The invention concerns in general the technology of decoding digitally encoded speech. Especially the invention concerns the technology of generating a wide frequency band decoded output signal from a narrow frequency band encoded input signal.
Digital telephone systems have traditionally relied on standardized speech encoding and decoding procedures with fixed sampling rates in order to ensure compatibility between arbitrarily selected transmitter-receiver pairs. The evolution of second generation digital cellular networks and their functionally enhanced terminals has resulted in a situation where full one-to-one compatibility regarding sampling rates can not be guaranteed, i.e. the speech encoder in the transmitting terminal may use an input sampling rate which is different than the output sampling rate of the speech decoder in the terminal. Also the linear prediction or LP analysis of the original speech signal may be performed on a signal that has a narrower frequency band than the actual input signal because of complexity restrictions. The speech decoder of an advanced receiving terminal must be able to generate an LP filter with a wider frequency band than that used in the analysis, and to produce a wideband output signal from narrowband input parameters. The generation of a wideband LP filter from existing narrowband information has also wider applicability.
The higher frequencies that are missing from the signal are estimated by taking the LP filter (not separately shown) from block 103 and using it to implement an LP filter as a part of a vocoder 105 which uses a white noise signal as its input. In other words, the frequency response curve of the LP filter in the low frequency sub-band is stretched in the direction of the frequency axis to cover a wider frequency band in the generation of a synthetically produced high frequency sub-band. The power of the white noise is adjusted so that the power of the vocoder output is appropriate. The output of the vocoder 105 is high-pass filtered (HPF) in block 106 in order to prevent excessive overlapping with the actual speech signal on the low frequency sub-band. The low and high frequency sub-bands are combined in the summing block 107 and the combination is taken to a speech synthesizer (not shown) for generating the final acoustic output signal.
We may consider an exemplary situation where the original sampling rate of the speech signal was 12.8 kHz and the sampling rate at the output of the decoder should be 16 kHz. The LP analysis has been performed for frequencies from 0 to 6400 Hz, i.e. from zero to the Nyquist frequency which is one half of the original sampling rate. Consequently the narrowband decoder 103 implements an LP filter the frequency response of which spans from 0 to 6400 Hz. In order to generate the high frequency sub-band, the frequency response of the LP filter is stretched in the vocoder 105 to cover a frequency band from 0 to 8000 Hz, where the upper limit is now the Nyquist frequency regarding the desired higher sampling rate.
A certain degree of overlap is usually desirable, although not necessary, between the low and high frequency sub-bands; the overlap may help to achieve optimal subjective audio quality. Let us assume that an overlap of 10% (i.e. 800 Hz) is aimed at. This means that in the narrowband decoder 103 the whole frequency response of 0 to 6400 Hz (i.e. 0-0.5Fs with the sampling rate Fs=12.8 kHz) of the LP filter is used, and in the vocoder 105 effectively only the frequency response of 5600 to 8000 Hz (i.e. 0.35Fs−0.5Fs with the sampling rate Fs=16 kHz) of the LP filter is used. Here “effectively” means that because of the high pass filter 106, the lower end of the frequency response does not have an effect on the output of the upper signal processing branch. The frequency response of the wideband LP filter in the range of 5600 to 8000 Hz is a stretched copy of the frequency response of the narrowband LP filter in the range of 4480 to 6400 Hz.
The drawbacks of the prior art arrangement become noticeable in a situation where the frequency response of the narrowband LP filter has a peak in its upper region, close to the original Nyquist frequency.
Various prior art arrangements are known for complementing the principle of
The use of a look-up table in searching for the characteristics of a suitable wideband filter may help to avoid disasters of the kind shown in
It is an object of the present invention to present a speech decoder and a method for decoding speech where the expansion of a frequency band is made in a flexible way which is computationally economical and imitates well the characteristics that would be obtained by originally using a wider bandwidth.
The objects of the invention are achieved by generating a wideband LP filter from a narrowband one so that extrapolation on the basis of certain regularities in the narrowband LP filter poles is utilized.
According to the invention a speech processing device comprises
The invention applies also to a digital radio telephone which is characterized in that it comprises at least one speech processing device of the above-mentioned kind.
Additionally the invention applies to a speech decoding method which comprises the steps of:
Several well-known forms of presentation exist for LP filters. Especially there is known a so-called frequency domain representation, where an LP filter can be represented with an LSF (Line Spectral Frequency) vector or an ISF (Immettance Spectral Frequency) vector. The frequency domain representation has the advantage of being independent of sampling rate.
