. Sep 1998 A
5808665 Green Sep 1998 A
5810806 Ritchart et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810865 Koscher et al. Sep 1998 A
5810876 Kelleher Sep 1998 A
5810877 Roth et al. Sep 1998 A
5813976 Filipi et al. Sep 1998 A
5814058 Carlson et al. Sep 1998 A
5817061 Goodwin et al. Oct 1998 A
5817107 Schaller Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5819736 Avny et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827299 Thomason et al. Oct 1998 A
5830231 Geiges, Jr. Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5833703 Manushakian Nov 1998 A
5843017 Yoon Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853374 Hart et al. Dec 1998 A
5855585 Kontos Jan 1999 A
5860913 Yamaya et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5868762 Cragg et al. Feb 1999 A
5876411 Kontos Mar 1999 A
5882331 Sasaki Mar 1999 A
5882344 Stouder, Jr. Mar 1999 A
5893846 Bales et al. Apr 1999 A
5893874 Bourque et al. Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5899919 Eubanks, Jr. et al. May 1999 A
5902254 Magram May 1999 A
5904702 Ek et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5916147 Boury Jun 1999 A
5921993 Yoon Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5922008 Gimpelson Jul 1999 A
5925052 Simmons Jul 1999 A
5928255 Meade et al. Jul 1999 A
5928266 Kontos Jul 1999 A
5936536 Morris Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5971995 Rousseau Oct 1999 A
5976074 Moriyama Nov 1999 A
5976075 Beane et al. Nov 1999 A
5976130 McBrayer et al. Nov 1999 A
5976131 Guglielmi et al. Nov 1999 A
5980539 Kontos Nov 1999 A
5980556 Giordano et al. Nov 1999 A
5984938 Yoon Nov 1999 A
5989182 Hori et al. Nov 1999 A
5993447 Blewett et al. Nov 1999 A
5997555 Kontos Dec 1999 A
6001120 Levin Dec 1999 A
6004330 Middleman et al. Dec 1999 A
6007566 Wenstrom, Jr. Dec 1999 A
6010515 Swain et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6019770 Christoudias Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024747 Kontos Feb 2000 A
6027522 Palmer Feb 2000 A
6030365 Laufer Feb 2000 A
6033399 Gines Mar 2000 A
6053927 Hamas Apr 2000 A
6066160 Colvin et al. May 2000 A
6068603 Suzuki May 2000 A
6068629 Haissaguerre et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6074408 Freeman Jun 2000 A
6086530 Mack Jul 2000 A
6090108 McBrayer et al. Jul 2000 A
6096046 Weiss Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6110183 Cope Aug 2000 A
6113593 Tu et al. Sep 2000 A
6117144 Nobles et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6139555 Hart et al. Oct 2000 A
6146391 Cigaina Nov 2000 A
6149653 Deslauriers Nov 2000 A
6149662 Pugliesi et al. Nov 2000 A
6159200 Verdura et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6168570 Ferrera Jan 2001 B1
6168605 Measamer et al. Jan 2001 B1
6170130 Hamilton et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183420 Douk et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190384 Ouchi Feb 2001 B1
6190399 Palmer et al. Feb 2001 B1
6203533 Ouchi Mar 2001 B1
6206872 Lafond et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6214007 Anderson Apr 2001 B1
6228096 Marchand May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6246914 de la Rama et al. Jun 2001 B1
6258064 Smith et al. Jul 2001 B1
6261242 Roberts et al. Jul 2001 B1
6264664 Avellanet Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270505 Yoshida et al. Aug 2001 B1
6277136 Bonutti Aug 2001 B1
6283963 Regula Sep 2001 B1
6293909 Chu et al. Sep 2001 B1
6293952 Brosens et al. Sep 2001 B1
6296630 Altman et al. Oct 2001 B1
6322578 Houle et al. Nov 2001 B1
6326177 Schoenbach et al. Dec 2001 B1
6328730 Harkrider, Jr. Dec 2001 B1
6350267 Stefanchik Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6352543 Cole Mar 2002 B1
