The present embodiments relate to measuring devices and, more particularly, to the operation of measuring equipment.
U.S. Pat. No. 4,949,274 (Omega Engineering, Inc.), incorporated herein by reference, discloses measuring devices, and in particular electronic multimeters, which measure various parameters such as electric current, voltage and resistance, via hand-held measurement probes which are brought into contact with circuits or components to be tested. The multimeters visually display the sensed signals, i.e. the measured values or test results. The multimeters disclosed in this U.S. patent also have built-in speech synthesizers enabling the meters to speak the measured values in addition to displaying them visually. The synthesizer circuitry is designed to accommodate a replaceable speech module, so that different language modules may be inserted into the meters. This allows the meter design to remain the same whilst enabling the language spoken by the meter to be changed to suit the country in which the meter is to be used.
Other forms of apparatus which incorporate speech synthesizers include vehicle navigation systems which give the driver verbal route directions, and aircraft instrument systems which give the pilot verbal warnings and instructions for corrective procedures.
In one exemplary embodiment, an apparatus includes receiving circuitry for receiving a signal, and a speech module for converting the signal into speech.
In another embodiment, a method includes receiving a signal from at least one measuring device, and converting the signal into speech.
In yet another embodiment, a system includes a measuring device; a sensor for providing a measurement signal; and a verbalizer module connected between the measuring device and the sensor having receiving circuitry for receiving the measurement signal; a speech module for converting the signal into speech, and a port for providing the signal to the measurement device, wherein the operation and presence of the verbalizer module is transparent to the measuring device as if the measuring device is receiving signals directly from the sensor.
The foregoing aspects and other features of the disclosed embodiments are explained in the following description, taken in connection with the accompanying drawings, wherein:
Although the embodiments disclosed will be described with reference to the embodiments shown in the drawings, it should be understood that the embodiments disclosed can be embodied in many alternate forms of embodiments. In addition, any suitable size, shape or type of elements or materials could be used.
The measuring device 1 includes a housing 2, and is operable by two hand-held contact probes 3 and 4. Contact probe 3 is a neutral, reference or “cold” probe and is used to contact the negative or ground test point of a circuit under test, whilst probe 4 is the live, sensing or “hot” probe which is used to contact a live or positive test point.
The housing 2 contains known meter circuitry including a processor (not shown), a visual display such as a digital LCD display 5, and function select button switches 6a and 6b. The upper rows of buttons 6a are test format buttons which enable the user to select the particular parameter to be measured (e.g. including voltage, current, resistance and temperature); the scale or range to be used (e.g. including volts or millivolts); and any other function defining a parameter test procedure which is required by the meter circuitry to accurately measure and report test results.
The lower rows of buttons 6b are report format buttons which enable the user to select the desired report format, e.g. store measured values in memory for later display/recording, continuous readout, periodic readout, number of significant digits, and any other functions defining reporting procedures that may be required.
The contact measurement probes 3 and 4 are removable, and are connected to the meter circuitry via flexible leads and plugs 7 and 8 which plug into corresponding sockets in the meter housing. At their free ends, the probes have handles 9 and 10 to facilitate manual manipulation. The handle 10 of the hot probe 4 incorporates a control unit including switches 11a, 11b. The control unit is connected to the processor or other circuitry in the meter housing via multiple conductors in the probe, to enable the user optionally to change the meter functions remotely via the handle 10 instead of directly via the meter switches 6a, 6b. As disclosed in our aforesaid U.S. patent, the switches 11a, 11b are push-button selector switches which, each time that they are pressed, trigger the processor to cycle or advance stepwise through the various options of the respective test format and report format.
The measuring device also incorporates a data output connector 12, such as a telephone jack socket or RS 232 port, for enabling test results to be periodically or continuously transmitted to a peripheral device.
