In the drilling and completion industry, the formation of boreholes for the purpose of production or injection of fluid is common The boreholes are used for exploration or extraction of natural resources such as hydrocarbons, oil, gas, water, and CO2 sequestration. A riser pipe may be fitted at the top of the borehole as a guide for a drill stem or as a conductor for drilling fluid. As tools are taken out through the riser pipe or introduced into the borehole through the riser pipe, some oil field operators have experienced a loss of tools and other equipment downhole when the tools and equipment are accidentally dropped, resulting in a loss of time trying to retrieve such dropped objects. Additionally, considerable expense may be suffered if the dropped object cannot be retrieved. It has been previously proposed to extrapolate a speed of a cable dropped into a well by monitoring rotation of wheels that pass the cable into the well or by monitoring the cable tension, however this approach requires direct contact with the cable and is limited to spooled devices.
Another extremely undesirable experience that needs to be prevented in the drilling and completion industry is a blowout. A blowout preventer (“BOP”) is a safety valve installed in a well which may be manipulated between open and closed positions by variation of hydraulic pressure contained within a line extending from the safety valve to a control panel at a surface of the well. BOPs come in various configurations, including rams and annular preventers, and are often used in stacks. The BOP can be triggered by an electrical control signal via a cable extending from the rig, a “deadman” switch designed to automatically trigger the BOP if connection between the rig and the BOP is severed, and an acoustic control signal sent to the BOP from a surface location. In any case, the BOP is triggered when well fluids are required to be confined to the borehole. It has been previously proposed to employ slip rams of a blowout preventer to assist in the prevention of lost tubulars and tools downhole during their removal process, however this approach requires contact with the tubular or tool, is not based on the speed of the tubulars, and is limited to use during removal as it does not allow introduction into the well.
Accordingly, improvements for previous methodologies and configurations would be well received by the art.
A tubular closure assembly responsive to speed or velocity of an object, the tubular closure assembly includes at least one sensor in operable communication with an interior of a tubular, the at least one sensor sensing an object passing a first point and then a second point within the tubular; a processor receiving an output from the at least one sensor and calculating speed of the object from the first point to the second point; a control panel receiving information from the processor; and, a closure system movable between an open condition and a closed condition, and activatable to the closed condition by the control panel in response to the object moving from the first point to the second point at speed faster than a preset value or at a velocity outside a preset range.
A method of closing a tubular of a borehole, the method includes sensing an object location at a first point in the tubular; sensing the object location at a second point in the tubular; calculating a speed of the object from the first point to the second point; and activating a closure system from an open condition to a closed condition if the speed exceeds a selected value or if a velocity of the object is outside a selected range.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
As shown in
The closure assembly 10 further includes a closure system 24 that is triggerable to shut the passageway 22 of the tubular 12 when an object 14 moves downhole at a certain speed that exceeds, or is otherwise outside of a range, of a programmed limit. Thus, the prevention of dropped objects during coiled tubing, EWL, completions and drilling operations within risers and blow out preventers (“BOPs”) is provided by the closure assembly 10. In ordinary use, the closure system 24 will remain in an open or non-obstructing condition so that tools or other objects 14 can pass freely in and out of the tubular 12, as well as fluids.
In order to detect the speed of a passing object 14, two sensor devices 26, 28 are provided on the tubular 12 at a location prior to the object 14 passing the closure system 24. By “on” the tubular 12, it should be understood that the sensor devices 26, 28 may be located on a manifold on the tubular 12 or otherwise connected to the tubular 12. Depending on the type of sensors employed in the sensor devices 26, 28, the sensor devices 26, 28 may be positioned on an interior surface 30 of the tubular wall 20, on an exterior surface 32 of the tubular wall 20, or within the tubular wall 20 itself, such as in a pocket or opening in the tubular wall 20 to protect the sensor devices 26, 28 from accidental dislodgement. The sensor devices 26, 28 are provided uphole of the closure system 24, closer to the uphole end 16 of the tubular 12 than the downhole end 18 of the tubular 12. The sensor devices 26, 28, positioned at points A and B along the tubular 12 respectively, are spaced a longitudinal distance “AB” apart from each other. The first sensor device 26 is located further uphole than the second sensor device 28, so that the object 14 is first detected by the first sensor device 26 as the object 14 passes the first point A and then after a period of time by the second sensor device 28 as the object 14 passes the second point B, where the period of time depends on the distance AB and the speed of the object 14. The type of sensor devices 26, 28 employed on the tubular 12 cooperates with the objects 14 that are passing within the tubular 12 that are run into and out of the wellbore.