6355035 Manushakian Mar 2002 B1
6371956 Wilson et al. Apr 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383197 Conlon et al. May 2002 B1
6391029 Hooven et al. May 2002 B1
6402735 Langevin Jun 2002 B1
6406440 Stefanchik Jun 2002 B1
6409733 Conlon et al. Jun 2002 B1
6431500 Jacobs et al. Aug 2002 B1
6447511 Slater Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6454783 Piskun Sep 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6464701 Hooven et al. Oct 2002 B1
6475104 Lutz et al. Nov 2002 B1
6485411 Konstorum et al. Nov 2002 B1
6489745 Koreis Dec 2002 B1
6491626 Stone et al. Dec 2002 B1
6491691 Morley et al. Dec 2002 B1
6493590 Wessman et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6503192 Ouchi Jan 2003 B1
6506190 Walshe Jan 2003 B1
6508827 Manhes Jan 2003 B1
6543456 Freeman Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558384 Mayenberger May 2003 B2
6562035 Levin May 2003 B1
6562052 Nobles et al. May 2003 B2
6569159 Edwards et al. May 2003 B1
6572629 Kalloo et al. Jun 2003 B2
6572635 Bonutti Jun 2003 B1
6575988 Rousseau Jun 2003 B2
6579311 Makower Jun 2003 B1
6585642 Christopher Jul 2003 B2
6585717 Wittenberger et al. Jul 2003 B1
6592559 Pakter et al. Jul 2003 B1
6592603 Lasner Jul 2003 B2
6602262 Griego et al. Aug 2003 B2
6605105 Cuschieri et al. Aug 2003 B1
6610072 Christy et al. Aug 2003 B1
6610074 Santilli Aug 2003 B2
6626919 Swanstrom Sep 2003 B1
6632229 Yamanouchi Oct 2003 B1
6638286 Burbank et al. Oct 2003 B1
6652521 Schulze Nov 2003 B2
6652551 Heiss Nov 2003 B1
6656194 Gannoe et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6672338 Esashi et al. Jan 2004 B1
6673087 Chang et al. Jan 2004 B1
6685628 Vu Feb 2004 B2
6685724 Haluck Feb 2004 B1
6692445 Roberts et al. Feb 2004 B2
6692462 Mackenzie et al. Feb 2004 B2
6699180 Kobayashi Mar 2004 B2
6699256 Logan et al. Mar 2004 B1
6699263 Cope Mar 2004 B2
6708066 Herbst et al. Mar 2004 B2
6716226 Sixto, Jr. et al. Apr 2004 B2
6740030 Martone et al. May 2004 B2
6743240 Smith et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749609 Lunsford et al. Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752811 Chu et al. Jun 2004 B2
6752822 Jespersen Jun 2004 B2
6761685 Adams et al. Jul 2004 B2
6761718 Madsen Jul 2004 B2
6761722 Cole et al. Jul 2004 B2
6773434 Ciarrocca Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780352 Jacobson Aug 2004 B2
6783491 Saadat et al. Aug 2004 B2
6786864 Matsuura et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6824548 Smith et al. Nov 2004 B2
6837847 Ewers et al. Jan 2005 B2
6843794 Sixto, Jr. et al. Jan 2005 B2
6861250 Cole et al. Mar 2005 B1
6866627 Nozue Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6878110 Yang et al. Apr 2005 B2
6884213 Raz et al. Apr 2005 B2
6887255 Shimm May 2005 B2
6896683 Gadberry et al. May 2005 B1
6908427 Fleener et al. Jun 2005 B2
6908476 Jud et al. Jun 2005 B2
6916284 Moriyama Jul 2005 B2
6918871 Schulze Jul 2005 B2
6926725 Cooke et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932824 Roop et al. Aug 2005 B1
6932827 Cole Aug 2005 B2
6932834 Lizardi et al. Aug 2005 B2
6939327 Hall et al. Sep 2005 B2
6942613 Ewers et al. Sep 2005 B2
6945472 Wuttke et al. Sep 2005 B2
6945979 Kortenbach et al. Sep 2005 B2
6955683 Bonutti Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6960162 Saadat et al. Nov 2005 B2
6960163 Ewers et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6971988 Orban, III Dec 2005 B2
6972017 Smith et al. Dec 2005 B2
6974411 Belson Dec 2005 B2
6976992 Sachatello et al. Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6986774 Middleman et al. Jan 2006 B2
