The present invention generally relates to systems for controlling/assisting vehicles during backup operations, and in particular to a system that controls vehicle speed during parking and/or trailer backup operations.
Backing up a vehicle with a trailer can be a difficult task. In conventional motor vehicles, the operator must control the steering and vehicle speed while the vehicle is moving in reverse. Trailer backup assist systems have been developed to assist operators when backing up a vehicle having a trailer attached thereto.
Motor vehicles may also include active park assist systems that assist a driver during vehicle parking operations. Such systems may be configured to provide automated parking. During parking operations, the vehicle may be moved in a reverse direction.
The path that a vehicle is capable of following in reverse is limited by the design of the vehicle and trailer (if present), and road conditions. Furthermore, the path that a vehicle (and trailer) is capable of in a reverse direction may be more limited at higher vehicle speeds.
According to one aspect of the present invention, a trailer backup assist system is disclosed. The trailer backup assist system includes a hitch angle sensor configured to determine a hitch angle between a vehicle and a trailer attached thereto. An input device is configured to accept an input command corresponding to a trailer path command curvature. A controller is configured to determine a vehicle threshold speed limit by determining a first vehicle speed limit based on the hitch angle and a second speed limit based on the command curvature. The controller generates a command to limit vehicle speed in a reverse direction below the threshold speed limit.
According to another aspect of the present invention, a trailer backup assist system is disclosed. The trailer backup assist system includes a hitch angle sensor sensing a hitch angle between a vehicle and a trailer attached thereto. An input device is configured to accept a trailer path command curvature. A controller is configured to determine a maximum allowable vehicle threshold speed limit in a reverse direction as a function of the hitch angle and the desired trailer curvature.
According to yet another aspect of the present invention, a method of controlling a speed of a motor vehicle is disclosed. The method includes determining a hitch angle between a vehicle and a trailer attached to the vehicle. Next, a trailer curvature command is determined based on an input device input magnitude. A first vehicle speed limit based on the hitch angle is calculated. A second speed limit based on the trailer path curvature command is calculated. A threshold speed limit based on the first and second speed limits is then determined.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
As required, detailed embodiments of the present invention are disclosed herein. However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design and some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
Referring to
With reference to the embodiment shown in
Still referring to
The embodiment of the sensor module 44 illustrated in
The sensor module 44 generates a plurality of signals indicative of various dynamics of the trailer 12. The signals may include a yaw rate signal, a lateral acceleration signal, and wheel speed signals generated respectively by a yaw rate sensor 58 (
With reference to
The trailer backup assist controller 26 is operably connected to a brake control system 62 and a power control system 66. The vehicle 14 also includes a power steering assist system 64 including a power assist steering control module 68 and a steering angle sensor 70. The power assist steering control module 68 is operably connected to the trailer backup assist controller 26. The trailer 12 may include a hitch angle sensor 24 that is operably connected to the hitch angle sensor 24 of vehicle 14.
The hitch angle sensor 24 is configured to measure the angle of the trailer 12 relative to the vehicle 14 about a vertical axis. A hitch angle γ of zero generally corresponds to an operating condition wherein the trailer 12 is aligned with vehicle 14 such that the vehicle 14 and the trailer 12 move along a straight path. The hitch angle sensor 24 may also be configured to measure an orientation of the trailer 12 relative to the vehicle 14 about a first horizontal axis that extends side-to-side, and a second horizontal axis that extends in a vehicle 14 fore-aft direction. This enables the trailer backup assist system 10 to determine if the trailer 12 has begun to move up a slope and/or if the trailer 12 has twisted relative to vehicle 14 due to moving onto a surface that is sloped to the side. It will be understood that various hitch angle detection/measuring devices may be utilized, and the components may be mounted on vehicle 14, on trailer 12, or on both.
With reference to the embodiment of the trailer backup assist system 10 shown in
As further shown in
In alternative embodiments, some vehicles 14 have a power assist steering system 64 that allows a steering wheel 86 to be partially decoupled from movement of the steered wheels 82 of such a vehicle 14. Accordingly, the steering wheel 86 can be rotated independent of the manner in which the power assist steering system 64 of the vehicle controls the steered wheels 82 (e.g., autonomous steering as commanded by the trailer backup assist system 10). As such, in these types of vehicles 14 where the steering wheel 86 can be selectively decoupled from the steered wheels 82 to allow independent operation thereof, the steering wheel 86 may be used as a input device 18 for the trailer backup assist system 10, as disclosed in greater detail herein.
Referring again to the embodiment illustrated in
As also illustrated in
The powertrain control system 66, as shown in the embodiment illustrated in
With continued reference to
As further illustrated in
The input device 18 in the illustrated embodiment may additionally, or alternatively, include a rotational control input device for allowing a driver of the vehicle 14 to command desired trailer steering actions or otherwise select the desired input command and/or the desired curvature κ2. For instance, the rotational control input device may be a rotatable knob 20, which can be rotatable about a rotational axis extending through a top surface or face of the knob 20. In other embodiments, the rotatable knob 20 may be rotatable about a rotational axis extending substantially parallel to a top surface or face of the rotatable knob 20. Furthermore, the input device 18, according to additional embodiments, may include alternative devices for providing a desired input command or other information defining a desired backing path 16, such as a joystick, depressible buttons, sliding input devices, various controls on a portable device, various user interfaces on a touch-screen display, vision-based systems for receiving gestures, a trajectory planner or other programmable route system, and other conceivable input devices as generally understood by one having ordinary skill in the art.
Still referring to the embodiment shown in
The controller 26 may additionally or alternatively generate vehicle steering information and commands as a function of all or a portion of the information received from the input device 18, the hitch angle sensor 24, the power assist steering system 64, the vehicle brake control system 62, the trailer braking system, the powertrain control system 66, and other vehicle sensors 76 and devices. Thereafter, the vehicle steering information and commands may be provided to the power assist steering system 64 for affecting steering of the vehicle 14 to achieve a commanded path of travel for the trailer 12. The controller 26 may include the microprocessor 102 and/or other analog and/or digital circuitry for processing one or more routines. Also, the controller 26 may include the memory 104 for storing one or more routines, including a curvature routine 106, an operating routine 108, and a hitch angle estimating routine 110. It should be appreciated that the controller 26 may be a stand-alone dedicated controller or may be a shared controller integrated with other control functions, such as integrated with the sensor system 22, the power assist steering system 64, and other conceivable onboard or off-board vehicle control systems.
With reference to
With further reference to
With reference to
As shown in
δ: steering angle at steered front wheels of the vehicle;
α: yaw angle of the vehicle;
β: yaw angle of the trailer;
γ: hitch angle (γ=β−α);
W: wheel base of the vehicle;
L: length between hitch point and rear axle of the vehicle;
D: distance between hitch point and axle of the trailer or effective axle for a multiple axle trailer (axle length may be an equivalent); and
r2: curvature radius for the trailer.