As shown in
In a basic form of speech module, the microprocessor 15 stores the meter data, i.e. the measured values/test results, and translates the data into signals that causes the speech chip 16 to enunciate, via the speaker, headphones, etc., the data visually displayed on the meter display 5. However, the microprocessor can also be programmed and/or controlled to cause the speech chip 16 to enunciate data or information not displayed by the visual display 5, or in greater detail. For example, the enunciated data can give the measured values to more or less significant digits, and/or can give the data in different test or report modes, and/or can be the result of further processing by the microprocessor. Additionally or alternatively, the enunciated data can take the form of verbal warnings and/or instructions to the user, if the data received from the meter deviates from predetermined acceptable parameters, such as predetermined values or ranges. The speech module thus possesses additionally capabilities not possessed by the measuring device itself.
In order to select the required output, the speech module 13 incorporates appropriate test and/or report format switches or key pads (not shown) similar to those (6a, 6b) incorporated into the measuring device 1. Switch means are also provided to activate and deactivate the synthesized speech facility. Furthermore, the speech module 13 can also incorporate other facilities of the measuring device itself, such as a visual display. Incorporation/duplication of measuring device facilities in the speech module are particularly advantageous if the speech module and the user are located remote from the measuring device 1. In this event, it will be appreciated that the data input line 14 to the speech module could be replaced by a radio or other wireless link. This can be effected, for example by a transmitter or transceiver plugged into the meter data output socket 12, and a receiver or transceiver incorporated in the speech module, or plugged into the speech module data input socket.
In the embodiment of
The speech module 13 can be relatively unsophisticated, as described earlier with reference to
The internal circuitry of the speech module 40 shown in
The devices which provide inputs to the speech module can include voltage etc. sensors (e.g. contact probes), temperature sensors (e.g. thermocouples), pressure sensors, frequency sensors, flow sensors, pulse sensors, humidity sensors, pH sensors, conductivity sensors and many other types of sensors or detectors connected directly to the speech module, and represented generically in
An external power supply 43 is connectable to the speech module to power the module via an internal voltage regulator circuit 44, although alternatively or as a back-up, the module can be powered by an internal battery 45.
The devices which receive outputs from the speech module can include meters or other apparatus/instrumentation incorporating processors and optionally a networking capability, connected to the module (as in the
The foregoing apparatus/devices usually require a digital output from the module, but an analog output 42e can be provided, for example for driving analog devices such as an analog panel meter or an analog recorder.
The output-receiving devices can also include an external relay 42f connectable to an internal alarm circuit. The relay, in operation will be connected to an audible or visible alarm which warns the user if a predetermined desired or undesired value or condition is sensed or is imminent.
The speech module circuitry incorporates a signal conditioning circuit 46 including a mV amplifier 46a, scaling and/or linearizing amplifier 46b and analog-to-digital converter 46c. The circuit 46 conditions the incoming signal, as is necessary with certain types of sensors, before it is applied to the module microprocessor/controller 15. The circuit 46 also incorporates a cold junction compensation circuit 46d which may be required as a reference when the input is derived from a temperature sensor such as a thermocouple. The manner in which this circuit functions will be apparent from U.S. Pat. No. 6,074,089 (Omega Engineering, Inc), incorporated herein by reference. The microprocessor 15 may then provide the conditioned signal to the voice chip 16. The voice chip 16 in addition to providing an output to speaker 49 may also be capable of providing a voice representation back to microprocessor 15 for output to the network interface 42c through the interface circuit 47. The voice representation may then be provided to any suitable networked device connected to the network interface.
When the speech module is connected in the
When the speech module is connected in the
The speech module is preferably able to enunciate in different languages. This can be achieved for example, by the use of software, by the installation of interchangeable different language voice chips 16, by using a multi-lingual voice chip, or by language selection using the keypad switch 48 or external PC 42c.
The synthesized speech modules described and illustrated possess numerous advantages.
A speech module in accordance with an exemplary embodiment is capable of doing more than enunciate verbally what is seen on a meter, controller, readout device screen, a recorder, or graphic presentation device. It is capable of verbally providing instructions and information that cannot be displayed. For example, if a sensor is part of a heart-monitoring device, and there is no visual screen, a verbal indication of the pulse or erratic behavior thereof with instructions as to what steps are to be taken is essential. Similarly, if, for example, a device is used to measure temperature, not only can the temperature be verbally reported by the speech module in situations where there is not an opportunity to visually observe the indication, but also various steps to be taken can be stored in the module and verbally stated. The module can enunciate the time the information was provided audibly.