6988987 Ishikawa et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6994708 Manzo Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7008375 Weisel Mar 2006 B2
7009634 Iddan et al. Mar 2006 B2
7010340 Scarantino et al. Mar 2006 B2
7020531 Colliou et al. Mar 2006 B1
7025580 Heagy et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029438 Morin et al. Apr 2006 B2
7037290 Gardeski et al. May 2006 B2
7041052 Saadat et al. May 2006 B2
7052489 Griego et al. May 2006 B2
7060024 Long et al. Jun 2006 B2
7060025 Long et al. Jun 2006 B2
7063697 Slater Jun 2006 B2
7063715 Onuki et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070602 Smith et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083629 Weller et al. Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090685 Kortenbach et al. Aug 2006 B2
7093518 Gmeilbauer Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7105000 McBrayer Sep 2006 B2
7105005 Blake Sep 2006 B2
7108703 Danitz et al. Sep 2006 B2
7112208 Morris et al. Sep 2006 B2
7115092 Park et al. Oct 2006 B2
7118531 Krill Oct 2006 B2
7118578 West, Jr. et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7128708 Saadat et al. Oct 2006 B2
RE39415 Bales et al. Nov 2006 E
7131978 Sancoff et al. Nov 2006 B2
7131979 DiCarlo et al. Nov 2006 B2
7131980 Field et al. Nov 2006 B1
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7146984 Stack et al. Dec 2006 B2
7147650 Lee Dec 2006 B2
7153321 Andrews Dec 2006 B2
7163525 Franer Jan 2007 B2
7172714 Jacobson Feb 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7195612 van Sloten et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
7208005 Frecker et al. Apr 2007 B2
7211092 Hughett May 2007 B2
7223272 Francere et al. May 2007 B2
7232414 Gonzalez Jun 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7241290 Doyle et al. Jul 2007 B2
7244228 Lubowski Jul 2007 B2
7252660 Kunz Aug 2007 B2
7270663 Nakao Sep 2007 B2
7294139 Gengler Nov 2007 B1
7301250 Cassel Nov 2007 B2
7306597 Manzo Dec 2007 B2
7318802 Suzuki et al. Jan 2008 B2
7320695 Carroll Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7329383 Stinson Feb 2008 B2
7344536 Lunsford et al. Mar 2008 B1
7352387 Yamamoto Apr 2008 B2
7364582 Lee Apr 2008 B2
7371215 Colliou et al. May 2008 B2
7381216 Buzzard et al. Jun 2008 B2
7393222 Asakura Jul 2008 B2
7402162 Ouchi Jul 2008 B2
7404791 Linares et al. Jul 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416554 Lam et al. Aug 2008 B2
7422590 Kupferschmid et al. Sep 2008 B2
7435257 Lashinski et al. Oct 2008 B2
7452327 Durgin et al. Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7488295 Burbank et al. Feb 2009 B2
7497867 Lasner et al. Mar 2009 B2
7507200 Okada Mar 2009 B2
7524281 Chu et al. Apr 2009 B2
7524302 Tower Apr 2009 B2
7534228 Williams May 2009 B2
7544203 Chin et al. Jun 2009 B2
7548040 Lee et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7553278 Kucklick Jun 2009 B2
7553298 Hunt et al. Jun 2009 B2
7559887 Dannan Jul 2009 B2
7560006 Rakos et al. Jul 2009 B2
7561916 Hunt et al. Jul 2009 B2
7566334 Christian et al. Jul 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7579550 Dayton et al. Aug 2009 B2
7582096 Gellman et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7632250 Smith et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637903 Lentz et al. Dec 2009 B2
7651483 Byrum et al. Jan 2010 B2
7651509 Bojarski et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7662089 Okada et al. Feb 2010 B2
7666180 Holsten et al. Feb 2010 B2
7713270 Suzuki May 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7762998 Birk et al. Jul 2010 B2
7771416 Spivey et al. Aug 2010 B2
7780683 Roue et al. Aug 2010 B2
7794475 Hess et al. Sep 2010 B2
7837615 Le et al. Nov 2010 B2