One embodiment of a kinematic relationship between trailer path radius of curvature r2 at the midpoint of an axle of the trailer 12, steering angle δ of the steered wheels 82 of the vehicle 14, and the hitch angle γ can be expressed in the equation provided below. As such, if the hitch angle γ is provided, the trailer path curvature κ2 can be controlled based on regulating the steering angle δ (where {dot over (β)} is trailer yaw rate and {dot over (η)} is trailer velocity).
This relationship can be expressed to provide the steering angle δ as a function of trailer path curvature κ2 and hitch angle γ.
Accordingly, for a particular vehicle 14 and trailer 12 combination, certain parameters (e.g., D, W and L) of the kinematic relationship are constant and assumed known. V is the vehicle longitudinal speed and g is the acceleration due to gravity. K is a speed dependent parameter which when set to zero makes the calculation of steering angle independent of vehicle speed. For example, vehicle-specific parameters of the kinematic relationship can be predefined in an electronic control system of the vehicle 14 and trailer-specific parameters of the kinematic relationship can be inputted by a driver of the vehicle 14, determined from sensed trailer behavior in response to vehicle steering commands, or otherwise determined from signals provided by the trailer 12. Trailer path curvature κ2 is determined from the driver input via the input device 18. Through the use of the equation for providing steering angle, a corresponding steering command can be generated by the curvature routine 106 for controlling the power assist steering system 64 of the vehicle 14. Additionally, the controller 26 based on the driver's manipulation of the input device 18 may also predict an unacceptable backup condition. Accordingly, the trailer backup assist system 10 may set a desired command curvature κ2 speed limit based on the rotation on the manipulation of the input device 18 to assist in preventing unacceptable backup conditions.
Still referring to
In an additional embodiment, an assumption may be made by the curvature routine 106 that a longitudinal distance L between the pivoting connection and the rear axle of the vehicle 14 is equal to zero for purposes of operating the trailer backup assist system 10 when a gooseneck trailer or other similar trailer is connected with the a hitch ball or a fifth wheel connector located over a rear axle of the vehicle 14. The assumption essentially assumes that the pivoting connection with the trailer is substantially vertically aligned with the rear axle of the vehicle 14. When such an assumption is made, the controller 26 may generate the steering angle command for the vehicle 14 as a function independent of the longitudinal distance L between the pivoting connection and the rear axle of the vehicle 14. It is appreciated that the gooseneck trailer mentioned generally refers to the tongue 36 configuration being elevated to attach with the vehicle 14 at an elevated location over the rear axle, such as within a bed of a truck, whereby embodiments of the gooseneck trailer may include flatbed cargo areas, enclosed cargo areas, campers, cattle trailers, horse trailers, lowboy trailers, and other conceivable trailers with such a tongue configuration.
With reference to
The trailer backup assist system 10 may be configured to set a vehicle threshold speed limit in reverse when a trailer 12 is attached to vehicle 14 to ensure that vehicle 14 can be controlled and to prevent jackknifing or other unacceptable backup conditions.
In use, the hitch angle γ can be measured while the vehicle 14 is backing up, and the trailer backup assist system 10 limits the vehicle speed using, for example, the vehicle brakes or drivetrain such that the vehicle 14 does not exceed the maximum allowable speed even if a vehicle operator attempts to back up at a higher speed by depressing the accelerator pedal.
With reference to
As shown by the line 128, the maximum vehicle speed may not be limited to a speed that is below 7 kph until a hitch angle γ of significantly greater than 0° (e.g. 30°) is reached, and the maximum vehicle speed may then be limited by a straight line that goes to 0 at a predefined hitch angle γ (e.g. 60°). In
The maximum allowable vehicle speed for a given hitch angle γ may be determined empirically to provide a plurality of pairs of data points, and the data may be interpolated utilizing a curve fit to thereby generate a line representing the maximum allowable vehicle speed as a function of the hitch angle γ, which may be stored in an LUT. Alternatively, the maximum allowable vehicle speed as a function of a hitch angle γ may be modeled utilizing a straight (linear) line of the form y=mx+b, or a curved (non-linear) line of the form y=mx2+cx+b, or other suitable equation.
The trailer backup assist system 10 may also take into account other variables to determine the maximum allowable vehicle speed based on hitch angle γ for a given operating condition. For example, the curves (e.g., 124, 128) illustrated in
Also, the hill angle may be determined utilizing topographical information that may be stored by the trailer backup assist system 10 or obtained utilizing a GPS system. Vehicle 14 may include an electronic compass or other positioning device 74 whereby the location and orientation of vehicle 14 on a topographical map may be determined, such that the hill angle of the vehicle 14 and trailer 12 can be determined.
Also, road condition data can be obtained from a remote source, and the maximum allowable vehicle speed can be adjusted if required. For example, if weather data in the vicinity of vehicle 14 indicates that it is raining or snowing, the maximum allowable vehicle speed for a given (measured) hitch angle γ may be reduced to account for the decrease in traction. Similarly, map data concerning the road surface (e.g. gravel or paved road) may be utilized to adjust the maximum allowable vehicle speed as a function of hitch angle γ.
With reference to
The maximum allowable vehicle speed for a given input magnitude may be determined empirically to provide a plurality of pairs of data points, and the data may be interpolated utilizing a curve fit to thereby generate a line representing the maximum allowable vehicle speed as a function of the input magnitude. Alternatively, the maximum allowable vehicle speed as a function of the input magnitude of the input device 18 may be modeled utilizing a straight line, or a curved line, or other suitable equation, as described above.
In operation, a user activates the trailer backup assist system 10, and begins to back up the vehicle 14 and trailer 12. The user utilizes the input device 18 to provide the desired command curvature κ2 to the trailer backup assist system 10. The trailer backup assist system 10 utilizes vehicle speed and hitch angle γ data to determine a maximum allowable vehicle threshold speed, taking into account road conditions and the like, as discussed above.
In general, the trailer backup assist system 10 may ensure that the vehicle 14 and trailer 12 do not exceed the maximum threshold trailer angle by limiting the speed of the vehicle 14, limiting the vehicle curvature, or both. Limiting the vehicle speed can be accomplished by sending a command to the brake control system 62 and/or the powertrain control module 14. The brake control system 62 can be utilized to apply the brakes of the vehicle 14 and/or the brakes of a trailer 12 if the trailer 12 is equipped with brakes. Also, the powertrain control module 14 can be utilized to limit the amount of torque generated by the vehicle's engine and/or by down shifting the engine transmission to utilize engine braking if the vehicle 14 has an internal combustion engine. If the vehicle 14 has an electric motor 84, the powertrain system control module may utilize the electric motor 84 to provide braking. The trailer backup assist system 10 may also be configured to increase the vehicle speed if the vehicle speed and hitch angle γ are within the allowable limits.
The trailer backup assist system 10 may also be configured to control the angle of the steered wheels to ensure that the vehicle speed versus hitch angle γ (
Alternatively, the trailer backup assist system 10 may be configured to reduce the maximum threshold speed of the vehicle 14 if the input magnitude is calculated to cause unacceptable backup conditions without a reduction in speed. The unacceptable backup condition may be soon to occur, or alternatively, the controller 26 may be configured to foresee the onset of an unacceptable backup condition arising if an alteration to the maximum threshold speed is not made.
