This invention relates to spectroscopic apparatus and methods. It is particularly useful in Raman spectroscopy, though it can equally be used in other forms of spectroscopy, e.g. using fluorescence, narrow-line photoluminescence or cathodoluminescence.
An example of Raman spectroscopic apparatus is shown in U.S. Pat. No. 5,689,333 (Batchelder et al). Light from a laser source is focussed to a spot on a sample. Interaction between the light and the molecules of the sample causes Raman scattering into a spectrum having frequencies and wavenumbers which are shifted relative to the exciting laser frequency. After filtering out the laser frequency, a dispersive device such as a diffraction grating disperses this scattered Raman spectrum across a two-dimensional photodetector array, e.g. in the form of a charge-coupled device (CCD). Different molecular species have different characteristic Raman spectra, and so the effect can be used to analyse the molecular species present. The Raman spectrum can also give other information, such as the local stresses or strains in the sample.
If the apparatus is set up to disperse the spectrum widely across the CCD, to provide high spectral resolution, then only a part of the spectrum can be received at any one time. To acquire data from a wider spectrum, one prior art method is to expose one part of the spectrum onto the CCD for a sufficient time, and then to read all of the data relating to that part of the spectrum from the CCD into a computer. Next the diffraction grating is indexed so that the next part of the spectrum is received by the CCD, sufficient exposure time is allowed, and all the data from that part of the spectrum is read into the computer. The above process is repeated as often as is necessary. However, this step-and-repeat method has a disadvantage during subsequent computer processing of the data, because it can be difficult to stitch together the separate blocks of data acquired from the separate parts of the spectrum. This is especially true if there have been changes in the background light level between the separate exposures, or if other conditions have altered.
U.S. Pat. No. 5,689,333 therefore describes an improved data acquisition method. At a given point in time, a part of a Raman spectrum is dispersed along a row or column of the CCD with the desired high spectral resolution. The diffraction grating is moved so as to scan the spectrum along the column or row of pixels, in the direction of the dispersion. Synchronously with this, the charge accumulated in the CCD from exposure to the spectrum is shifted from one pixel to the next within the row or column. The charge from each wavenumber within the spectrum thus continues to accumulate as the scan proceeds, and is read out sequentially into an output register of the CCD, and thus into the computer.
This method has the advantage of collecting data uniformly, without the need to stitch parts of the spectrum together subsequently in the computer. Furthermore, since each pixel in the spectrum is read out of the CCD only once, readout noise is added to each pixel only once.
The present invention seeks to provide an alternative to the above method, and apparatus for carrying it out. One situation in which an alternative would be useful is where the CCD is mounted in the apparatus such that the direction in which charge is shifted within the CCD lies orthogonal to the direction of spectral dispersion. That situation applies, for example, in the apparatus described in our publication number WO 2008/090350.
One aspect of the present invention provides spectroscopic apparatus comprising:
Preferably, the apparatus is arranged to expose the row or column of detector elements to at least a part of the spectrum and to read data from the column or row of detector elements into corresponding storage elements of the output register. The exposure may be repeated and data may be read into corresponding storage elements of the output register while the spectrum moves.
Thus, in contrast to U.S. Pat. No. 5,689,333, the data is moved and accumulated synchronously with the movement of the spectrum, not in the row or column of detector elements, but in the output register. This takes place orthogonally to the direction of any movement of the data from the detector elements towards the output register.
A preferred embodiment of the invention will now be described by way of example, with reference to the accompanying drawings, wherein:
Referring to
The illumination by the exciting laser beam generates scattered light, e.g. Raman scattered light at different frequencies/wavenumbers. This is collected by the microscope objective 24 and directed towards a two-dimensional photodetector array 34. It passes via the mirror 18, filter 20, a slit 35 (which may act confocally to control the depth resolution of the instrument), mirrors 36, a diffraction grating 38 and a focussing lens 37.
The preferred two-dimensional photodetector 34 is a commercially available CCD detector. However, other detectors are possible. The diffraction grating 38 disperses the spectrum of scattered light across the surface of the CCD 34, in a direction X′, at a desired high spectral resolution. It is motorised to rotate as indicated by an arrow R, under the control of the computer 32, so as to move the spectrum on the CCD 34 in the direction X′
The filter 20 serves a dual purpose. Firstly, it reflects the exciting laser illumination from the laser 10, so as to inject it into the optical path towards the microscope 22 and sample 26. Secondly, it rejects Rayleigh scattered light having the same frequency as the illuminating laser beam and passes only the Raman spectrum of interest towards the CCD detector 34. A variety of different types of dielectric filter having such properties may be used, including for example a holographic filter (which may be placed at a low angle of incidence to the optical path as shown). If desired, more than one such filter may be provided in series, to improve the rejection of Rayleigh scattered light.
Many of the features of the arrangement described so far are to be found in U.S. Pat. No. 5,689,333, which is incorporated herein by reference for further details.
At one edge, parallel with the direction of dispersion X′, the CCD comprises an output register 64, having a row of storage elements. At one end, the output register has an output circuit 66 which reads the data out into the computer 32. The operation of the CCD is under the control of the computer 32, via control lines 68, 70. The line 68 causes data in the detector elements to be shunted row by row towards the output register 64, in the direction Y′. The line 70 causes data in the output register to be shunted towards the output circuit 66, as indicated by the arrow 72, parallel to X′.