7850660 Uth et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
7867216 Wahr et al. Jan 2011 B2
7896887 Rimbaugh et al. Mar 2011 B2
7918869 Saadat et al. Apr 2011 B2
7931624 Smith et al. Apr 2011 B2
7947000 Vargas et al. May 2011 B2
7955298 Carroll et al. Jun 2011 B2
7963975 Criscuolo Jun 2011 B2
20010049497 Kalloo et al. Dec 2001 A1
20020022771 Diokno et al. Feb 2002 A1
20020022857 Goldsteen et al. Feb 2002 A1
20020023353 Ting-Kung Feb 2002 A1
20020042562 Meron et al. Apr 2002 A1
20020049439 Mulier et al. Apr 2002 A1
20020068945 Sixto, Jr. et al. Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082516 Stefanchik Jun 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020107530 Sauer et al. Aug 2002 A1
20020133115 Gordon et al. Sep 2002 A1
20020138086 Sixto, Jr. et al. Sep 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20020183591 Matsuura et al. Dec 2002 A1
20030023255 Miles et al. Jan 2003 A1
20030036679 Kortenbach et al. Feb 2003 A1
20030069602 Jacobs et al. Apr 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030120257 Houston et al. Jun 2003 A1
20030130564 Martone et al. Jul 2003 A1
20030130656 Levin Jul 2003 A1
20030158521 Ameri Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171651 Page et al. Sep 2003 A1
20030176880 Long et al. Sep 2003 A1
20030216611 Vu Nov 2003 A1
20030216615 Ouchi Nov 2003 A1
20030220545 Ouchi Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229269 Humphrey Dec 2003 A1
20030229371 Whitworth Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040034369 Sauer et al. Feb 2004 A1
20040098007 Heiss May 2004 A1
20040101456 Kuroshima et al. May 2004 A1
20040116948 Sixto, Jr. et al. Jun 2004 A1
20040133077 Obenchain et al. Jul 2004 A1
20040133089 Kilcoyne et al. Jul 2004 A1
20040136779 Bhaskar Jul 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138587 Lyons, IV Jul 2004 A1
20040186350 Brenneman et al. Sep 2004 A1
20040193009 Jaffe et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20040193186 Kortenbach et al. Sep 2004 A1
20040193188 Francese Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040193200 Dworschak et al. Sep 2004 A1
20040199052 Banik et al. Oct 2004 A1
20040210245 Erickson et al. Oct 2004 A1
20040215058 Zirps et al. Oct 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225186 Horne, Jr. et al. Nov 2004 A1
20040230095 Stefanchik et al. Nov 2004 A1
20040230096 Stefanchik et al. Nov 2004 A1
20040230097 Stefanchik et al. Nov 2004 A1
20040230161 Zeiner Nov 2004 A1
20040242960 Orban, III Dec 2004 A1
20040249246 Campos Dec 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249394 Morris et al. Dec 2004 A1
20040249443 Shanley et al. Dec 2004 A1
20050033265 Engel et al. Feb 2005 A1
20050033277 Clague et al. Feb 2005 A1
20050033319 Gambale et al. Feb 2005 A1
20050033333 Smith et al. Feb 2005 A1
20050043690 Todd Feb 2005 A1
20050049616 Rivera et al. Mar 2005 A1
20050065397 Saadat et al. Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070754 Nobis et al. Mar 2005 A1
20050070763 Nobis et al. Mar 2005 A1
20050070764 Nobis et al. Mar 2005 A1
20050080413 Canady Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050085832 Sancoff et al. Apr 2005 A1
20050090837 Sixto, Jr. et al. Apr 2005 A1
20050090838 Sixto, Jr. et al. Apr 2005 A1
20050101837 Kalloo et al. May 2005 A1
20050101838 Camillocci et al. May 2005 A1
20050107663 Saadat et al. May 2005 A1
20050107664 Kalloo et al. May 2005 A1
20050110881 Glukhovsky et al. May 2005 A1
20050113847 Gadberry et al. May 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050131279 Boulais et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050143647 Minai et al. Jun 2005 A1
20050143690 High Jun 2005 A1