Objects 14 running into and out of the tubular 12 include, but are not limited to, tubing-conveyed perforating (“TCP”) guns, coiled tubing, EWL, and other tools associated with completions and drilling operations. In an exemplary embodiment, the objects 14 incorporate a sub 34 that contains an emitter 36. The emitter 36 may include radio frequency identification (“RFID”), or may emit detectable signals such as radioactive (“RA”), magnetic, acoustic, light or optics, etc. The sensor devices 26, 28 employed in the closure assembly 10 would thus respectively detect the RFID tag, RA signal, metal or magnetic field, sound waves, light or optical waves, etc. that are emitted from the emitter 36. RFID tags are easily employed as they can be applied to nearly any object 14. In an RFID embodiment, the sensor devices 26, 28 are positioned on the interior surface 30 of the tubular 12 or within the tubular wall 20 as long as the sensor devices 26, 28 are within full range of the radio waves from the RFID, since radio waves emitted by the RFID will not be able to escape through the tubular 12, assuming it is metal, because a metal tubular is a radio wave inhibiting structure. The emitter 36 may be capable of broadcasting a signal such as an acoustic signal, a magnetic field, a gamma wave signal, a recording (such as a voice), etc. The signal may be continuously broadcast, on a timer, may begin at a selected depth, may begin when contact is made with a certain chemical, when another field is encountered, upon receiving a certain start (or stop) signal, and could be configured to operate utilizing a combination of these or combinations including at least one of the foregoing. The emitter 36 utilizes a wireless signal to communicate with the sensor devices 26, 28. If necessary, the sub 34 includes an on board power source to drive the emitter 36. The source may be a battery or may be a pressure based energy source or electrochemically based energy source.
Depending on the emitter 36, the sensor devices 26, 28 may employ one of a magnet/electromagnet sensor to sense a metal moving past, a proximity sensor that detects the proximity of an object without physical contact, an induction sensor that detects metallic objects, a photo electric sensor that uses light sensitive elements to detect objects, and a capacitive sensor that detects metallic and non-metallic objects. The type of sensor devices 26, 28 chosen are those types capable of detecting the emitted medium from the emitter 36. For example, the sensor devices 26, 28 are optical if the emitter 36 is light.
In an alternative exemplary embodiment, the object does not include any particular emitting property, and the sensor devices 26, 28 sense the passing object by changes in light, acoustics, magnetic induction, etc. as the object passes. This is helpful when the dropped object is not tagged or otherwise outfitted with an emitter, such as a dropped wrench or the like. While two sensor devices 26, 28 have been described on the tubular 12, in another alternative exemplary embodiment, a single sensor device includes a speed detector such as laser gun speed detector that can take many samples by shooting short bursts of infrared laser light that reflect off of the passing object 14 and compare the change in distance between samples to calculate the speed of the object. The speed detector is alternatively a radar gun speed detector, which transmits a microwave pulse, and the frequency of the transmitted pulse is compared to the frequency of the reflection, and the difference between the two frequencies is used to calculate the speed. A separate sensor may be used to trigger initiation of the speed detector within the sensor device. In such an embodiment, sensor device 26 may be an initiating sensor while sensor device 28 includes a speed detector.
A programmable/preprogrammed microprocessor/controller, hereinafter referred to as a “computer” 38, is connected to the sensor devices 26, 28 and programmed to allow the object 14 to move at a pre-established “allowed rate” through the passageway 22 of the tubular and past the closure system 24, likely the typical running speed of the tools. Should the object 14 be dropped, the sensor devices 26, 28 will detect the emitted signal from emitter 36 or otherwise detect the passage of the object 14, the computer 38 will calculate the time it takes the object 14 to pass from point A to point B over the distance AB, and compare that time to the allowed running rate. If the allowed rate is exceeded, the computer 38 triggers a control panel 40 connected to the closure system 24. The computer 38 may also be responsive to the velocity (speed in a given direction) of the passing object 14 and may activate the closure system 24 by a change in velocity outside a preset range, or by a change in the direction of the passing object 14. For example, if an object 14 is being removed from the tubular 12 in an uphole direction and then it is dropped, the velocity of the object 14, which will indicate that the object 14 is now moving in the downhole direction, will trigger the closure system 24.