Furthermore, the trailer backup assist system 10 may be configured to prioritize the user-requested steering input from the knob 20 over the vehicle speed when determining whether to limit the vehicle speed or limit the turn angle to avoid the maximum allowable values as shown in
Also, the actual steering angle may lag the steering angle request, and the final (static) steering angle may be somewhat less than the steering request. The trailer backup assist system 10 may be configured to optimize the vehicle speed in reverse to follow the desired path 122 (
In general, the vehicle speed and steering can be controlled to optimize the vehicle path in any combination. For example, the power train system control module 66 (
The brake control system 62 may be actuated to reduce the speed of the vehicle 14 when needed by the power assist steering system 64 to keep the path error within a desirable range. Furthermore, the automatic gear selection of the vehicle 14 may be controlled, and the vehicle 14 may down shift to facilitate engine braking and reduce the risk of overheating the braking system. Still further, if the vehicle 14 is backing up with a trailer 12 attached, and if the trailer 12 has trailer brakes, the trailer brake torque may be monitored and modified to help maintain the optimum speed to support the capability of the power assist steering system 64 to position the vehicle 14 on a desired path. The trailer brake torque may be applied to help reduce the speed of the vehicle 14 when needed by the power assist steering system 64 to keep the path error within a desirable range.
Referring to
As illustrated in
As further illustrated in
Once the desired speed threshold is computed by the speed limiting controller 156, the speed limiting controller 156 generates a speed limiting command based on a desired speed threshold and a current velocity of the vehicle 14. The speed limiting controller 156 outputs data, in the form of a speed limiting command, the brake control system 62, the powertrain control system 66, and/or any other practicable system within the vehicle 14, which is then fed back to the plurality of inputs 62, 66, 142 to reassess the impacts of other vehicle characteristics impacted from the implementation of the speed limiting command or other changes to the trailer backup assist system 10. Accordingly, the speed limiting controller 156 continually processes information from the plurality of inputs 62, 66, 142 to provide accurate steering angle commands that place the trailer 12 on the desired curvature κ2 and the desired backing path 16, without substantial overshoot or harsh variations in the vehicle threshold speed limit about the desired curvature κ2.
The closed loop speed limiting controller 156 is configured such that the threshold speed limit of the vehicle 14 may be a function of both desired command curvature κ2 and hitch angle γ. As a result, the speed may be automatically limited to a range that enables consistent operation and maximum maneuverability. Speed and jackknife warnings may significantly be reduced, or may be substantially removed from the system operation altogether. Also, driver braking may only be required based on user comfort level and the desired speed for moving the trailer 12. It may not be required to keep the trailer backup assist system 10 functioning or improve the trailer backup assist system's 10 maneuverability. As described herein, the speed limiting controller 156 may determine a first speed limit based on desired command curvature κ2 and a second speed limit based on the instantaneous hitch angle γ. The speed limiting controller 156 may filter the two speed limits to determine a vehicle threshold speed limit. For example, the speed limiting controller 156 may set the vehicle threshold speed limit at the lower of the first and second speed limits. Alternatively, higher order comparative analysis may be utilized by the speed limiting controller 156, as will be described in more detail below.
With reference to
The method illustrated in
As disclosed with reference to
According to the illustrated embodiment, the trailer backup assist system 10, at step 172, compares the first maximum speed limit based on the hitch angle γ to the second maximum speed limit based on the desired command curvature κ2 and sets the vehicle threshold speed limit at the lower of the two values. Accordingly, if the first speed limit is less than the second speed limit, at step 174, the vehicle speed limit will be set at the first speed limit. If, however, the first speed limit is greater than the second speed limit, at step 176, the second speed limit is set as the threshold vehicle speed limit. The trailer backup assist system 10 can continue to repeat steps 162-178 as long as trailer backup assist system 10 remains active (step 160).
The trailer backup assist system 10 continues to monitor hitch angle γ and input device 18 to generate and implement an appropriate vehicle threshold speed, which can be done using the speed sensors 78. The trailer backup assist system 10 can then compare the first and second vehicle speed limits and determine if intervention is desired based on any comparative analysis. As discussed above, the threshold speed can be a speed at which trailer backup assist system 10 is capable of generating and implementing a steering command to prevent hitch angle γ from approaching jackknife angle γ(j) at an uncontrollable rate, which may be influenced by, among other things, the speed of the processor 192, the responsiveness of power assist steering system 64, and in particular electric steering motor 84, as well as length L of trailer 12. The speed threshold can be predetermined and stored for access by the trailer backup assist system 10 in carrying out a comparison of the first and second vehicle speed limits to the threshold speed. The speed threshold can be estimated based on the parameters provided herein, while conservatively estimating for a short trailer length L.
With reference to
As illustrated in
Accordingly, if only the primary speed limit is set, the vehicle speed limit is set at the primary speed limit. If a primary speed limit and a secondary speed limit are set, the speed limits are filtered to determine the vehicle threshold speed. The filter may be configured as a discrete-time low-pass filter of any order, continuous-time low-pass filter of any order, and/or a band-pass filter. Alternatively, the controller 26 may calculate the threshold speed based on an average of the primary and secondary speed limits, set the threshold speed limit at the higher or lower value, interpolate between any number of values, use a best fit analysis, and/or use any other comparative technique that may eliminate faults within the trailer backup assist system 10. The vehicle threshold speed may be filtered before it is passed to the feedback controller, which may help with smooth transitions between threshold speed limits.
The primary speed limit may be set based on any desired input within the trailer backup assist system 10. Likewise, the second speed limit may also be set on any other desired input. The controller 26 may then filter the first and second inputs, if more than a single input exists, based on any known method to determine an instantaneous threshold speed for the vehicle 14. Moreover, it is contemplated that the controller 26 may determine a vehicle threshold speed based on any number of inputs that are monitored by the vehicle 14 and/or the trailer 12 during utilization thereof.
With reference to
Again, the trailer backup assist system 10 can continue to cause vehicle 14 to operate at a reduced engine output and with brakes applied as long as necessary to effectively maintain vehicle speed below threshold speed. Similarly, trailer backup assist system 10 can reduce brake torque, including to zero, and can restore engine output if it has been determined that no further intervention is required. If, however, it is determined that the reduction in engine output and the application of brake torque is not sufficient to lower the speed of vehicle 14 to below the threshold speed, trailer backup assist system 10 can take further measures, including presenting a warning to the driver, including by displaying a warning message on display 100 of vehicle HMI 98 or by issuing an audible tone, such as through speaker 96. It is noted that, in various embodiments the actions described herein can be carried out in various alternative orders, including initially presenting a warning to the driver before reducing engine output and applying a brake torque. In further alternative embodiments, trailer backup assist system 10 can be configured to apply a brake torque prior to reducing engine output.
The trailer backup assist system 10, having the features shown in
It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
Furthermore, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected” or “operably coupled” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable” to each other to achieve the desired functionality. Some examples of operably couplable include, but are not limited, to physically mateable and/or physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.