20050143774 Polo Jun 2005 A1
20050143803 Watson et al. Jun 2005 A1
20050149087 Ahlberg et al. Jul 2005 A1
20050149096 Hilal et al. Jul 2005 A1
20050159648 Freed Jul 2005 A1
20050165272 Okada et al. Jul 2005 A1
20050165378 Heinrich et al. Jul 2005 A1
20050165411 Orban, III Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050182429 Yamanouchi Aug 2005 A1
20050192478 Williams et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050192602 Manzo Sep 2005 A1
20050192654 Chanduszko et al. Sep 2005 A1
20050209624 Vijay Sep 2005 A1
20050215858 Vail, III Sep 2005 A1
20050216050 Sepetka et al. Sep 2005 A1
20050228406 Bose Oct 2005 A1
20050234297 Devierre et al. Oct 2005 A1
20050250983 Tremaglio et al. Nov 2005 A1
20050250990 Le et al. Nov 2005 A1
20050250993 Jaeger Nov 2005 A1
20050251166 Vaughan et al. Nov 2005 A1
20050251176 Swanstrom et al. Nov 2005 A1
20050261674 Nobis et al. Nov 2005 A1
20050267492 Poncet et al. Dec 2005 A1
20050272975 McWeeney et al. Dec 2005 A1
20050272977 Saadat et al. Dec 2005 A1
20050273084 Hinman et al. Dec 2005 A1
20050277945 Saadat et al. Dec 2005 A1
20050277951 Smith et al. Dec 2005 A1
20050277952 Arp et al. Dec 2005 A1
20050277954 Smith et al. Dec 2005 A1
20050277955 Palmer et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277957 Kuhns et al. Dec 2005 A1
20050283118 Uth et al. Dec 2005 A1
20050283119 Uth et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20060004406 Wehrstein et al. Jan 2006 A1
20060004409 Nobis et al. Jan 2006 A1
20060004410 Nobis et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060020167 Sitzmann Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060025654 Suzuki et al. Feb 2006 A1
20060025781 Young et al. Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060025819 Nobis et al. Feb 2006 A1
20060036267 Saadat et al. Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060058582 Maahs et al. Mar 2006 A1
20060058776 Bilsbury Mar 2006 A1
20060069396 Meade et al. Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060074413 Behzadian Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060089528 Tartaglia et al. Apr 2006 A1
20060095060 Mayenberger et al. May 2006 A1
20060100687 Fahey et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060111209 Hinman et al. May 2006 A1
20060111210 Hinman et al. May 2006 A1
20060111704 Brenneman et al. May 2006 A1
20060129166 Lavelle Jun 2006 A1
20060135962 Kick et al. Jun 2006 A1
20060135971 Swanstrom et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060142644 Mulac et al. Jun 2006 A1
20060142652 Keenan Jun 2006 A1
20060142790 Gertner Jun 2006 A1
20060142798 Holman et al. Jun 2006 A1
20060149132 Iddan Jul 2006 A1
20060149135 Paz Jul 2006 A1
20060161190 Gadberry et al. Jul 2006 A1
20060167416 Mathis et al. Jul 2006 A1
20060167482 Swain et al. Jul 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060183975 Saadat et al. Aug 2006 A1
20060184161 Maahs et al. Aug 2006 A1
20060189844 Tien Aug 2006 A1
20060189845 Maahs et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20060195084 Slater Aug 2006 A1
20060200005 Bjork et al. Sep 2006 A1
20060200169 Sniffin Sep 2006 A1
20060200170 Aranyi Sep 2006 A1
20060200199 Bonutti et al. Sep 2006 A1
20060217665 Prosek Sep 2006 A1
20060217697 Lau et al. Sep 2006 A1
20060217742 Messerly et al. Sep 2006 A1
20060217743 Messerly et al. Sep 2006 A1
20060229639 Whitfield Oct 2006 A1
20060229640 Whitfield Oct 2006 A1
20060237022 Chen et al. Oct 2006 A1
20060237023 Cox et al. Oct 2006 A1
20060241570 Wilk Oct 2006 A1
20060247576 Poncet Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060253004 Frisch et al. Nov 2006 A1
20060253039 McKenna et al. Nov 2006 A1