Another example is that if flow rate is being measured, the speech module can audibly indicate not only the flow rate, but also indicate the quantity of material that flows from Time A to Time B. The module can also be set to audibly give readings at particular time intervals as required, or to indicate the time to set or reset parameters. For example, the module could say:
An individual speech module can be used with or accommodate more than one type of signal. For example, a temperature control input device could also be used as a millivolt input device or a resistance-measuring device.
The speech module can contain a microprocessor and can be programmable by the use of software from a PC so as to provide different functions and settings. The module can also be programmable by external remote control as well as by internal and external controls.
The speech module can incorporate signal range adjustments such that it can provide a greater range of verbal enunciation than an indicator can display visually. For example a visual panel meter or controller can indicate temperature to a 10th of a degree whereas the module can verbally indicate the temperature to a 100th of a degree, even though it is not visually observable.
The speech module can also have the ability to perform certain functions internally that are not part of the readout device or recorder. For example, if a simple circular chart recorder is recording temperature or pressure variations over time, the speech module could have a built-in on/off controller or Proportional Integral Derivative (PID) controller. Therefore, the module can add various control features to the readout or recording device as required.
The speech module can also possess storage capabilities, and include data logging functions and recording functions.
The speech module can be connectable to a PC with RS-232, RS-422 serial communications, Ethernet, RS-485 and RS-488 serial links, USB, and other links.
The speech module can have, in addition to speech outputs, both analog and digital outputs.
The speech module provides an enhancement to any device that indicates or records a parameter, in that it verbally enunciates and/or controls information, instructions and data that is not displayed by the controlling or recording device. The module can verbally give information in addition to that provided by the device to which it is connected, to enhance the performance of the device.
Referring now to
The module 413 may include a microprocessor 415, a memory 415a, a speech synthesizer 416 connected to the microprocessor 415, a speech recognition module 460 connected to the microprocessor 415, and a transceiver 480 connected to the microprocessor 415.
The speech synthesizer 416 may be substantially similar to speech synthesizer 16 described above with respect to
The speech recognition unit 460 may be any suitable software or hardware implemented recognition unit capable of converting audible sounds into resulting analog or digital signal. The resulting signals may be used to, for example, control the module 413 as will be described in greater detail below. The speech recognition module 460 may be connected to, for example a microphone 470. The microphone 470 may be integral to the module 413. In other embodiments the microphone 470 may be a peripheral device that is connected to the module 413 through, for example, a suitable wired or wireless connectivity port. For example the speech recognition unit may be configured to receive signals from for example, wireless microphones including, but not limited to Bluetooth, Zigbee, radio frequency, infrared and cellular compatible headsets and the like.
The module 413 may be configured so that it may be controlled through the speech recognition unit 460. For example, the module 413 may recognize certain words or phrases spoken by a user and then perform the appropriate action. In one embodiment, when programming the module 413 with respect to the ranges to be measured, the module 413 may be configured or programmed to recognize voice commands including, but not limited to, “low limit”, “high limit”, “low alarm” or “high alarm”. In this example, if the limits/alarms are not set the module 413 may prompt the user to specify a value for each limit/alarm after the command is spoken. If the limits/alarms have been previously set when the commands are spoken the module 413 may audibly indicate the corresponding value. In alternate embodiments the corresponding values for each command may be presented on a display of the module 413 and/or on the display of one or more measuring devices 490a-490n connected to the module 413. In still other alternate embodiments the corresponding values for each command may be presented to a user aurally and visually. Other commands that may be recognized by the module 413 for operating the module may include, but are not limited to, “start data logging”, “stop data logging”, “start measurement”, “stop measurement”, “send data wirelessly”, “engineering units” (which may allow the user to specify English, Si or any other suitable units of measure) and the like. It is noted that while English commands are described herein the module may be configured to recognize commands from any suitable language. In other embodiments, the module 413 may be configured to recognize any suitable commands.
