This invention relates to Air-To-Ground (ATG) communications and, in particular, to a communication system that provides communication devices, which are served by a communication network located on an aircraft, with high speed Air-To-Ground communications service by the reuse of the radio frequency spectrum presently used by Geostationary Satellite Services extant in the volume of space in which the aircraft operates.
It is a problem in the field of Air-To-Ground (ATG) communications, such as between aircraft and ATG ground stations, to provide sufficient bandwidth to carry the communications between the communication devices, which are served by a communication network (wired or wireless) located on the aircraft, and ATG ground stations which are connected to terrestrial communication networks. The collection of ATG ground stations used for this purpose implement a traditional cellular network, with each ATG ground station consisting of a “cell site.” There are limited choices of spectrum which are available for this purpose, which choices are also limited by the ability to implement the corresponding radio frequency antennas on the aircraft.
The typical ATG cellular communications network consists of a number of terrestrial (ground) ATG base stations, each of which provides a radio frequency coverage area in a predetermined volume of space, radially arranged around the cell site transmitting and receiving antennas. This terrestrial base station uses antenna patterns which are less sensitive to the reception of ground-originating or ground-reflected signals and which antenna patterns are primarily focused on the area between the horizon and zenith. The terrestrial base stations are geographically distributed, generally following a typical cellular communications network layout. Terrestrial base stations can also be co-located near airports to enable network coverage when aircraft are on the ground; in this case, the antenna patterns are optimized for terrestrially-located aircraft. The boundaries of the coverage area of each terrestrial base station are substantially contiguous with that of neighboring sites so that the composite coverage of all of the terrestrial base stations in the ATG cellular communications network generally provides coverage over the targeted area. Terrestrial base stations may provide either a single omni-cell of coverage using transceiver(s) associated with a single transmit-and-receive antenna system or multiple sectors within the area of coverage of the site, each with associated transceivers and the associated transmit-and-receive antennas. The advantage of the latter arrangement, with multiple sectors per terrestrial base station, is to allow provision of increased call and data traffic handling capacity in the coverage area of that terrestrial base station.
The present radio frequency spectrum which is available for this purpose limits the total available traffic handling capacity in any single cell. Thus, the radio frequency communications link between the aircraft and the terrestrial base stations of the ATG cellular communications network has limited capacity and, as passengers utilize the aircraft network for Internet browsing and broadband file downloads, the channel capacity becomes exhausted before the demand is served in its entirety. More advantageous spectrum choices are presently unavailable, because they are dedicated for pre-existing uses, such as satellite communications.
The above-described problems are solved and a technical advance achieved in the field by the present Spectrum Sharing Between An Aircraft-Based Air-To-Ground Communication System And Existing Geostationary Satellite Services (termed “Spectrum Sharing System” herein) which implements spectrum reuse between aircraft-based Air-To-Ground (ATG) communication systems and Geostationary Satellite Service systems. This is accomplished by managing the radio frequency transmissions in the volume of space in which the aircraft operates, with interference between the Spectrum Sharing System and the Geostationary Satellite Service system being reduced by implementing reversed uplink and downlink radio frequency paths in the common spectrum. The Spectrum Sharing System also avoids interfering with Geostationary Satellite Services' earth stations which are pointed towards the satellites' orbital arc by relying upon a combination of the earth stations' highly directive antenna patterns and the Spectrum Sharing System ground station antenna pattern, and to avoid interfering with satellites in their orbital arc by assuring that power levels radiated in that direction by the Spectrum Sharing System ground stations are below the level that would create interference.
The present Spectrum Sharing System thereby provides increased bandwidth to provide communication devices, which are served by a communication network located on an aircraft, with high speed Air-To-Ground communications service, since the selected frequencies provide greater bandwidth than those presently in use in ATG communications or can be used to supplement the ATG frequencies presently in use. Interference between the Spectrum Sharing System and the Geostationary Satellite Service system is reduced by implementing reversed uplink and downlink radio frequency paths in the common spectrum. Furthermore, one of the conditions for mitigation of interference between the two systems is that the transmission of the Spectrum Sharing System ground station is outside of the main beams of the Geostationary Satellite Service earth station antennas. This means that, in the Northern Hemisphere, the Spectrum Sharing System ground station needs to be transmitting in a southerly direction into the back lobe of the earth station antenna of the Geostationary Satellite Service system, which is transmitting in a southerly direction toward the Geostationary satellites; and in the Southern Hemisphere, the Spectrum Sharing System ground station needs to be transmitting in the northerly direction into the back lobe of the earth station antenna of the Geostationary Satellite Service system, which is transmitting in a northerly direction toward the Geostationary satellites.
