This invention relates to spectral discrimination apparatus for use in scanning optical microscopes and to a method of use of such apparatus.
Several types of scanning optical microscope are now used. These include the confocal microscope and the multiphoton-excitation fluorescence microscope. In many such microscopes the illumination is confined to a spot of light which is scanned over the specimen, or alternatively the specimen is scanned relative to a stationary spot. The invention described here is applicable to all those forms of scanning optical microscope in which only a single spot is scanned.
A part of the established art of optical microscopy is the use of a series of lenses or other focussing means by which the specimen is focussed into a so-called intermediate image plane. This plane is one of a family of optically conjugate planes: as well as the aforementioned intermediate image plane the family includes the plane of focus within the specimen and the plane of the illumination iris and, in the case of systems with cameras, the plane of the photosensitive surface. This family of conjugate planes is known as the family of image planes. It is taught in elementary textbooks of microscopy that the aforementioned image planes alternate along the axis of a microscope with so-called aperture planes, in which the physical apertures of the lenses, or their back focal planes, are contained or imaged. Thus the family of aperture planes contains the condenser iris, the back focal plane of the objective lens and the Ramsden disc, (a small disc-shaped image of the back focal plane of the objective lens situated generally above the eyepiece and conjugate with the condenser iris). The terms “image plane” and “aperture plane” are introduced here because they are useful in understanding both the prior art and the present invention.
White, in U.S. Pat. No. 5,032,720, taught the use of a variable iris, controlling the passage of light to the detector in a confocal microscope. The iris is placed in an image plane such that the iris is optically conjugate with the focussed spot of light in the specimen. The iris diaphragm is, in the above terminology, an image plane stop. This image plane stop has the function of blocking light from regions of the specimen that lie outside the focussed spot. With such a stop, the scanning microscope functions as a confocal microscope. White also taught the division of the emitted light coming from the specimen in a confocal microscope into more than one beam according to wavelength, with this division being effected by chromatic reflectors. This design has proved to have many applications, chiefly in the simultaneous imaging of a plurality of fluorescent stains of different fluorescence emission colours in the same specimen.
Brakenhoff, in a diagram published on page 189 of Confocal Microscopy, edited by T. Wilson, Academic Press 1990, showed how a spectrometer could be used in conjunction with a scanning confocal microscope as a substitute for the chromatic reflectors of White. The advantage of this is that the wavelength of light passing to the detector can be selected from a continuous range. It is obvious to those skilled in the art of optics that the entry aperture to the spectrometer must be placed in an aperture plane as defined above. Only in this way can the spectrometric discrimination of colours in the emitted light be applied equally to all points in the image plane.
To the knowledge of the applicants, the closest prior art to the current invention is probably that of Engelhardt (U.S. Pat. No. 5,886,784) in which a spectrometer is described “of a form suitable for confocal fluorescence microscopy”. This spectrometer is shown in
With reference to
Engelhardt's invention is shown in the parts of
Engelhardt's invention works satisfactorily, but suffers from the following disadvantages. If a series of masks and baffles are used, as specified in his patent, they cannot all lie in the same aperture plane as required for ideal performance. Also, if, as he taught, the slits in the plural masks are variable both in width and position, a large number of independent linear actuators are needed, which are slow and expensive and introduce complexities of control and interpretation. The latter are particularly severe when the dispersive element is a glass prism, as in Engelhardt's preferred embodiment, in which case the dispersion angle is anomalous, obeying no simple physical law and characteristic of the glass type. This requires the application of computed correction to each motor position to compensate for anomalous dispersion. Finally, the use of plural detectors, though advantageous for the simultaneous detection of light of different wavelengths, militates against the production of a cheap or compact instrument.
The present invention aims to overcome these difficulties. It is applicable to all point-scanning confocal microscopes but works best with those containing a telescope in the emission path. Such a telescope is a well-known part of the art of confocal microscopy.
According to one aspect of the invention there is provided spectral discrimination apparatus for use in a scanning optical microscope, the spectral discrimination apparatus comprising dispersive means and frequency selective means including a rotatable member or members given a form which, on rotation of the member or members, controls the frequency of light transmitted by the apparatus. The apparatus preferably includes a detector for receiving light from the frequency selective means.
The (or each) rotatable member is preferably positioned at an aperture plane after the dispersive means, although this is not essential if the rotatable member has its outer periphery shaped to provide a cam surface engaged by a cam follower movement of which controls the frequency of light transmitted by the apparatus.
Where a single rotatable member acts selectively to block or transmit light, the member is formed or shaped to provide the required blocking or transmission of light, and this may be achieved by furnishing the rotatable member with opaque and transmissive regions, with one or more light-transmitting apertures in an otherwise opaque rotatable member, or by shaping the outer periphery of the rotatable member to control the passage of light past the rotatable member.