It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This application is a continuation of U.S. application Ser. No. 15/284,791, which was filed on Oct. 4, 2016, entitled “SPEED CONTROL FOR MOTOR VEHICLES,” which claims benefit of U.S. Provisional Patent Application No. 62/243,475, which was filed on Oct. 19, 2015, entitled “SPEED OPTIMIZED TRAJECTORY CONTROL FOR MOTOR VEHICLES,” the entire disclosures of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3542390 | Fikes et al. | Nov 1970 | A |
3605088 | Savelli | Sep 1971 | A |
3787077 | Sanders | Jan 1974 | A |
3833928 | Gavit et al. | Sep 1974 | A |
3860257 | Mesley | Jan 1975 | A |
4040006 | Kimmel | Aug 1977 | A |
4042132 | Bohman et al. | Aug 1977 | A |
4122390 | Kollitz et al. | Oct 1978 | A |
4212483 | Howard | Jul 1980 | A |
4366966 | Ratsko et al. | Jan 1983 | A |
4735432 | Brown | Apr 1988 | A |
4752080 | Rogers | Jun 1988 | A |
4848449 | Martinet et al. | Jul 1989 | A |
4852901 | Beasley et al. | Aug 1989 | A |
4943080 | Reimer | Jul 1990 | A |
5001639 | Breen | Mar 1991 | A |
5056905 | Jensen | Oct 1991 | A |
5097250 | Hernandez | Mar 1992 | A |
5108123 | Rubenzik | Apr 1992 | A |
5108158 | Breen | Apr 1992 | A |
5132851 | Bomar et al. | Jul 1992 | A |
5152544 | Dierker, Jr. et al. | Oct 1992 | A |
5191328 | Nelson | Mar 1993 | A |
5244226 | Bergh | Sep 1993 | A |
5246242 | Penzotti | Sep 1993 | A |
5247442 | Kendall | Sep 1993 | A |
5282641 | McLaughlin | Feb 1994 | A |
5289892 | Notsu | Mar 1994 | A |
5290057 | Pellerito | Mar 1994 | A |
5455557 | Noll et al. | Oct 1995 | A |
5521633 | Nakajima et al. | May 1996 | A |
5523947 | Breen | Jun 1996 | A |
5541778 | DeFlorio | Jul 1996 | A |
5558350 | Kimbrough et al. | Sep 1996 | A |
5559696 | Borenstein | Sep 1996 | A |
5579228 | Kimbrough et al. | Nov 1996 | A |
5631656 | Hartman et al. | May 1997 | A |
5650764 | McCullough | Jul 1997 | A |
5690347 | Juergens et al. | Nov 1997 | A |
5719713 | Brown | Feb 1998 | A |
5747683 | Gerum et al. | May 1998 | A |
5821852 | Fairchild | Oct 1998 | A |
5980048 | Rannells et al. | Nov 1999 | A |
6041582 | Tiede et al. | Mar 2000 | A |
6042196 | Nakamura et al. | Mar 2000 | A |
6056371 | Lin et al. | May 2000 | A |
6124709 | Allwine | Sep 2000 | A |
6151175 | Osha | Nov 2000 | A |
6198992 | Winslow | Mar 2001 | B1 |
6217177 | Rost | Apr 2001 | B1 |
6218828 | Bates et al. | Apr 2001 | B1 |
6223104 | Kamen et al. | Apr 2001 | B1 |
6223114 | Boros et al. | Apr 2001 | B1 |
6268800 | Howard | Jul 2001 | B1 |
6292094 | Deng et al. | Sep 2001 | B1 |
6351698 | Kubota et al. | Feb 2002 | B1 |
6472865 | Tola et al. | Oct 2002 | B1 |
6480104 | Wall et al. | Nov 2002 | B1 |
6483429 | Yasui et al. | Nov 2002 | B1 |
6494476 | Masters et al. | Dec 2002 | B2 |
6498977 | Wetzel et al. | Dec 2002 | B2 |
6539288 | Ishida et al. | Mar 2003 | B2 |
6567731 | Chandy | May 2003 | B2 |
6568093 | Kogiso et al. | May 2003 | B2 |
6577952 | Geier et al. | Jun 2003 | B2 |
6668225 | Oh et al. | Dec 2003 | B2 |
6712378 | Austin | Mar 2004 | B1 |
6801125 | McGregor et al. | Oct 2004 | B1 |
6806809 | Lee et al. | Oct 2004 | B2 |
6820888 | Griffin | Nov 2004 | B1 |
6838979 | Deng et al. | Jan 2005 | B2 |
6854557 | Deng et al. | Feb 2005 | B1 |
6857494 | Kobayashi et al. | Feb 2005 | B2 |
6879240 | Kruse | Apr 2005 | B2 |
6956468 | Lee et al. | Oct 2005 | B2 |
6959970 | Tseng | Nov 2005 | B2 |
6999856 | Lee et al. | Feb 2006 | B2 |
7005974 | McMahon et al. | Feb 2006 | B2 |
7006127 | Mizusawa et al. | Feb 2006 | B2 |
7008088 | Pisciotti | Mar 2006 | B2 |
7028804 | Eki et al. | Apr 2006 | B2 |
7032705 | Zheng et al. | Apr 2006 | B2 |
7046127 | Boddy | May 2006 | B2 |
7058493 | Inagaki | Jun 2006 | B2 |
7089101 | Fischer et al. | Aug 2006 | B2 |
7154385 | Lee et al. | Dec 2006 | B2 |
7159890 | Craig et al. | Jan 2007 | B2 |
7167785 | Lohberg et al. | Jan 2007 | B2 |
7170285 | Spratte | Jan 2007 | B2 |
7171330 | Kruse et al. | Jan 2007 | B2 |
7204504 | Gehring et al. | Apr 2007 | B2 |
7219913 | Atley | May 2007 | B2 |
7225891 | Gehring et al. | Jun 2007 | B2 |
7229139 | Lu et al. | Jun 2007 | B2 |
7239958 | Grougan et al. | Jul 2007 | B2 |
7269489 | Deng et al. | Sep 2007 | B2 |
7272481 | Einig et al. | Sep 2007 | B2 |
7295907 | Lu et al. | Nov 2007 | B2 |
7401871 | Lu et al. | Jul 2008 | B2 |
7405557 | Spratte et al. | Jul 2008 | B2 |
7413266 | Lenz et al. | Aug 2008 | B2 |
7425889 | Widmann et al. | Sep 2008 | B2 |
7447585 | Tandy, Jr. et al. | Nov 2008 | B2 |
7451020 | Goetting et al. | Nov 2008 | B2 |
7463137 | Wishart et al. | Dec 2008 | B2 |
7504995 | Lawrence et al. | Mar 2009 | B2 |
7532109 | Takahama et al. | May 2009 | B2 |
7540523 | Russell et al. | Jun 2009 | B2 |
7548155 | Schutt et al. | Jun 2009 | B2 |
7568716 | Dietz | Aug 2009 | B2 |
7623952 | Unruh et al. | Nov 2009 | B2 |
7648153 | Metternich et al. | Jan 2010 | B2 |
7690737 | Lu | Apr 2010 | B2 |
7715953 | Shepard | May 2010 | B2 |
7731302 | Tandy, Jr. et al. | Jun 2010 | B2 |
7793965 | Padula | Sep 2010 | B2 |
7798263 | Tandy, Jr. et al. | Sep 2010 | B2 |