As shown in
Interference from the Spectrum Sharing System 11 to the Geostationary Satellite Service system 13 is more significant than the interference in the opposite direction due to the differences in signal power and the highly directional antenna patterns used in the Geostationary Satellite Service system 13. There are two primary cases of this interference between Spectrum Sharing System 11 and Geostationary Satellite Service system 13 as is illustrated in
The interference in Case 1, where the aircraft radio frequency transmissions on frequency F2 interfere with the satellite received radio frequency signals, is relatively low. On the ground, Geostationary Satellite Service signals on frequency F1 are extremely weak unless received by an accurately pointed high gain antenna, such as that used by the earth station 13G of the Geostationary Satellite Service system 13. Geostationary Satellite Service earth station antennas are usually high gain antennas that radiate only through a very narrow beam upwardly directed toward the satellite 14 with which the Geostationary Satellite Service earth station 13G communicates. With a minimum precaution in the location of the Spectrum Sharing System ground stations 11G, this interference can be easily avoided.
From the interference mitigation standpoint, use of antennas with highly discriminating patterns on both ends of the Spectrum Sharing System spectrum would be highly beneficial. Additional techniques that may be used for interference mitigation are:
As an example, when viewed from the continental US, the orbit of a geostationary satellite is in a southerly direction. All of the Geostationary Satellite Service earth station antennas, therefore, are pointing towards the south. Depending on the latitude of the earth station, only a portion of the geostationary arc of the satellite is visible. The situation is illustrated in
Consider an earth station at the latitude/longitude location given by a pair of coordinates (LES, lES). Coordinate LES is the earth station latitude, while lES is the earth station longitude. Using simple geometry, one can easily demonstrate the following relationships:
Quantities AZE and AZW are azimuth angles from the earth station towards far east and far west points on the visible portion of the geostationary arc. These two angles provide maximum theoretical range of directions where the earth station antenna may point. In practical scenarios, the range is always narrower than what is provided by equations (3) and (4).
As an illustration, Table 1 provides values for lE, lW, AZE, and AZW for two earth stations. The first one is located in Melbourne, Fla., while the second one is in Chicago, Ill. In the Melbourne area, the azimuth for the earth station antennas must fall within the range of from 95.51° to 273.49°. For the Chicago earth stations, the pointing range extends from 99.33° to 269.67°.
Referring back to the radio frequency reuse scenario presented in
The power spectrum density of the interference from the Spectrum Sharing System ground station transmission at the back lobe of the earth station antenna may be calculated as:
S
I
=S
ATG
G
ATG(θ)−PLdB=EiRP/W−PLdB (6)
One may assume that the impact of the Spectrum Sharing System ground station transmission becomes negligible when the SI in equation (6) falls below the noise floor by a certain threshold. That is:
EiRP/W[dBm/MHz]≦10 log(kT)+PLdB−TdB+90 (7)
Table 2 is generated using equation (7) and assuming TdB=3 dB. The table specifies the maximum Effective Isotropic Radiated Power (EiRP) per MHz allowed for the ground-to-air transmission. The use of the table is illustrated through a following simple example.
Consider a Spectrum Sharing System ground station in a location that is 20 km away from the closest Geostationary Satellite Service earth station. The allowed ground station power spectrum density is 23 dBm/MHz (i.e., 200 mW/MHz). Assuming the Spectrum Sharing System uplink operation is 20 MHz of the spectrum, the overall EiRP is 36.04 dBm (4 W).
(*)The EiRP values are calculated assuming 20 MHz channel
Based on Table 2, the allowed power spectral density for Spectrum Sharing System uplink transmission is relatively low. The table assumes that there is no additional attenuation from the back lobe of the earth station antennas. Also, the table is derived assuming no discrimination from the Spectrum Sharing System ground station antenna. In the practical implementation, these additional factors should be evaluated on the basis of required data rates and Spectrum Sharing System cell site link budgets.