The voice commands recognized by the module may also be user definable. For example, the module 413 may have a set up menu with voice record features where a user can associate the voice recording with a function of the module 413 and/or the connected measurement devices. The user may also be able define engineering units as desired. For example, if a user wants to use a particular engineering unit, such as degrees Kelvin, the user may use the voice record feature to record the word “Kelvin” and may associate appropriate characteristics, in this instance, a temperature scale, with the newly defined engineering unit. A user may subsequently select the newly defined engineering unit for use.
In alternate embodiments, the user may be able to configure macros (i.e. a series of on or more commands) so that the macros are initiated through the voice commands. Although the programming of the module 413 is described above through the use of voice commands, it is noted that the module may also include keys or any other suitable input for programming the module 413. For example, the module 413 may be programmed using a personal computer connected to the module or keypad of the module 413. In alternate embodiments, the module 413 may be programmed in any suitable manner.
The module 413 may be configured so that a predetermined event occurs, such as for example, a predetermined key on the module 413 is pressed or a predetermined voice command is spoken, before the module 413 can be configured or programmed. For exemplary purposes only, there may be a configuration button on the module 413 that is pressed before the module can be configured using the voice commands. In alternate embodiments, the voice command “configure limits” is spoken before the module 413 can be configured. In still other embodiments, a user of the module 413 may be able to program a user specified voice command or password that would allow the module 413 to be configured. In alternate embodiments, any suitable voice command, key or configuration access method may be utilized. The password or configuration button and/or voice command may prevent the module from entering a configuration mode while in use or sitting idle when individuals in proximity to the module 413 are having a casual or business related conversation. The password or configuration button and/or voice command may also prevent unauthorized changes made to the meter.
The transceiver 480 may be any suitable transceiver configured to allow the module 413 to transmit gathered information or to receive information from other devices. For example, as can be seen in
As another example, the transceiver may support a wired communications connection, for example, for connection with a Local Area Network (LAN), a Wide Area Network (WAN), virtual private network (VPN), or any other suitable communications connection.
The transceiver may also be configured to transmit information received by the module 413 to other external devices including, but not limited to, data storage devices, video displays, audio equipment and other meters. For example, the module may be connected to a meter 490a as will be described in greater detail below. The meter 490a may be substantially similar to the meter 1 described above with respect to
The module 413 may also have any suitable number of output ports such as, for example, port 420 that may allow any information transferred into the module from, for example, a meter to be sent to an external peripheral device 421 as if the meter was connected directly to the peripheral device 421. Examples of peripheral devices 421 include, but are not limited to, computers, storage devices, printers and modems. The output port 420 may be any suitable output port including, but not limited to, an instrument bus, universal serial bus, Firewire, RS232, RS422 serial communications, Ethernet, RS485, and RS488. It is also noted that the output port(s) 420 and the microprocessor 415 may be suitably configured so that the module 413 can communicate information to other devices through, for example, a network such as the Internet, a cellular network, a wide area network or a local area network. Likewise, in alternate the module 413 may have input ports (not shown) that are substantially similar to the output ports that are configured to allow the module 413 to receive information over the network. In other alternate embodiments the port 420 may be a bi-directional port that is capable of sending or receiving information from a peripheral device and/or a network.
The module 413 may also have any suitable number of ports for connecting the metering or measurement devices 490a-490n to the module via a wired connection. The ports 450 may include, but is not not limited to, universal serial bus, Firewire, RS232, RS422 serial communications, Ethernet, RS485, RS488, and analog input voltage and current ports. There may be separate ports for each device connected to the module 413 or the module may be connected to any suitable network to which the devices 490a-490n are connected. For example, in this embodiment measurement devices 490a and 490b are shown with individual connections while measurement devices 490c-490n are shown connected in parallel to a common bus 492.
The module 413 may be configured so that the module recognizes which meter is it receiving data from at any given time. For example, when module 413 is receiving information from meter 490a the information may be stamped with a time that the information was received or measured and the name of the meter from which the data received. In one embodiment, the meter may transmit any suitable identification information to the module 413 so the module can record which meter the data originated. For example, the meter 490a may transmit a serial number, a model number, a user assigned name, etc. In alternate embodiments, the module 413 may be user configurable so that the user can assign each meter connected to the module any suitable identifier. In still other alternate embodiments the incoming data may be identified by the input port in through which it arrived. The module 413 may be configured so that it can receive information from several meters 490a-490n at one time. In alternate embodiments, the module 413 may be configured so that it only received information from one meter at a time or from pre-designated meters. In still other embodiments, the module 413 may have any suitable switch for switching the input so that a user can specify which meter 490a-490n the module 413 is to receive data from.