7878545 | Rhymer et al. | Feb 2011 | B2 |
7904222 | Lee et al. | Mar 2011 | B2 |
7905507 | Perri | Mar 2011 | B2 |
7950751 | Offerle et al. | May 2011 | B2 |
7953536 | Katrak | May 2011 | B2 |
7974444 | Hongo | Jul 2011 | B2 |
8010252 | Getman et al. | Aug 2011 | B2 |
8010253 | Lundquist | Aug 2011 | B2 |
8038166 | Piesinger | Oct 2011 | B1 |
8044779 | Hahn et al. | Oct 2011 | B2 |
8073594 | Lee et al. | Dec 2011 | B2 |
8157284 | McGhie et al. | Apr 2012 | B1 |
8165770 | Getman et al. | Apr 2012 | B2 |
8167444 | Lee et al. | May 2012 | B2 |
8170726 | Chen et al. | May 2012 | B2 |
8174576 | Akatsuka et al. | May 2012 | B2 |
8180543 | Futamura et al. | May 2012 | B2 |
8190364 | Rekow | May 2012 | B2 |
8191915 | Freese, V et al. | Jun 2012 | B2 |
8192036 | Lee et al. | Jun 2012 | B2 |
8215436 | DeGrave et al. | Jul 2012 | B2 |
8223204 | Hahn | Jul 2012 | B2 |
8244442 | Craig et al. | Aug 2012 | B2 |
8260518 | Englert | Sep 2012 | B2 |
8267485 | Barlsen et al. | Sep 2012 | B2 |
8280607 | Gatti et al. | Oct 2012 | B2 |
8308182 | Ortmann et al. | Nov 2012 | B2 |
8326504 | Wu et al. | Dec 2012 | B2 |
8342560 | Albers et al. | Jan 2013 | B2 |
8380390 | Sy et al. | Feb 2013 | B2 |
8380416 | Offerle et al. | Feb 2013 | B2 |
8393632 | Vortmeyer et al. | Mar 2013 | B2 |
8401744 | Chiocco | Mar 2013 | B2 |
8427288 | Schofield et al. | Apr 2013 | B2 |
8469125 | Yu et al. | Jun 2013 | B2 |
8504243 | Kageyama | Aug 2013 | B2 |
8548680 | Ryerson et al. | Oct 2013 | B2 |
8548683 | Cebon et al. | Oct 2013 | B2 |
8576115 | Basten | Nov 2013 | B2 |
8626382 | Obradovich | Jan 2014 | B2 |
8675953 | Elwell et al. | Mar 2014 | B1 |
8755984 | Rupp et al. | Jun 2014 | B2 |
8807261 | Subrt et al. | Aug 2014 | B2 |
8833789 | Anderson | Sep 2014 | B2 |
8886400 | Kossira et al. | Nov 2014 | B2 |
8888120 | Trevino | Nov 2014 | B2 |
8909426 | Rhode et al. | Dec 2014 | B2 |
8930140 | Trombley et al. | Jan 2015 | B2 |
8939462 | Adamczyk et al. | Jan 2015 | B2 |
8955865 | Fortin et al. | Feb 2015 | B2 |
9008913 | Sears et al. | Apr 2015 | B1 |
9026311 | Pieronek et al. | May 2015 | B1 |
9042603 | Elwart et al. | May 2015 | B2 |
9082315 | Lin et al. | Jul 2015 | B2 |
9108598 | Headley | Aug 2015 | B2 |
9114832 | Wang et al. | Aug 2015 | B2 |
9120358 | Motts et al. | Sep 2015 | B2 |
9120359 | Chiu et al. | Sep 2015 | B2 |
9180890 | Lu et al. | Nov 2015 | B2 |
9238483 | Hafner et al. | Jan 2016 | B2 |
9248858 | Lavoie et al. | Feb 2016 | B2 |
9315212 | Kyrtsos et al. | Apr 2016 | B1 |
9321483 | Headley | Apr 2016 | B2 |
9335162 | Kyrtsos et al. | May 2016 | B2 |
9340228 | Xu et al. | May 2016 | B2 |
9428188 | Schwindt et al. | Aug 2016 | B2 |
9623904 | Lavoie et al. | Apr 2017 | B2 |
9676377 | Hafner et al. | Jun 2017 | B2 |
9827818 | Hu et al. | Nov 2017 | B2 |
9840278 | Lavoie et al. | Dec 2017 | B2 |
20010024333 | Rost | Sep 2001 | A1 |
20010037164 | Hecker | Nov 2001 | A1 |
20020128764 | Hecker et al. | Sep 2002 | A1 |
20040017285 | Zielinski et al. | Jan 2004 | A1 |
20040021291 | Haug et al. | Feb 2004 | A1 |
20040093139 | Wildey et al. | May 2004 | A1 |
20050000738 | Gehring et al. | Jan 2005 | A1 |
20050128059 | Vause | Jun 2005 | A1 |
20050206225 | Offerle et al. | Sep 2005 | A1 |
20050206231 | Lu et al. | Sep 2005 | A1 |
20050236201 | Spannheimer et al. | Oct 2005 | A1 |
20050236896 | Offerle et al. | Oct 2005 | A1 |
20060041358 | Hara | Feb 2006 | A1 |
20060071447 | Gehring et al. | Apr 2006 | A1 |
20060076828 | Lu et al. | Apr 2006 | A1 |
20060103511 | Lee et al. | May 2006 | A1 |
20060111820 | Goetting et al. | May 2006 | A1 |
20060142936 | Dix | Jun 2006 | A1 |
20060155455 | Lucas et al. | Jul 2006 | A1 |
20060244579 | Raab | Nov 2006 | A1 |
20070027581 | Bauer et al. | Feb 2007 | A1 |
20070090688 | Haemmerling et al. | Apr 2007 | A1 |
20070132560 | Nystrom et al. | Jun 2007 | A1 |
20070152424 | Deng et al. | Jul 2007 | A1 |
20070285808 | Beale | Dec 2007 | A1 |
20080143593 | Graziano et al. | Jun 2008 | A1 |
20080147277 | Lu et al. | Jun 2008 | A1 |
20080231701 | Greenwood et al. | Sep 2008 | A1 |
20080312792 | Dechamp | Dec 2008 | A1 |
20090005932 | Lee et al. | Jan 2009 | A1 |
20090079828 | Lee et al. | Mar 2009 | A1 |
20090085775 | Otsuka et al. | Apr 2009 | A1 |
20090093928 | Getman et al. | Apr 2009 | A1 |
20090198425 | Englert | Aug 2009 | A1 |
20090228182 | Waldbauer et al. | Sep 2009 | A1 |
20090248346 | Fennel et al. | Oct 2009 | A1 |
20090300701 | Karaoguz et al. | Dec 2009 | A1 |
20090306861 | Schumann et al. | Dec 2009 | A1 |
20100063702 | Sabelstrom et al. | Mar 2010 | A1 |
20100171828 | Ishii | Jul 2010 | A1 |
20100332049 | Sy et al. | Dec 2010 | A1 |
20110001825 | Hahn | Jan 2011 | A1 |
20110018231 | Collenberg | Jan 2011 | A1 |
20110022282 | Wu et al. | Jan 2011 | A1 |
20110087398 | Lu et al. | Apr 2011 | A1 |
20110112721 | Wang et al. | May 2011 | A1 |
20110125457 | Lee et al. | May 2011 | A1 |
20110160956 | Chung et al. | Jun 2011 | A1 |
20110257860 | Getman et al. | Oct 2011 | A1 |
20120041658 | Turner | Feb 2012 | A1 |