20060258907 Stefanchik et al. Nov 2006 A1
20060258908 Stefanchik et al. Nov 2006 A1
20060258910 Stefanchik et al. Nov 2006 A1
20060258954 Timberlake et al. Nov 2006 A1
20060258955 Hoffman et al. Nov 2006 A1
20060259010 Stefanchik et al. Nov 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060264904 Kerby et al. Nov 2006 A1
20060264930 Nishimura Nov 2006 A1
20060270902 Igarashi et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060276835 Uchida Dec 2006 A1
20060281970 Stokes et al. Dec 2006 A1
20060282106 Cole et al. Dec 2006 A1
20060285732 Horn et al. Dec 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20060287666 Saadat et al. Dec 2006 A1
20060293626 Byrum et al. Dec 2006 A1
20070002135 Glukhovsky Jan 2007 A1
20070005019 Okishige Jan 2007 A1
20070015965 Cox et al. Jan 2007 A1
20070016225 Nakao Jan 2007 A1
20070032700 Fowler et al. Feb 2007 A1
20070032701 Fowler et al. Feb 2007 A1
20070043261 Watanabe et al. Feb 2007 A1
20070043345 Davalos et al. Feb 2007 A1
20070049800 Boulais Mar 2007 A1
20070049902 Griffin et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070060880 Gregorich et al. Mar 2007 A1
20070067017 Trapp Mar 2007 A1
20070073102 Matsuno et al. Mar 2007 A1
20070073269 Becker Mar 2007 A1
20070079924 Saadat et al. Apr 2007 A1
20070088370 Kahle et al. Apr 2007 A1
20070100375 Mikkaichi et al. May 2007 A1
20070100376 Mikkaichi et al. May 2007 A1
20070106118 Moriyama May 2007 A1
20070112251 Nakhuda May 2007 A1
20070112331 Weber et al. May 2007 A1
20070112342 Pearson et al. May 2007 A1
20070112383 Conlon et al. May 2007 A1
20070112384 Conlon et al. May 2007 A1
20070112385 Conlon May 2007 A1
20070112417 Shanley et al. May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070123840 Cox May 2007 A1
20070129605 Schaaf Jun 2007 A1
20070129719 Kendale et al. Jun 2007 A1
20070135709 Rioux et al. Jun 2007 A1
20070142706 Matsui et al. Jun 2007 A1
20070156127 Rioux et al. Jul 2007 A1
20070161855 Mikkaichi et al. Jul 2007 A1
20070173691 Yokoi et al. Jul 2007 A1
20070173869 Gannoe et al. Jul 2007 A1
20070173870 Zacharias Jul 2007 A2
20070173872 Neuenfeldt Jul 2007 A1
20070179525 Frecker et al. Aug 2007 A1
20070179530 Tieu et al. Aug 2007 A1
20070197865 Miyake et al. Aug 2007 A1
20070203487 Sugita Aug 2007 A1
20070208364 Smith et al. Sep 2007 A1
20070213754 Mikkaichi et al. Sep 2007 A1
20070225554 Maseda et al. Sep 2007 A1
20070233040 Macnamara et al. Oct 2007 A1
20070244358 Lee Oct 2007 A1
20070250057 Nobis et al. Oct 2007 A1
20070255096 Stefanchik et al. Nov 2007 A1
20070255100 Barlow et al. Nov 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20070255303 Bakos et al. Nov 2007 A1
20070255306 Conlon et al. Nov 2007 A1
20070260112 Rahmani Nov 2007 A1
20070260117 Zwolinski et al. Nov 2007 A1
20070260121 Bakos et al. Nov 2007 A1
20070260273 Cropper et al. Nov 2007 A1
20070270629 Charles Nov 2007 A1
20070270889 Conlon et al. Nov 2007 A1
20070270895 Nobis et al. Nov 2007 A1
20070270907 Stokes et al. Nov 2007 A1
20070282371 Lee et al. Dec 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080004650 George Jan 2008 A1
20080015409 Barlow et al. Jan 2008 A1
20080015552 Doyle et al. Jan 2008 A1
20080027387 Grabinsky Jan 2008 A1
20080033451 Rieber et al. Feb 2008 A1
20080051629 Sugiyama et al. Feb 2008 A1
20080051735 Measamer et al. Feb 2008 A1
20080058586 Karpiel Mar 2008 A1
20080065169 Colliou et al. Mar 2008 A1
20080086172 Martin et al. Apr 2008 A1
20080097472 Agmon et al. Apr 2008 A1
20080097483 Ortiz et al. Apr 2008 A1
20080103527 Martin et al. May 2008 A1
20080114384 Chang et al. May 2008 A1
20080119870 Williams May 2008 A1
20080125796 Graham May 2008 A1
20080132892 Lunsford et al. Jun 2008 A1
20080139882 Fujimori Jun 2008 A1