Evaluation of the Interference from Aircraft-Based Transmissions to the Satellite Receiver
From the standpoint of the satellite receiver, the energy transmitted from the Spectrum Sharing System aircraft adds to the noise temperature of the satellite receiver antenna. The satellite receiver antenna is pointing toward the earth, which has a nominal noise temperature of 290K. Therefore, as long as the power spectrum density produced by the Spectrum Sharing System aircraft transmission is significantly smaller than the power spectrum density of the thermal noise generated by the earth's radiation, the impact of the spectrum sharing is negligible. The power spectral density of the Spectrum Sharing System aircraft transmission depends on the EiRP of the aircraft, the bandwidth of the Spectrum Sharing System service, and the number of aircraft that are operating at any given time within the main beam of the satellite antenna.
The power spectral density of the thermal noise received by the satellite antenna may be calculated as:
The power spectral density of the interference to the satellite receiver that is caused by the transmission from the Spectrum Sharing System aircraft may be estimated as:
Where n is the number of aircraft within the main beam of the satellite antenna, SA is the radiated power spectral density of a single aircraft and the Free Space Path Loss (FSPL) in the linear domain.
By converting equation (9) into log domain, one obtains:
N
A[dBW/Hz]=10 log(n)+SA[dBW/Hz]−FSPLdB (10)
Let TdB be a threshold value that specifies the difference between the power spectral densities of thermal noise and the interference caused by operating Spectrum Sharing System aircraft. In other words:
T
dB
=N
0[dBW/Hz]−NA[dBW/Hz] (11)
By combining equations (10) and (11), one obtains the limit on transmit power spectrum density of a single aircraft:
S
A[dBm/MHz]=N0[dBW/Hz]+FSPLdB−10 log(n)−TdB+90 (12)
Equation (12) is used to generate the family of curves presented in
Consider a case when the Spectrum Sharing System is operating on 1,000 aircraft within the volume of space covered by the satellite receiver antenna. Assume that the protection threshold is set to Tadd=20 dB, and that all of the aircraft are in the main beam of the satellite receiver antenna. According to
One point to note is that the presented analysis is on the worst case side. There are additional factors that would reduce the interference from the Spectrum Sharing System aircraft to the satellite receiver. Some of those factors, which were neglected in the analysis, may be listed as follows:
Spectrum sharing between the Spectrum Sharing System and the Geostationary Satellite Service is possible. However, to make the sharing technically feasible, careful management of the interference between the Spectrum Sharing System ground station and the Geostationary Satellite Service earth station receiver side is required.
This application is a Continuation-In-Part of U.S. patent application Ser. No. 12/137,995 filed on Jun. 12, 2008; which is a Continuation-In-Part of U.S. patent application Ser. No. 10,730,329 filed on Dec. 7, 2003, now U.S. Pat. No. 7,113,780 issued Sep. 26, 2006; and also is a Continuation-In-Part of U.S. patent application Ser. No. 11/492,545 filed on Jul. 24, 2006, now U.S. Pat. No. 7,751,815 issued Jul. 6, 2010; which is a Continuation of U.S. patent application Ser. No. 10/730,329 filed on Dec. 7, 2003, now U.S. Pat. No. 7,113,780 issued Sep. 26, 2006. This application also is a Continuation-In-Part of U.S. patent application Ser. No. 12/423,555 filed on Apr. 14, 2009, which is a Continuation of U.S. patent application Ser. No. 10/730,329 filed on Dec. 7, 2003, now U.S. Pat. No. 7,113,780 issued Sep. 26, 2006. The foregoing applications are hereby incorporated by reference to the same extent as though fully disclosed herein.
Number | Date | Country | |
---|---|---|---|
Parent | 10730329 | Dec 2003 | US |
Child | 11492545 | US | |
Parent | 10730329 | Dec 2003 | US |
Child | 12423555 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12137995 | Jun 2008 | US |
Child | 13172539 | US | |
Parent | 11492545 | Jul 2006 | US |
Child | 12137995 | US | |
Parent | 12423555 | Apr 2009 | US |
Child | 10730329 | US |