20120086808 | Lynam et al. | Apr 2012 | A1 |
20120095649 | Klier et al. | Apr 2012 | A1 |
20120109471 | Wu | May 2012 | A1 |
20120112434 | Albers et al. | May 2012 | A1 |
20120185131 | Headley | Jul 2012 | A1 |
20120200706 | Greenwood et al. | Aug 2012 | A1 |
20120271512 | Rupp et al. | Oct 2012 | A1 |
20120271514 | Lavoie et al. | Oct 2012 | A1 |
20120271515 | Rhode et al. | Oct 2012 | A1 |
20120271522 | Rupp et al. | Oct 2012 | A1 |
20120283909 | Dix | Nov 2012 | A1 |
20120283910 | Lee et al. | Nov 2012 | A1 |
20120310594 | Watanabe | Dec 2012 | A1 |
20130024064 | Shepard | Jan 2013 | A1 |
20130027195 | Van Wiemeersch et al. | Jan 2013 | A1 |
20130082453 | Padula | Apr 2013 | A1 |
20130158863 | Skvarce et al. | Jun 2013 | A1 |
20130179038 | Goswami et al. | Jul 2013 | A1 |
20130207834 | Mizutani et al. | Aug 2013 | A1 |
20130226390 | Luo et al. | Aug 2013 | A1 |
20130250114 | Lu | Sep 2013 | A1 |
20130261843 | Kossira et al. | Oct 2013 | A1 |
20130268160 | Trombley et al. | Oct 2013 | A1 |
20140005918 | Qiang | Jan 2014 | A1 |
20140025260 | McClure | Jan 2014 | A1 |
20140052337 | Lavoie et al. | Feb 2014 | A1 |
20140058614 | Trombley et al. | Feb 2014 | A1 |
20140058622 | Trombley et al. | Feb 2014 | A1 |
20140058655 | Trombley et al. | Feb 2014 | A1 |
20140058668 | Trombley et al. | Feb 2014 | A1 |
20140067154 | Yu et al. | Mar 2014 | A1 |
20140067155 | Yu et al. | Mar 2014 | A1 |
20140085472 | Lu et al. | Mar 2014 | A1 |
20140088824 | Ishimoto | Mar 2014 | A1 |
20140160276 | Pliefke et al. | Jun 2014 | A1 |
20140172232 | Rupp et al. | Jun 2014 | A1 |
20140183841 | Jones | Jul 2014 | A1 |
20140188344 | Lavoie | Jul 2014 | A1 |
20140188346 | Lavoie | Jul 2014 | A1 |
20140210456 | Crossman | Jul 2014 | A1 |
20140218506 | Trombley et al. | Aug 2014 | A1 |
20140218522 | Lavoie | Aug 2014 | A1 |
20140222288 | Lavoie et al. | Aug 2014 | A1 |
20140236532 | Trombley et al. | Aug 2014 | A1 |
20140249691 | Hafner et al. | Sep 2014 | A1 |
20140267688 | Aich et al. | Sep 2014 | A1 |
20140267689 | Lavoie | Sep 2014 | A1 |
20140277941 | Chiu et al. | Sep 2014 | A1 |
20140277942 | Kyrtsos et al. | Sep 2014 | A1 |
20140297128 | Lavoie et al. | Oct 2014 | A1 |
20140297129 | Lavoie et al. | Oct 2014 | A1 |
20140303847 | Lavoie | Oct 2014 | A1 |
20140309888 | Smit et al. | Oct 2014 | A1 |
20140324295 | Lavoie | Oct 2014 | A1 |
20140343795 | Lavoie | Nov 2014 | A1 |
20140379217 | Rupp et al. | Dec 2014 | A1 |
20150002670 | Bajpai | Jan 2015 | A1 |
20150035256 | Klank et al. | Feb 2015 | A1 |
20150057903 | Rhode et al. | Feb 2015 | A1 |
20150066296 | Trombley et al. | Mar 2015 | A1 |
20150066298 | Sharma et al. | Mar 2015 | A1 |
20150105975 | Dunn | Apr 2015 | A1 |
20150115571 | Zhang et al. | Apr 2015 | A1 |
20150120141 | Lavoie et al. | Apr 2015 | A1 |
20150120143 | Schlichting | Apr 2015 | A1 |
20150134183 | Lavoie et al. | May 2015 | A1 |
20150138340 | Lavoie | May 2015 | A1 |
20150149040 | Hueger et al. | May 2015 | A1 |
20150158527 | Hafner et al. | Jun 2015 | A1 |
20150165850 | Chiu et al. | Jun 2015 | A1 |
20150197278 | Boos et al. | Jul 2015 | A1 |
20150203156 | Hafner et al. | Jul 2015 | A1 |
20150210254 | Pieronek et al. | Jul 2015 | A1 |
20150210317 | Hafner et al. | Jul 2015 | A1 |
20150217693 | Pliefke et al. | Aug 2015 | A1 |
20150269444 | Lameyre et al. | Sep 2015 | A1 |
20150298738 | Hoel | Oct 2015 | A1 |
20160009288 | Yu | Jan 2016 | A1 |
20160096549 | Herzog et al. | Apr 2016 | A1 |
20160129939 | Singh et al. | May 2016 | A1 |
20160152263 | Singh et al. | Jun 2016 | A1 |
20160153778 | Singh et al. | Jun 2016 | A1 |
20170073005 | Ghneim et al. | Mar 2017 | A1 |
20170101130 | Lavoie | Apr 2017 | A1 |
20170106796 | Lavoie et al. | Apr 2017 | A1 |
20170174130 | Hu et al. | Jun 2017 | A1 |
20170297619 | Lavoie et al. | Oct 2017 | A1 |
20170297620 | Lavoie et al. | Oct 2017 | A1 |
20170313351 | Lavoie | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
102582686 | Sep 2013 | CN |
3923676 | Jan 1991 | DE |
3931518 | Apr 1991 | DE |
9208595 | Sep 1992 | DE |
19526702 | Feb 1997 | DE |
10030738 | Aug 2001 | DE |
10031244 | Jan 2002 | DE |
10065230 | Jul 2002 | DE |
10122562 | Jul 2002 | DE |
10154612 | May 2003 | DE |
10312548 | May 2004 | DE |
10333998 | Feb 2005 | DE |
102004050149 | Apr 2006 | DE |
102005042957 | Mar 2007 | DE |
102005043466 | Mar 2007 | DE |
102005043467 | Mar 2007 | DE |
102005043468 | Mar 2007 | DE |
102006002294 | Jul 2007 | DE |
102006048947 | Apr 2008 | DE |
102006056408 | Jun 2008 | DE |
102008020838 | Nov 2008 | DE |
102007029413 | Jan 2009 | DE |
102008004158 | Aug 2009 | DE |
102008004159 | Aug 2009 | DE |
102008004160 | Aug 2009 | DE |
102008045436 | Mar 2010 | DE |
102006035021 | Apr 2010 | DE |
102008043675 | May 2010 | DE |
102009007990 | Aug 2010 | DE |
102009012253 | Sep 2010 | DE |
102009027041 | Dec 2010 | DE |
102009038552 | Feb 2011 | DE |
102010006323 | Aug 2011 | DE |
102010021052 | Nov 2011 | DE |
102010029184 | Nov 2011 | DE |
102010045519 | Mar 2012 | DE |
102011104256 | Jul 2012 | DE |