It is noted that when the module 413 is connected to one or more meters the module 413 may be configured to keep track of which measurements are coming from which meters. For example, the speech synthesizer may be configured to identify which meter an annunciated measurement is coming from. For exemplary purposes only, if meter 1 is measuring temperature and meter 2 is measuring flow rate the speech synthesizer may announce “meter 1 . . . temperature is 10 degrees Celsius”, “meter 2 . . . flow rate is 2 liters per minute”, etc. In alternate embodiments any suitable announcements may be utilized. In other alternate embodiments, the module, 413 may be configured to display which meter the measurements are coming from on a display of the module. In still other alternate embodiments, the module may indicate to the user which meter the measurements are coming from in any suitable manner.
As noted above, the module may transmit information to, for example, computer/storage 496 for data logging. The information to be logged may also include the identifier from the metering device the data originated from. In other embodiments, the module 413 may be configured for data logging. The module 413 may be configured so that measurements are taken at predetermined time intervals such as for example, every 100 milliseconds, every minute, every ten minutes or any other suitable time interval. The timed measurements to be logged may be time stamped with the time and date the information was measured as well as with the identification of the meter from which the measurements were taken. For example, the memory 415a may be suitably configured to time stamp and otherwise identify the data received by the module in store it in any suitable manner for later retrieval. For example, the data logged in the memory 415a of the module 413 may be printed through a printing device connected to the module 413 or transferred to another computer/storage device for analysis and recordation. In still other embodiments, the module 413 may include a built in printer for printing the stored data.
As can be seen in
As noted above the input port(s) 551 may allow the module 513 to be networked to and exchange signals with more than one metering device 550a-550n. For example, the module may be connected to meter 550a-n, which may be substantially similar to the meters described above with respect to
In this example, the module 513 may include connectivity ports 507, 508, 580 for connecting, for example, any suitable number of measurement probes 509, 510, 540. Measurement probes 509, 510 may be substantially similar to probes 9 and 10 described above. Probe 540 may be a multifunction probe having a selector switch 541 for switching a mode of operation of the probe (e.g. switching between temperature, flow, electric, etc). The multifunction probe may work in conjunction with one or more of the probes 509, 510 or as a standalone probe. For example, the multifunction probe may be configured to be selectively operable as the positive or negative probe for measuring electrical signals, a temperature probe, a flow meter or the probe 540 may have any other suitable probing function. It is noted that the module may be configured to interface with any suitable probe or sensing device including contact probes (i.e. probes that have to contact an object to obtain a measurement) and non-contact probes (i.e. probes that do not have to contact an object for a reading) including, but not limited to, decibel meters and infrared pyrometers. The probes 509, 510, 540 may be connected to the module 513 through wired connections such as connections 503, 504, 542 or through wireless connections such as, for example, infrared, Bluetooth, Zigbee or any other suitable wireless connection.
Referring now to
The display may be any suitable display such as for example a conventional display or a touch enabled display. The keypad 648 may include any suitable keys for operating the module 640. The indicator lights may work in conjunction with the display or on their own to display any suitable information including, but not limited, to battery/power status (when the module 640 is operating by battery 645 or through an external power source 643 via voltage regulator 644), an on/off status, and wired or wireless transmission status (indicators illuminate when a transmission is occurring). A digital to analog converter and scaling amplifier 698, 699 may also be connected to the processor for producing an analog output 642e where appropriate.
An interface circuit 647 may be connected to the processor 615 so that the processor is interfaced with various devices. For example, interface circuit 647 may connect the processor to an external interface 642c and transceiver 642g. The external interface 642c may allow the module 640 to be connected to an external computer/storage device as described above so that the data received by or produced by the module 640 can be sent to the computer/storage for analysis and/or data logging. It is also noted that as described above the memory 697 may also be configured for data logging where the data logs stored in the memory 697 can be later transferred to any suitable external device. The transceiver 642g may be substantially similar to transceiver 480 described above.