According to the invention a narrowband LP filter is dynamically used as a basis for constructing a wideband LP filter by means of extrapolation. Especially the invention involves converting the narrowband LP filter into its frequency domain representation, and forming a frequency domain representation of a wideband LP filter by extrapolating that of the narrowband LP filter. An IIR (Infinite Impulse Response) filter of a high enough order is preferably used for the extrapolation in order to take advantage of the regularities characteristic to the narrowband LP filter. The order of the wideband LP filter is preferably selected so that the ratio of the wideband and narrowband LP filter orders is essentially equal to the ratio of the wideband and narrowband sampling frequencies. A certain set of coefficients are needed for the IIR filter; these are preferably obtained by analyzing the autocorrelation of a difference vector which reflects the differences between adjacent elements in the narrowband LP filter's vector representation.
In order to ensure that the wideband LP filter does not give rise to excessive amplification close to the Nyquist frequency, it is advantageous to place certain limitations to the last element(s) of the wideband LP filter's vector representation. Especially the difference between the last element in the vector representation and the Nyquist frequency, proportioned to the sampling frequency, should stay approximately the same. These limitations are easily defined through differential definitions so that the difference between adjacent elements in the vector representation is controlled.
The novel features which are considered as characteristic of the invention are set forth in particular in the appended claims. The invention itself, however, both as to its construction and its method of operation, together with additional objects and advantages thereof, will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
a illustrates the principle of the invention,
b illustrates the application of the principle of
a illustrates the use of a narrowband input signal to extract the parameters of a narrowband LP filter in an extracting block 310. The narrowband LP filter parameters are taken into an extrapolation block 301 where extrapolation is used to produce the parameters of a corresponding wideband LP filter. These are taken into a vocoder 105 which uses some wideband signal as its input. The vocoder 105 generates a wideband LP filter from the parameters and uses them to convert the wideband input signal into a wideband output signal. Also the extracting block 310 may give an output, which is a narrowband output.
b shows how the principle of
The frequency response curve of the LP filter in the low frequency sub-band is not simply stretched to cover a wider frequency band; nor are the narrowband LP filter characteristics used as a search key to any library of previously generated wideband LP filters. The extrapolation which is performed in block 301 means generating a unique wideband LP filter and not just selecting the closest match from a set of alternatives. It is a truly adaptive method in the sense that by selecting a suitable extrapolation algorithm it is possible to ensure a unique relationship between each narrowband LP filter input and the corresponding wideband LP filter output. The extrapolation method works even when little is known beforehand about the narrowband LP filters that will be encountered as input information. This is a clear advantage over all solutions based on look-up tables, since such tables can only be constructed when it is more or less known, into which categories the narrowband LP filters will fall. Additionally, the extrapolation method according to the invention requires only a limited amount of memory, because only the algorithm itself needs to be stored.
The use of the wideband LP filter obtained from block 301 in the generation of a synthetically produced high frequency sub-band may follow the pattern known as such from prior art. White noise is fed as input data into the vocoder 105 which uses the wideband LP filter in producing a sample stream representing the high frequency sub-band. The power of the white noise is adjusted so that the power of the vocoder output is appropriate. The output of the vocoder 105 is high-pass filtered in block 106 and the low and high frequency sub-bands are combined in the summing block 107. The combination is ready to be taken to a speech synthesizer (not shown) for generating the final acoustic output signal.
We will now provide a detailed analysis of the operations performed in the various functional blocks introduced above in
LSF vectors can be represented in either cosine domain, where the vector is actually called the LSP (Line Spectral Pair) vector, or in frequency domain. The cosine domain representation (the LSP vector) is dependent of the sampling rate but the frequency domain representation is not, so if e.g. the decoder 103 is some kind of a stock speech decoder which only offers an LSP vector as input information to the extrapolation block 301, it is preferable to convert the LSP vector first into an LSF vector. The conversion is easily made according to the known formula
where the subscript n generally denotes “narrowband”, ƒn(i) is the i:th element of the narrowband LSF vector, qn(i) is the i:th element of the narrowband LSP vector, Fs,n is the narrowband sampling rate and nn is the order of the narrowband LP filter. Following the definition of LSP and LSF vectors, nn is also the number of elements in the narrowband LSP and LSF vectors.
In the embodiment shown in
where the subscript w generally denotes “wideband”, ƒw(i) is the i:th element of the wideband LSF vector, k is a summing index, L is the order of the extrapolation filter and b((i−1)−k) is the ((i−1)−k):th element of the extrapolation filter vector. In other words, as many elements as there were in the narrowband LSF vector are exactly the same at the beginning of the wideband LSF vector. The rest of the elements in the wideband LSF vector are calculated so that each new element is a weighted sum of the previous L elements in the wideband LSF vector. The weights are the elements of the extrapolation filter vector in a convolutional order so that in calculating ƒw(i), the element ƒw(i−L) which is the most distant previous element contributing to the sum is weighted with b(L−1) and the element ƒw(i−1) which is the closest previous element contributing to the sum is weighted with b(0).