102011101990 | Oct 2012 | DE |
102011108440 | Jan 2013 | DE |
202012010517 | Jan 2013 | DE |
102011120814 | Jun 2013 | DE |
102012006206 | Oct 2013 | DE |
102012206133 | Oct 2013 | DE |
102012019234 | Apr 2014 | DE |
102013000198 | Jul 2017 | DE |
418653 | Mar 1991 | EP |
0433858 | Jun 1991 | EP |
1593552 | Mar 2007 | EP |
1810913 | Jul 2007 | EP |
1361543 | Apr 2014 | EP |
2388180 | Oct 2014 | EP |
2551132 | Nov 2015 | EP |
2644477 | Jul 2016 | EP |
2803944 | Aug 2016 | EP |
2452549 | Nov 2018 | EP |
2487454 | Dec 2018 | EP |
2515379 | Apr 1983 | FR |
2265587 | Oct 1993 | GB |
2342630 | Apr 2000 | GB |
2398048 | Aug 2004 | GB |
2398049 | Aug 2004 | GB |
2398050 | Aug 2004 | GB |
61006458 | Jan 1986 | JP |
6159491 | Mar 1986 | JP |
6385568 | Jun 1988 | JP |
01095980 | Apr 1989 | JP |
01095981 | Apr 1989 | JP |
09267762 | Oct 1997 | JP |
09328078 | Dec 1997 | JP |
10001063 | Jan 1998 | JP |
11124051 | May 1999 | JP |
11278319 | Oct 1999 | JP |
2002012172 | Jan 2002 | JP |
2002068032 | Mar 2002 | JP |
2003034261 | Feb 2003 | JP |
2003148938 | May 2003 | JP |
3716722 | Nov 2005 | JP |
2008027138 | Feb 2008 | JP |
2012105158 | May 2012 | JP |
2012166647 | Sep 2012 | JP |
2014002056 | Jan 2014 | JP |
8503263 | Aug 1985 | WO |
0044605 | Aug 2000 | WO |
2005005200 | Jan 2005 | WO |
2005116688 | Dec 2005 | WO |
2006042665 | Apr 2006 | WO |
2012059207 | May 2012 | WO |
2012103193 | Aug 2012 | WO |
2013186208 | Dec 2013 | WO |
2014019730 | Feb 2014 | WO |
2014037500 | Mar 2014 | WO |
2014070047 | May 2014 | WO |
2014092611 | Jun 2014 | WO |
2014123575 | Aug 2014 | WO |
2015074027 | May 2015 | WO |
Entry |
---|
F. Cuesta and A. Ollero, “Intelligent System for Parallel Parking of Cars and Tractor-Trailers”, Intelligent Mobile Robot Navigation, STAR, 2005, pp. 159-188, Springer-Verlag Berlin Heidelberg. |
Novak, Domen; Dovzan, Dejan; Grebensek, Rok; Oblak, Simon, “Automated Parking System for a Truck and Trailer”, International Conference on Advances in the Internet, Processing, Systems and Interdisciplinary Research, Florence, 2007, WorldCat.org, 13 pgs. |
SH. Azadi, H.R. Rezaei Nedamani, and R. Kazemi, “Automatic Parking of an Articulated Vehicle Using ANFIS”, Global Journal of Science, Engineering and Technology (ISSN: 2322-2441), 2013, pp. 93-104, Issue No. 14. |
“Ford Super Duty: Truck Technologies”, Brochure, Sep. 2011, 2 pages. |
Kristopher Bunker, “2012 Guide to Towing”, Trailer Life, 2012, 38 pages. |
A. Gonzalez-Cantos, “Backing-Up Maneuvers of Autonomous Tractor-Trailer Vehicles using the Qualitative Theory of Nonlinear Dynamical Systems,” International Journal of Robotics Research, Jan. 2009, vol. 28, 1 page. |
L. Chu, Y. Fang, M. Shang, J. Guo, F. Zhou, “Estimation of Articulation Angle for Tractor Semi-Trailer Based on State Observer”, ACM Digital Library, ICMTMA '10 Proceedings of the 2010 International Conference on Measuring Technology and Automation, vol. 2, Mar. 2010, 1 page. |
M. Wagner, D. Zoebel, and A. Meroth, “Adaptive Software and Systems Architecture for Driver Assistance Systems” International Journal of Machine Learning and Computing, Oct. 2011, vol. 1, No. 4, 7 pages. |
F.W. Kienhöfer; D. Cebon, “An Investigation of ABS Strategies for Articulated Vehicles”, Cambridge University, Engineering Department, United Kingdom, date unknown, 13 pages. |
C. Lundquist; W. Reinelt; O. Enqvist, “Back Driving Assistant for Passenger Cars with Trailer”, ZF Lenksysteme GmbH, Schwäbisch Gmünd, Germany, 2006 (SAE Int'l) Jan. 2006, 8 pages. |
Zhe Leng; Minor, M., “A Simple Tractor-Trailer Backing Control Law for Path Following”, IEEE, Intelligent Robots and Systems (IROS) IEEE/RSJ International Conference, Oct. 2010, 2 pages. |
Kinjo, H.; Maeshiro, M.; Uezato, E.; Yamamoto, T., “Adaptive Genetic Algorithm Observer and its Application to Trailer Truck Control System”, IEEE, SICE-ICASE International Joint Conference, Oct. 2006, 2 pgs. |
J. Roh; H. Lee; W. Chung, “Control of a Car with a Trailer Using the Driver Assistance System”, IEEE, International Conference on Robotics and Biomimetics; Phuket, Thailand, Dec. 2011, 6 pages. |
A. Gonzalez-Cantos; J.I. Maza; A. Ollero, “Design of a Stable Backing Up Fuzzy Control of Autonomous Articulated Vehicles for Factory Automation”, Dept. of Systems Engineering and Automatic Control, University of Seville, Spain, 2001, 5 pages. |
Altafini, C.; Speranzon, A.; Wahlberg, B., “A Feedback Control Scheme for Reversing a Truck and Trailer Vehicle”, IEEE, Robotics and Automation, IEEE Transactions, Dec. 2001, vol. 17, No. 6, 2 pages. |
Zare, A. Sharafi; M. Kamyad, A.V., “A New Approach in Intelligent Trailer Parking”, IEEE, 2010 2nd International Mechanical and Electrical Technology (ICMET), Sep. 2010, 1 page. |
Tanaka, K.; Sano, M., “A Robust Stabilization Problem of Fuzzy Control Systems and its Application to Backing up Control of a Truck-trailer”, IEEE Transactions on Fuzzy Systems, May 1994, vol. 2, No. 2, 1 page. |