The module may include signal conditioning circuit 646 having a mV amplifier 646a, a scaling and or linearizing amplifier 646b and an analog to digital converter 646c. The conditioning circuit 646 may also include a cold junction compensation circuit 646d, which may serve as a reference when the input signals are derived from a temperature sensor such as, for example a thermocouple. The conditioning circuit 646 may condition signals from various measurement instruments before the signals are transmitted to the processor 615 as described in U.S. Pat. No. 6,074,089 noted above. The conditioning circuit 646 may be configured to interface with any suitable number of metering devices and/or sensors. For example, connectivity port 642b may be connected to the conditioning circuit. The connectivity port 642b may be substantially similar to port 450 described above and allow for any suitable number of meters to be connected or networked with the module 640. External sensor port 642a may be substantially similar to ports 507, 508, 580 described above with respect to
The module 640 may also include an external relay 642f and alarm circuit 642h that may be substantially similar to relay 42f and the alarm circuit described above with respect to
In one embodiment, the module 640 may be connected to the external sensors (e.g. in between the sensors and the meter) in a manner substantially similar to that described above with respect to
Referring now to
The universal verbalizer module described herein may also be configured as a standalone unit as can be seen in
While operating, the standalone unit 790 may receive a command either through a keypad or through a voice command. The analog voice commands may be received in, for example, microphone 760, and converted through an analog to digital converter. The standalone unit may be configured using the voice commands in a manner substantially similar to that described above. The processor 700 may recognize the commands and perform the commands as described above. For, example, if a voice command to start measurements is recognized the appropriate sensors connected to the standalone unit may begin sensing stimuli. The microprocessor 700 may be configured to receive signals from a test format switching means including remote test format switches 702 and panel test format switches 704, (on the housing of the standalone unit 700) that generate and send a test format selection signal to a meter circuit 710 to cause the standalone unit 700 to operate in the selected format as is described in U.S. Pat. No. 4,949,274 (e.g. timed report format, single report format, or any other suitable format). The standalone unit 700 may include test format switching circuitry 706 to select an appropriate analog input from test probes or other input device on instructions from the microprocessor. It is noted that the switches may be digital switches that are controlled through the voice commands. The microprocessor may also be configured to receive a meter output signal indicative of one or more measured value of a stimulus (or stimuli) and generate a report signal according to a selected report format. The report format may be selected using remote report format switch 708, panel based report format switch 709, or through voice commands. The report signal may be logged (time/date stamped) in the memory 720 for later retrieval and or analysis. The report signal may also be transferred to the display 730 or presented through the speaker 744 via the speech synthesizer 740.
The standalone unit 790 may also be configured so that the unit 790 may be networked with other standalone units or modules 413, 513. When networked the standalone unit 790 may send or receive commands or other data from other standalone units or module 413, 513 (or to any suitable computer/storage unit). The standalone unit may also wirelessly transmit or receive data or commands to any suitable equipment such as, for example, the equipment described herein.
Referring now to
Referring now to
In
Any one of modules 13, 413, 513 may alternately be packaged in a rack mounted enclosure unit 1270 as shown in
It is noted that the exemplary embodiments disclosed herein may be used separately or in any combination thereof.
It should be understood that the foregoing description is only illustrative of the embodiments. Various alternatives and modifications can be devised by those skilled in the art without departing from the embodiments. Accordingly, the present embodiments are intended to embrace all such alternatives, modifications and variances that fall within the scope of the appended claims.
This is a continuation-in-part of U.S. patent application Ser. No. 10/839,096, filed May 5, 2004 which claims the benefit of U.S. Provisional Patent Application No. 60/468,584, filed on May 7, 2003, both of which are incorporated herein by reference in their entirety. This application also claims the benefit of U.S. Provisional Patent Application No. 60/913,647, filed on Apr. 24, 2007, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60913647 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10839096 | May 2004 | US |
Child | 11959686 | US |