The extrapolation formula (2) does not limit the value of nw, i.e. the order of the wideband LP filter. In order to preserve the accuracy of extrapolation, it is advantageous to select the value of nw so that
meaning that the orders of the LP filters are scaled according to the relative magnitudes of the sampling frequencies.
The requirement that the wideband LP filter should not produce excessive amplification on frequencies close to the Nyquist frequency 0.5 Fs,w can be formulated with the help of the difference between the last element of each LP filter vector and the corresponding Nyquist frequency, where the difference is further scaled with the sampling frequency, according to the formula
The above-given limitations (3) and (4) to the wideband LP filter restrict the selection of nw and the definition of the extrapolation filter. Exactly how the restrictions are implemented is a matter of routine workshop experimentation. One advantageous approach is to define a difference vector D so that
D(k)=ƒw(k)−ƒw(k−1),k=nn, . . . , nw−1 (5)
and to limit the difference vector somehow, e.g. by requiring that no element D(k) in the difference vector D may be greater than a predetermined limiting value, or that the sum of the squared elements (D(k))2 of the difference vector D may not be greater than a predetermined limiting value. An LP filter has typically either low- or high-pass filter characteristics, not band-pass or band-stop filter characteristics. The predetermined limiting value can have a relation to this fact in such a way that if the narrowband LP filter has low-pass filter characteristics, the limiting value is increased. If, on the other hand, the narrowband LP filter has high-pass filter characteristics, the limiting value is decreased. Other applicable limitations that refer to the difference vector D are easily devised by a person skilled in the art.
Next we will describe some advantageous ways of generating the filter vector b. The locations of the LP filter poles tend to have some correlation to each other so that the difference vector D the elements of which describe the difference between adjacent LP vector elements comprises certain regularity. We may calculate an autocorrelation function
where
and find its maximum, i.e. the value of the index k which produces the highest degree of autocorrelation. We may denote this value of the index k as m. An advantageous way of defining the filter vector b is then
This way the filter vector b follows the regularity of the narrowband LP filter. Even the new elements of the extrapolated wideband LP filter inherit this feature through the use of the filter b in the extrapolation procedure.
It is naturally possible that the autocorrelation function (6) does not have a clear maximum. To take these cases into account we may define that the extrapolation filter vector b must model all regularities in the narrowband LP filter according to their importance. Autocorrelation may be used as a vehicle of such a definition, for example according to the formula
The more general definition (9) converges towards the above-given simpler definition (8) if there is a clear maximum peak in the autocorrelation function.
The LSF vector representation of the wideband LP filter is ready to be converted into an actual wideband LP filter which can be used to process signals that have a sampling rate Fs,w. For those cases where the LSP vector representation of the wideband LP filter is preferable, an LSF to LSP conversion may be performed according to the formula
It should be noted that the cosine domain into which the conversion (10) is performed has the Nyquist frequency at 0.5 Fs,w, while the cosine domain from which the narrowband conversion (1) was made had the Nyquist frequency 0.5 Fs,n.
The overall gain of the obtained wideband LP filter must be adjusted in a way known as such from the prior art solutions. Adjusting the gain may take place in the extrapolation block 301 as shown as sub-block 404 in
A speech decoder alone is not enough for translating the spirit of the invention into advantages conceivable to a human user.
A part of the baseband block 705 is shown in more detail in
The baseband block 705 is typically a relatively large ASIC (Application Specific Integrated Circuit). The use of the invention helps to reduce the complicatedness and power consumption of the ASIC because only a limited amount of memory and a fractional number of memory accesses are needed for the use of the speech decoder, especially when compared to those prior art solutions where large look-up tables were used to store a variety of precalculated wideband LP filters. The invention does not place excessive requirements to the performance of the ASIC, because the calculations described above are relatively easy to perform.
Number | Date | Country | Kind |
---|---|---|---|
20000524 | Mar 2000 | FI | national |
Number | Name | Date | Kind |
---|---|---|---|
5455888 | Iyengar et al. | Oct 1995 | A |
5581652 | Abe et al. | Dec 1996 | A |
5978759 | Tsushima et al. | Nov 1999 | A |
6539355 | Omori et al. | Mar 2003 | B1 |
6675144 | Tucker et al. | Jan 2004 | B1 |
6681202 | Miet et al. | Jan 2004 | B1 |
6732075 | Omori et al. | May 2004 | B1 |
Number | Date | Country |
---|---|---|
0658874 | Jun 1995 | EP |
WO 9852187 | Nov 1998 | EP |
WO 9857436 | Dec 1998 | EP |
6 85607 | Dec 1994 | JP |
8 76798 | Mar 1996 | JP |
8 76799 | Mar 1996 | JP |
8 123495 | May 1996 | JP |
9 90992 | Apr 1997 | JP |
2001 565171 | Aug 2001 | JP |
WO 9949454 | Sep 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20010027390 A1 | Oct 2001 | US |