Sharafi, M. Zare; A. Kamyad; A.V. Nikpoor, S., “Intelligent Parking Method for Truck in Presence of Fixed and Moving Obstacles and Trailer in Presence of Fixed Obstacles: Advanced Fuzzy Logic Technologies in Industrial Applications”, IEEE, 2010 International Electronics and Information Engineering (ICEIE), Aug. 2010, vol. 2, 1 page. |
Hodo, D. W.; Hung, J.Y.; Bevly, D. M.; Millhouse, S., “Effects of Sensor Placement and Errors on Path Following Control of a Mobile Robot-Trailer System”, IEEE, American Control Conference, Jul. 2007, 1 page. |
Sharafi, M. Zare; A. Kamyad; A.V. Nikpoor, S., “Intelligent Parking Method for Trailers in Presence of Fixed and Moving Obstacles”, IEEE, 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Aug. 2010, vol. 6, 1 page. |
Chieh Chen; Tomizuka, M., “Steering and Independent Braking Control for Tractor-Semitrailer Vehicles in Automated Highway Systems”, IEEE, Proceedings of the 34th IEEE Conference on Decision and Control, Dec. 1995, vol. 2, 1 page. |
P. Bolzern, R.M. Desantis, A. Locatelli, “An Input-Output Linearization Approach to the Control of an n-Body Articulated Vehicle”, J. Dyn. Sys., Meas., Control, Sep. 2001, vol. 123, No. 3, 3 pages. |
Dieter Zöbel, David Polock, Philipp Wojke, “Steering Assistance for Backing Up Articulated Vehicles”, Systemics, Cybernetics and Informatics; vol. 1, No. 5, date unknown, 6 pages. |
J.R. Billing; J.D. Patten; R.B. Madill, “Development of Configurations for Infrastructure-Friendly Five- and Six-Axle SemiTrailers”, National Research Council of Canada and Ontario Ministry of Transportation, date unknown, 11 pages. |
Jesus Morales, Anthony Mandow, Jorge L. Martinez, and Alfonso Garcia-Cerezo, “Driver Assistance System for Backward Maneuvers in Passive Multi-Trailer Vehicles”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2012, 7 pages. |
Cedric Pradalier and Kane Usher, “Experiments in Autonomous Reversing of a Tractor-Trailer System”, 6th International Conference on Field and Service Robotics, inria-00195700, Version 1, Dec. 2007, 10 pages. |
Andri Riid, Alar Leibak, Ennu Rüstern, “Fuzzy Backing Control of Truck and Two Trailers”, Tallinn University of Technology; Tallinn, Estonia, date unknown, 6 pages. |
Jane McGrath, “How to Avoid Jackknifing”, A Discovery Company, date unknown, 3 pages. |
Claudio Altafini, Alberto Speranzon, and Karl Henrik Johansson, “Hybrid Control of a Truck and Trailer Vehicle”, Springer-Verlag Berlin Heidelberg, HSCC 2002, LNCS 2289; 2002, 14 pages. |
Jujnovich, B.; Roebuck, R.; Odhams, A.; David, C., “Implementation of Active Rear Steering of a Tractor Semitrailer”, Cambridge University, Engineering Department; Cambridge, United Kingdom, date unknown, 10 pages. |
A.M.C. Odhams; R.L. Roebuck; C. Cebon, “Implementation of Active Steering on a Multiple Trailer Long Combination Vehicle”, Cambridge University, Engineering Department; Cambridge, United Kingdom, date unknown, 13 pages. |
Cedric Pradalier and Kane Usher, “Robust Trajectory Tracking for a Reversing Tractor-Trailer System”, (Draft), Field and Service Robotics Conference, CSIRO ICT Centre, Jul. 2007, 16 pages. |
Stahn, R.; Heiserich, G.; Stopp, A., “Laser Scanner-Based Navigation for Commercial Vehicles”, IEEE, 2007 IEEE Intelligent Vehicles Symposium, Jun. 2007, 1 page. |
Lee Yong H.; Weiwen Deng; Chin Yuen-Kwok Steve; McKay Neil, “Feasibility Study for a Vehicle-Trailer Backing Up Control”, Refdoc.fr, SAE Transactions, vol. 113, No. 6, 2004, 1 page. |
A.M.C. Odhams; R.L. Roebuck; B.A. Jujnovich; D. Cebon, “Active Steering of a Tractor-Semi-Trailer” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Journals, vol. 225, No. 7, Jul. 2011, 1 page. |
Haviland, G S, “Automatic Brake Control for Trucks—What Good Is It?”, TRID, Society of Automotive Engineers, Sep. 1968, 1 page. |
William E. Travis; David W. Hodo; David M. Bevly; John Y. Hung, “UGV Trailer Position Estimation Using a Dynamic Base RTK System”, American Institute of Aeronautics and Astronautics, date unknown, 12 pages. |
“VSE Electronic Trailer Steering”, ETS for Trailers, version 2009, VSE Trailer Systems B.V., 2009, 28 pages. |
“Telematics Past, Present, and Future,” Automotive Service Association, www.ASAshop.org, May 2008, 20 pages. |
“Fully Automatic Trailer Tow Hitch With LIN Bus,” https://webista.bmw.com/webista/show?id=1860575499&lang=engb&print=1, date unknown, 5 pages. |
“VBOX Yaw Rate Sensor With Integral Accelerometers,” Racelogic, www.racelogic.co.uk, date unknown, 2 pages. |
P.D.C.R Jayarathna; J.V Wijayakulasooriya; S.R Kodituwakku, “Fuzzy Logic and Neural Network Control Systems for Backing up a Truck and a Trailer”, International Journal of Latest Trends in Computing, vol. 2, No. 3, Sep. 2011, 8 pages. |
Olof Enqvist, “AFS-Assisted Trailer Reversing,” Institutionen for systemteknik Deartment of Electrical Engineering, Jan. 27, 2006, 57 pages. |
Number | Date | Country | |
---|---|---|---|
20200198702 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62243475 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15284791 | Oct 2016 | US |
Child | 16793177 | US |