In an exemplary embodiment, the computer 38 is coupled to a manifold/control panel 40 for an accumulator “koomey” unit 42. The accumulator 42 is plumbed to the closure system 24. Manipulation of the closure system 24 from an open to a closed position may be accomplished by a variation of hydraulic pressure contained within a line 44 extending from the closure system 24 to the control panel 40. When the control panel 40 sends a signal to activate the closure system 24, a variation in hydraulic pressure is sent to the closure system 24, which manipulates the closure system 24 to a closed position. The computer 38 may be programmed to delay a closing of the closure system 24 until after a workstring, such as a gravel pack assembly, is purposefully dropped from a rig floor. Also, the sensor devices 26, 28 may be arranged to sense certain objects but not others, such that some objects may be purposefully dropped and pass freely through the tubular 12, while others trigger a sensor in the sensing devices 26, 28 which lead to a closing of the closure system 24.
Turning to
Turning to
The closure system 24 may include a dedicated valve assembly that is similar in construction to that of a blowout preventer (“BOP”). While BOPs are normally used to seal or otherwise control oil or gas wells to prevent tubing, tools, and fluid from being blown out of a wellbore during a blowout, a BOP employed in the speed activated closure assembly 10, 100, or 200 is triggered when an object 14 is detected by the pair of sensors 26, 28 or 102, 104 going a speed that is greater than an allowed rate, thus preventing the object 14 from falling into the tubular 12 or being too quickly ejected from the tubular 12.
In another exemplary embodiment shown in
In yet another exemplary embodiment shown in
In any of the above-described embodiments, instead of completely closing the tubular passageway 22, the closure system 24 may instead be designed or instructed by the computer 38 and control panel 40 to only partially close a portion of the passageway 22, such that a shoulder is formed within the passageway 22, but a fluid passageway is still enabled. That is, the rams 50, 56, 60 shown in
After the object 14 has been halted by the closure system 24, the computer 38, 202 may send a signal to the control panel 40 to re-open the closure system 24, such as after the object 14 has been recovered after being dropped, or after it is determined that the object 14 will not eject from the tubular 12 if the closure system 24 is re-opened.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Number | Name | Date | Kind |
---|---|---|---|
4577687 | Lanmon, II | Mar 1986 | A |
5839511 | Williams | Nov 1998 | A |
6543546 | Kaiser | Apr 2003 | B2 |
6776240 | Kenison et al. | Aug 2004 | B2 |
7252152 | LoGiudice et al. | Aug 2007 | B2 |
7832706 | Judge | Nov 2010 | B2 |
7934548 | Doud et al. | May 2011 | B2 |
20030089504 | Parrott et al. | May 2003 | A1 |
20040207539 | Schultz et al. | Oct 2004 | A1 |
20040226721 | Feluch et al. | Nov 2004 | A1 |
20050217365 | Ekseth et al. | Oct 2005 | A1 |
20050224229 | Blacklaw | Oct 2005 | A1 |
20090146835 | Xu et al. | Jun 2009 | A1 |
20100100329 | Ekseth et al. | Apr 2010 | A1 |
20100270464 | Kalb | Oct 2010 | A1 |
20120247770 | Roane et al. | Oct 2012 | A1 |
Entry |
---|
A. Andersen, Sintef Petroleum Research and A. Sivertsen, NTNU Department of Petroleum Engineering and Applied Geophysics, Downhole Blowout Preventer; paper prepared for presentation at 2001 SPE annual Technical Conference and Exhibit, New Orleans, Louisiana, Sep. 30-Oct. 3, 2001, SPE 71370; pp. 1-8. |
International Search Report and Written Opinion; Date of Mailing Apr. 5, 2013, Korean Intellecutaly Property Office; International Appln No. PCT/US2012/069539; International Search Report 5 pges. Written Opinion 6 page. |
Number | Date | Country | |
---|---|---|---|
20130153212 A1 | Jun 2013 | US |