20080147113 Nobis et al. Jun 2008 A1
20080171907 Long et al. Jul 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200912 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080208213 Benjamin et al. Aug 2008 A1
20080221587 Schwartz Sep 2008 A1
20080221619 Spivey et al. Sep 2008 A1
20080228213 Blakeney et al. Sep 2008 A1
20080230972 Ganley Sep 2008 A1
20080234696 Taylor et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243148 Mikkaichi et al. Oct 2008 A1
20080243176 Weitzner et al. Oct 2008 A1
20080262540 Bangera et al. Oct 2008 A1
20080269782 Stefanchik et al. Oct 2008 A1
20080269783 Griffith Oct 2008 A1
20080275474 Martin et al. Nov 2008 A1
20080275475 Schwemberger et al. Nov 2008 A1
20080287737 Dejima Nov 2008 A1
20080300461 Shaw et al. Dec 2008 A1
20080300547 Bakos Dec 2008 A1
20080309758 Karasawa et al. Dec 2008 A1
20080312496 Zwolinski Dec 2008 A1
20080312499 Handa et al. Dec 2008 A1
20080312500 Asada et al. Dec 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20080319436 Daniel et al. Dec 2008 A1
20080319439 Ootsubu Dec 2008 A1
20090054728 Trusty Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090062792 Vakharia et al. Mar 2009 A1
20090062795 Vakharia et al. Mar 2009 A1
20090069634 Larkin Mar 2009 A1
20090076499 Azure Mar 2009 A1
20090082776 Cresina Mar 2009 A1
20090082779 Nakao Mar 2009 A1
20090112059 Nobis Apr 2009 A1
20090112062 Bakos Apr 2009 A1
20090112063 Bakos et al. Apr 2009 A1
20090131751 Spivey et al. May 2009 A1
20090131932 Vakharia et al. May 2009 A1
20090131933 Ghabrial et al. May 2009 A1
20090143639 Stark Jun 2009 A1
20090143649 Rossi Jun 2009 A1
20090143794 Conlon et al. Jun 2009 A1
20090149710 Stefanchik et al. Jun 2009 A1
20090177031 Surti et al. Jul 2009 A1
20090177219 Conlon Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090192344 Bakos et al. Jul 2009 A1
20090198231 Esser et al. Aug 2009 A1
20090227828 Swain et al. Sep 2009 A1
20090248055 Spivey et al. Oct 2009 A1
20090281559 Swain et al. Nov 2009 A1
20090287236 Bakos et al. Nov 2009 A1
20090292164 Yamatani Nov 2009 A1
20090299135 Spivey Dec 2009 A1
20090299143 Conlon et al. Dec 2009 A1
20090299362 Long et al. Dec 2009 A1
20090299385 Stefanchik et al. Dec 2009 A1
20090299406 Swain et al. Dec 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090306658 Nobis et al. Dec 2009 A1
20090306683 Zwolinski et al. Dec 2009 A1
20090322864 Karasawa et al. Dec 2009 A1
20090326561 Carroll, II et al. Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100010298 Bakos et al. Jan 2010 A1
20100010299 Bakos et al. Jan 2010 A1
20100010303 Bakos Jan 2010 A1
20100010510 Stefanchik Jan 2010 A1
20100010511 Harris et al. Jan 2010 A1
20100023032 Granja Filho Jan 2010 A1
20100042045 Spivey Feb 2010 A1
20100048990 Bakos Feb 2010 A1
20100049190 Long et al. Feb 2010 A1
20100049223 Granja Filho Feb 2010 A1
20100056861 Spivey Mar 2010 A1
20100056862 Bakos Mar 2010 A1
20100057085 Holcomb et al. Mar 2010 A1
20100057108 Spivey et al. Mar 2010 A1
20100063538 Spivey et al. Mar 2010 A1
20100076451 Zwollinski et al. Mar 2010 A1
20100081877 Vakharia Apr 2010 A1
20100087813 Long Apr 2010 A1
20100113872 Asada et al. May 2010 A1
20100121362 Clague et al. May 2010 A1
20100130817 Conlon May 2010 A1
20100130975 Long May 2010 A1
20100131005 Conlon May 2010 A1
20100152539 Ghabrial et al. Jun 2010 A1
20100152746 Ceniccola et al. Jun 2010 A1
20100179510 Fox et al. Jul 2010 A1
20100179530 Long et al. Jul 2010 A1
20100191050 Zwolinski Jul 2010 A1
20100191267 Fox Jul 2010 A1
20100198005 Fox Aug 2010 A1
20100198149 Fox Aug 2010 A1
20100198244 Spivey et al. Aug 2010 A1
20100198248 Vakharia Aug 2010 A1
20100249700 Spivey Sep 2010 A1
20100286791 Goldsmith Nov 2010 A1