The operation of the apparatus is as follows. The detector elements are exposed to the spectrum 62, and charge accumulates in them accordingly. This is then shifted row by row towards corresponding storage elements of the output register 64, by control signals on line 68. Where several adjacent rows are exposed to the spectrum, as shown, they are binned together into the corresponding output register elements at this time.
Next, the diffraction grating 38 is rotated (under computer control) to move the spectrum in the direction X′ (towards the right as seen in
In practice, there do not need to be discrete movements of the grating 38; it can move continuously at an appropriate speed, with the movements of data in the CCD chip in the directions Y′ and 72 controlled to match. All the data is read sequentially into the computer 32, via the output circuit 66.
It is possible to shutter the CCD between movements, though in practice we have found this to be unnecessary.
The method described has the advantage of collecting data uniformly, without the need to stitch parts of the spectrum together subsequently in the computer. Furthermore, since each pixel in the spectrum is read out of the CCD only once, readout noise is added to each pixel only once.
These advantages can be achieved with the CCD 34 oriented orthogonally to that in U.S. Pat. No. 5,689,333, allowing it to be used in other ways such as described in our publication number WO 2008/090350.
In practice, it is desirable to ensure that the spectrum 62 is incident on the CCD as near as possible to the output register. This is because it is necessary to bin the blank rows between the spectrum and the output register in with the desired signal. To reduce noise, e.g. from cosmic rays, it is desirable to bin as few empty rows as possible for each shift of the output register. In practice, there may be, say, ten blank rows and two rows of containing the spectrum. The control on line 68 then bins twelve rows for each single shift of the output register controlled by line 70.
After binning these twelve rows into the output register, the entire detector array may be charge cleared, to get rid of any accumulated noise. This may be performed by shifting the charge up, away from the output register, by thirteen rows. More generally, if charge is shifted into the output register using n row transfers, then the clearing step is performed with n+1 row transfers away from the output register. In this way, the unused part of the CCD is slowly but continually cleared away from the area used.
In an alternative arrangement, it is possible to focus the spectrum directly onto the output register 64, so that light is detected by the elements of the output register themselves, with no vertical charge transfer. The spectrum is then moved as above, synchronously with the movement of charge through the output register, so that the charge from a given wavenumber accumulates as previously.
If desired, it is possible to phase synchronise the acceptance of the spectrum and the charge clearing with flashing of the laser illumination of the sample on and off. For example, if the sample is subject to undesired fluorescence as well as the desired Raman scattering, then this enables reduction of the fluorescence signal (which will persist after the illumination ceases.) Or the fluorescence can be measured separately from the Raman signal during the “off” period, and later subtracted in the computer. That can be done using a CCD having two output registers, one above and one below the region of interest. The Raman signal is shifted into one of the registers, and then the fluorescence signal into the other.
Number | Date | Country | Kind |
---|---|---|---|
0708582.2 | May 2007 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2008/001582 | 5/2/2008 | WO | 00 | 9/29/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/135766 | 11/13/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3625613 | Abell et al. | Dec 1971 | A |
3733131 | Mould | May 1973 | A |
3853404 | Barrett | Dec 1974 | A |
3914055 | Wolga et al. | Oct 1975 | A |
3999854 | Barrett | Dec 1976 | A |
4030827 | Delhaye et al. | Jun 1977 | A |
4081215 | Penney et al. | Mar 1978 | A |
4195930 | Delhaye et al. | Apr 1980 | A |
4397556 | Muller | Aug 1983 | A |
4586819 | Tochigi et al. | May 1986 | A |
4648714 | Benner et al. | Mar 1987 | A |
5011284 | Tedesco et al. | Apr 1991 | A |
5112127 | Carrabba et al. | May 1992 | A |
5153670 | Jannson et al. | Oct 1992 | A |
5164786 | Delhaye et al. | Nov 1992 | A |
5166813 | Metz | Nov 1992 | A |
5173748 | Bilhorn | Dec 1992 | A |
5442438 | Batchelder et al. | Aug 1995 | A |
5689333 | Batchelder et al. | Nov 1997 | A |
5754291 | Kain | May 1998 | A |
7265828 | Levine | Sep 2007 | B2 |
20020039186 | Rosenberg | Apr 2002 | A1 |
20030048933 | Brown et al. | Mar 2003 | A1 |
20050006595 | Goodwin et al. | Jan 2005 | A1 |
20090310132 | Bennett et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
29 35 812 | Mar 1981 | DE |
40 17 317 | Dec 1991 | DE |
0 324 583 | Jul 1989 | EP |
0 407 773 | Jan 1991 | EP |
0 442 206 | Aug 1991 | EP |
0 465 350 | Jan 1992 | EP |
0 502 752 | Sep 1992 | EP |
2.130.269 | Nov 1972 | FR |
1 345 642 | Jan 1974 | GB |
1 577 198 | Oct 1980 | GB |
2 241 350 | Aug 1991 | GB |
A 53-47892 | Apr 1978 | JP |
A 60-53834 | Mar 1985 | JP |
A 60-174934 | Sep 1985 | JP |
A 62-269048 | Nov 1987 | JP |
A 3-116004 | May 1991 | JP |
WO 9007108 | Jun 1990 | WO |
WO 9111703 | Aug 1991 | WO |
WO 9217806 | Oct 1992 | WO |
WO 2008090350 | Jul 2008 | WO |
WO 2008135766 | Nov 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100097603 A1 | Apr 2010 | US |