Where a pair of rotatable members are employed, they may be rotated about the same axis, or about spaced parallel axes, the members cooperating together to provide the required light blocking and transmission, for example by the outer peripheries of the members being shaped to define a light-transmitting slot between them.
The or each rotatable member may be in the form of a disc-like member and the or each member can be continuously rotated (for example at high speed to facilitate switching between lines in raster scanning) or rotated in a step-wise fashion between indexed positions. The rotation may cause a particular waveband or wavebands of light to be transmitted and this waveband may vary with angular rotation or may be invariable.
According to another aspect of the invention there is provided a method of spectral discrimination in a scanning optical microscope, comprising dispersing the light and passing the light through frequency selective means in which the form of a rotating member or members controls the frequency of transmitted light.
In the preferred embodiment of the invention, the microscope is a confocal microscope equipped in its emission light path (corresponding to 14 in
The frequency selection means, consisting in the simplest embodiment of a thin perforated disc, or an opaque disc with transparent regions, or a number of such discs, is positioned after the dispersive element and in the aperture plane containing the streak in such a way that the perforations control the admission of light of different wavelengths to the detector. Such discs can be produced very cheaply and controlled by a single cheap rotary motor or a small number of such motors, which can effect a switch of wavelength much more rapidly than the linear actuators of Engelhardt. The rotation of the disc to definite angular positions allows the wavelength of detection to be varied in steps. The disc can also be spun continuously to achieve high speeds of switching or subjected to an angular rotary vibration, so alternating rapidly between positions or scanning through a series of such positions.
The position, shape and size of the perforations in the disc are computed to allow correction for anomalous dispersion effects in glass prisms or to compensate for variation in detector sensitivity with wavelength. Perforations or other markers are optionally provided on the disc or discs or on devices mounted on the same axle or moving in coordination with the discs to allow the disc position to be determined electronically. Similar perforations or markers are optionally provided to serve to switch the incident light from a laser or lasers or other light sources in the confocal microscope.
The invention will now be further described, by way of example, with reference to the accompanying drawings, in which:
Referring to
Three different embodiments of the selector disc 36 are shown in
Disc 42 is a different embodiment, in which a continuous spiral slot 50 is formed in the disc. This allows the detection waveband to be scanned continuously through the spectrum as the disc is rotated and the transmission window moves across the dispersed light field 43.
Components 44 and 45 shown in
Numerals 57 and 58 show a disc and light field respectively, in which the profile of the disc edge has two spiral forms, and 59 and 60 a similar arrangement but with four spirals combined in one disc. Discs 57 and 59 could be used singly or in combination with other discs as in 46, 51 and 53 to provide more rapid scanning through the spectrum of wavelengths for a given motor speed.
Also included in the invention are discs, or elements mechanically linked to the discs, which bear slots or markers (including electronic sensors such as Hall effect sensors) with functions other than the selection of detected wavebands. These include simple perforations to identify a home position of the disc (e.g. by means of a slotted opto-switch), or encoder regions to allow an unambiguous readout of disc position or slots or markers allowing direct shuttering or indirect switching of illumination for the microscope. For example, the same disc that controls the detection wavelength may, according to the invention, switch to an appropriate laser from a choice of several lasers, simultaneously with switching detection waveband.
Also included are discs in which the transmissive regions have optical filter properties, either incorporated into the material of the disc or attached thereto and rotating with the disc.
The invention also includes forms in which the spectral region is defined not directly by a disc, but by a cam-follower which follows the profile of a rotating cam and is thereby translated in such a way as to block a variable portion of the spectrally dispersed light.
Also included in the invention are a number of modes of operation. These include rotational movements of the disc or discs to successive indexed positions, i.e. the successive presentation of different selector disc positions by rotational steps of fixed angular size, and the continuous rotation of the selector disc or discs to facilitate more rapid switching of detection waveband, for example switching between lines in a raster scanning system. It is also envisaged that the disc or discs may be rotated, either continuously or in distinct angular increments, in an angular oscillatory fashion, for example, to alternate repeatedly between two or more detection wavebands. In a favoured mode of operation, the disc embodiments 46, 51, 54, 57 and 59 are rotated continuously while monochromatic light, such as from a laser, is reflected into the spectrometric system. As the disc is rotated, the point of breakthrough of this light of known wavelength is detected and from this, the wavelength scale of the instrument can be calibrated automatically.
By this means, each disc of the compound embodiments can be calibrated independently.
Also included in the invention are microscope systems in which plural detectors are used, placed in the light path subsequent to the selector disc. This includes systems in which other means of chromatic separation are used in combination with the selector disc, for example means of chromatic separation can be placed before or after the selector disc, or even on the selector disc by using colour filters fixed or cemented to the surface of the disc.
Number | Date | Country | Kind |
---|---|---|---|
0221014.4 | Sep 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB03/02437 | 6/4/2003 | WO | 00 | 7/10/2006 |