This invention relates to spectroscopy systems, for example, Raman spectroscopy systems.
A known Raman spectroscopy system is described in U.S. Pat. No. 5,442,438, which is incorporated herein by reference.
In
Whereas the filter 16 reflects light of the laser wavelength, it transmits the Raman-shifted wavenumbers. While doing so, it rejects the much more intense laser line. Further rejection of the laser line takes place in a second, identical filter 26. The Raman-shifted light then passes through a Raman analyser 28, which as described in U.S. Pat. No. 5,442,438 may comprise a diffraction grating, or filters which accept specific Raman lines of interest. The resulting light is then passed to a detector 30. This may for example comprise a charge-coupled device (CCD), across which a Raman spectrum may be dispersed by a diffraction grating. Or a filter may pass a two-dimensional image of the sample to the CCD, in light of a selected Raman wavenumber.
The notch or edge filters 16,26 may be holographic filters, as described in U.S. Pat. No. 5,442,438. Or they may be thin film multi-layer dielectric filters, such as for example the hard oxide filters supplied by Semrock Inc, Rochester, N.Y., USA under the trademark RazorEdge. Such filters are described in U.S. Pat. No. 7,068,430, incorporated herein by reference.
The filter 16 is necessarily placed at an angle to the optical path, in order to inject the light from the light source 10 towards the sample 24. However, in order to provide a sharp cut-off between the rejection of the laser line and the acceptance of Raman-scattered light at wavenumbers close to the laser line, U.S. Pat. No. 5,442,438 describes that this angle should be a low angle of incidence, such as 10°. The second filter 26 is similarly placed at the same low angle of incidence, to provide matching performance. In practice, angles of between 7.5° and 13° are used, but other angles are also possible.
Even at such low angles of incidence, however, polarisation effects reduce the sharpness of the cut-off. The larger the angle of incidence, the greater the problem. Specifically, the cut-off for p-polarised light is different from that for s-polarised light, by an amount which depends on the angle of incidence. It follows that the transmission characteristic of the filter shows a step or shelf in the cut-off edge at around 50% transmission for randomly polarised light. This results in polarisation artefacts in the resulting spectra measured by the device.
A first aspect of the present invention provides a spectroscopy system comprising:
A second aspect of the invention provides a filter arrangement, comprising:
Preferably, both filters are tilted about respective axes with respect to the optical path, the axes being generally orthogonal to each other.
Embodiments of the invention will now be described by way of example, with reference to the accompanying drawings, wherein:
The present embodiments of the invention are in most respects the same as described above with respect to
The first notch or edge filter 16 is of the same type as in
However, the second filter 26 is arranged differently, as shown at 26A in
It would of course be possible to arrange the filters the other way around, so that the first filter was tilted about a vertical axis while the second filter was tilted around a horizontal axis. Any other substantially orthogonal arrangement could be used instead. Where the incident laser light 13 is to be injected into the optical path 15 by the filter 16, then of course it would need to be delivered to the filter 16 at an appropriate angle.
As can be seen in
In the prior art arrangement of
Therefore, when the scattered light passes through the filters 16 and 26A in series as it travels along the optical path 15, the combined transmission characteristic is as shown in
In an advantageous arrangement, the axis of tilt (32 or 34) for the first filter 12 is chosen such that the rejection curve which is further from the laser line L matches the input laser polarisation. E.g. a filter with the
The invention is not restricted to the use of filters tilted about orthogonal axes as shown in
For example, such an arrangement is shown in
Alternatively, as shown in
If it is desired to return the light to its original polarisation state, a second half-wave plate could be included in the path 15, before or after the filter/half-wave plate arrangements shown in
The embodiments described may incorporate the various alternatives discussed above in relation to
Furthermore, the system is not restricted to Raman spectroscopy. It may be used for other kinds of spectroscopic analysis, such as fluorescence, narrow-line photoluminescence and cathodoluminescence.
Number | Date | Country | Kind |
---|---|---|---|
0620141.2 | Oct 2006 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/021705 | 10/11/2007 | WO | 00 | 3/13/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/045497 | 4/17/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4147974 | Greenwood | Apr 1979 | A |
4606054 | Amitay et al. | Aug 1986 | A |
5442438 | Batchelder et al. | Aug 1995 | A |
5689333 | Batchelder et al. | Nov 1997 | A |
6636304 | Gilby | Oct 2003 | B2 |
7068430 | Clarke et al. | Jun 2006 | B1 |
7239782 | Treado et al. | Jul 2007 | B1 |
20050185305 | Nishima et al. | Aug 2005 | A1 |
20050248759 | Wang et al. | Nov 2005 | A1 |
20060135861 | Lucassen et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
01-287448 | Nov 1989 | JP |
A-1-287448 | Nov 1989 | JP |
A-2003-279899 | Oct 2003 | JP |
2004-029438 | Jan 2004 | JP |
A-2004-29438 | Jan 2004 | JP |
A-2007-93965 | Apr 2007 | JP |
Entry |
---|
Semrock, “Edge Filter Spectra vs. Angle of Incidence,” http://www.semrock.com/Catalog/Raman—SpectrumvsAOl.htm, downloaded Mar. 23, 2006, pp. 1-4. |
Japanese Office Action mailed Jun. 29, 2012 in Japanese Patent Application No. 2009-532403 (with translation). |
Number | Date | Country | |
---|---|---|---|
20090310131 A1 | Dec 2009 | US |