20100298642 Trusty et al. Nov 2010 A1
20100312056 Galperin et al. Dec 2010 A1
20100331622 Conlon Dec 2010 A2
20100331774 Spivey Dec 2010 A2
20110093009 Fox Apr 2011 A1
20110098694 Long Apr 2011 A1
20110098704 Long et al. Apr 2011 A1
20110105850 Voegele et al. May 2011 A1
20110112434 Ghabrial et al. May 2011 A1
20110115891 Trusty May 2011 A1
20110124964 Nobis May 2011 A1
20110152609 Trusty et al. Jun 2011 A1
20110152610 Trusty et al. Jun 2011 A1
20110152612 Trusty et al. Jun 2011 A1
20110152858 Long et al. Jun 2011 A1
20110152859 Long et al. Jun 2011 A1
20110152878 Trusty et al. Jun 2011 A1
20110152923 Fox Jun 2011 A1
20110160514 Long et al. Jun 2011 A1
Foreign Referenced Citations (127)
Number Date Country
666310 Feb 1996 AU
3008120 Sep 1980 DE
4323585 Jan 1995 DE
19757056 Aug 2008 DE
102006027873 Oct 2009 DE
0086338 Aug 1983 EP
0286415 Oct 1988 EP
0589454 Mar 1994 EP
0464479 Mar 1995 EP
0529675 Feb 1996 EP
0724863 Jul 1999 EP
0760629 Nov 1999 EP
0818974 Jul 2001 EP
0947166 May 2003 EP
0836832 Dec 2003 EP
1402837 Mar 2004 EP
0744918 Apr 2004 EP
0931515 Aug 2004 EP
1411843 Oct 2004 EP
1150614 Nov 2004 EP
1477104 Nov 2004 EP
1481642 Dec 2004 EP
1493391 Jan 2005 EP
0848598 Feb 2005 EP
1281360 Mar 2005 EP
1568330 Aug 2005 EP
1452143 Sep 2005 EP
1616527 Jan 2006 EP
1006888 Mar 2006 EP
1629764 Mar 2006 EP
1013229 Jun 2006 EP
1721561 Nov 2006 EP
1153578 Mar 2007 EP
1334696 Mar 2007 EP
1769766 Apr 2007 EP
1836971 Sep 2007 EP
1836980 Sep 2007 EP
1854421 Nov 2007 EP
1857061 Nov 2007 EP
1875876 Jan 2008 EP
1891881 Feb 2008 EP
1902663 Mar 2008 EP
1477106 Jun 2008 EP
1949844 Jul 2008 EP
1518499 Aug 2008 EP
1709918 Oct 2008 EP
1985226 Oct 2008 EP
1994904 Nov 2008 EP
1707130 Dec 2008 EP
1769749 Nov 2009 EP
2731610 Sep 1996 FR
330629 Jun 1930 GB
2403909 Jan 2005 GB
2421190 Jun 2006 GB
2443261 Apr 2008 GB
56-46674 Apr 1981 JP
8-29699 Feb 1996 JP
2002-369791 Dec 2002 JP
2003-088494 Mar 2003 JP
2003-235852 Aug 2003 JP
2004-33525 Feb 2004 JP
2004-065745 Mar 2004 JP
2005-121947 May 2005 JP
2005-261514 Sep 2005 JP
1021295 Feb 2004 NL
194230 May 1967 SU
980703 Dec 1982 SU
WO 8401707 May 1984 WO
WO 9213494 Aug 1992 WO
WO 9310850 Jun 1993 WO
WO 9320760 Oct 1993 WO
WO 9320765 Oct 1993 WO
WO 9509666 Apr 1995 WO
WO 9622056 Jul 1996 WO
WO 9627331 Sep 1996 WO
WO 9639946 Dec 1996 WO
WO 9712557 Apr 1997 WO
WO 9801080 Jan 1998 WO
WO 9909919 Mar 1999 WO
WO 9917661 Apr 1999 WO
WO 9930622 Jun 1999 WO
WO 0110319 Feb 2001 WO
WO 0141627 Jun 2001 WO
WO 0158360 Aug 2001 WO
WO 0211621 Feb 2002 WO
WO 0234122 May 2002 WO
WO 02094082 Nov 2002 WO
WO 03045260 Jun 2003 WO
WO 03047684 Jun 2003 WO
WO 03059412 Jul 2003 WO
WO 03078721 Sep 2003 WO
WO 03082129 Oct 2003 WO
WO 2004006789 Jan 2004 WO
WO 2004028613 Apr 2004 WO
WO 2004037123 May 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004086984 Oct 2004 WO
WO 2005009211 Feb 2005 WO
WO 2005018467 Mar 2005 WO
WO 2005037088 Apr 2005 WO
WO 2005048827 Jun 2005 WO
WO 2005065284 Jul 2005 WO
WO 2005097019 Oct 2005 WO
WO 2005097234 Oct 2005 WO
WO 2005112810 Dec 2005 WO
WO 2005120363 Dec 2005 WO
WO 2006007399 Jan 2006 WO
WO 2006041881 Apr 2006 WO
WO 2006060405 Jun 2006 WO
WO 2006110733 Oct 2006 WO
WO 2006113216 Oct 2006 WO
WO 2007014063 Feb 2007 WO
WO 2007048085 Apr 2007 WO
WO 2007063550 Jun 2007 WO
WO 2007100067 Sep 2007 WO
WO 2007109171 Sep 2007 WO
WO 2008005433 Jan 2008 WO
WO 2008041225 Apr 2008 WO
WO 2008076337 Jun 2008 WO
WO 2008076800 Jun 2008 WO
WO 2008101075 Aug 2008 WO
WO 2008102154 Aug 2008 WO
WO 2009021030 Feb 2009 WO
WO 2009027065 Mar 2009 WO
WO 2009029065 Mar 2009 WO
WO 2009032623 Mar 2009 WO
WO 2010088481 Aug 2010 WO
Related Publications (1)
Number Date Country
20100152609 A1 Jun 2010 US