The disclosure relates generally to power tools, and more particularly to pneumatically-powered tools which utilize a flow or air to rotate an output shaft.
In general, rotary power tools are light-weight, handheld power tools capable of being equipped with a variety of accessory tools and attachments, such as cutting blades, sanding discs, grinding tools, and many others. These types of tools typically include a generally cylindrically-shaped main body that supports a drive mechanism and often serves as a hand grip for the tool as well. The drive mechanism includes an output shaft that is equipped with an accessory attachment mechanism, such as a collet, that enables various accessory tools to be releasably secured to the power tool.
Accessory tools for rotary power tools typically have a work portion and a shank. The work portion is configured to perform a certain kind of job, such as cutting, grinding, sanding, polishing, and the like. The shank extends from the work portion and is received by an accessory attachment system on the power tool. The accessory attachment mechanism holds the shank in line with the axis of the output shaft so that, when the output shaft is rotated by the motor, the accessory tool is driven to rotate about the axis along with the output shaft.
The output shaft is rotated at very high speeds when driving an accessory tool to perform work. The accessory tools and accessory attachment mechanisms for rotary tools are designed for operation up to a pre-specified maximum limit without losing integrity or falling apart. As an example, accessory tools for a rotary tool may have a rated limit of 35,000 rpm above which the accessory tools should not be operated.
Some rotary tools, however, are capable of rotational speeds that exceed the rated limit of the accessory tools with which they are configured to operate. In these cases, speed limiting mechanisms and systems are incorporated into the drive system of the tool to ensure that the rated limit of the accessory tools is not exceeded. For electrically powered tools, the rotational speed of the electric motor may be easily controlled and limited in a variety of ways through the design of the circuitry. For pneumatically powered tools, however, speed limit control must be implemented in other ways. Therefore, one issue faced in the design of pneumatically-powered rotary tools is coming up with effective and efficient means for limiting the speed of the rotary tool without hampering or adversely impacting performance.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and described in the following written specification. It is understood that no limitation to the scope of the disclosure is thereby intended. It is further understood that the disclosure includes any alterations and modifications to the illustrated embodiments and includes further applications of the principles of the disclosure as would normally occur to one of ordinary skill in the art to which this disclosure pertains.
The disclosure is directed to the incorporation of a centrifugal governor into a pneumatically-powered tool, such as a pneumatic rotary tool or similar type of tool, which utilizes a flow of fluid such as air, oxygen, or the like to rotate an output shaft of the tool. The centrifugal governor is incorporated directly onto the output shaft of the tool so that the rotational movement of the drive shaft provides the centrifugal force for the governor. As a result, the centrifugal governor is located directly in the path of air flow which drives the output shaft. The centrifugal governor is configured to utilize the centrifugal force provided by the rotating output shaft to directly regulate the rotational speed of the output shaft. When the centrifugal force reaches a certain level, a speed control mechanism of the governor is deployed which is configured to reduce the rotational speed of the output shaft in some manner.
As discussed below, the speed control mechanism implemented by a centrifugal governor may be configured to regulate the speed of the output shaft in a variety of different ways. For example, the speed control mechanism may be configured to act directly on the flow of air of the drive system, e.g., by restricting air flow, to reduce the speed of the output shaft. Speed control mechanisms may also be configured to act as a braking mechanism on the output shaft by expanding and contacting other components to generate friction. Speed control mechanisms may be configured to regulate speed by opening a vent to create a bypass which diverts air flow away from the drive system. Speed control mechanisms may also be configured to deploy and use the flow of air to generate torque in opposition to the drive system.
In accordance with one embodiment of the disclosure, a power tool comprises a housing defining a fluid flow passage and including a fluid flow inlet and a fluid flow outlet. At least one of the fluid flow inlet and the fluid flow outlet is configured to be connected to a fluid flow source, such as a vacuum or a source of compressed air, configured to cause a fluid flow through the fluid flow passage from the fluid flow inlet to the fluid flow outlet. An output shaft is rotatably supported in the housing for rotation about a drive axis, and a tool holder is connected to the output shaft for rotation therewith about the drive axis. The tool holder is located externally with respect to the housing and is configured to releasably retain a tool, such as an accessory tool for a rotary power tool. A rotor assembly is attached to the output shaft and is located in the fluid flow passage between the fluid flow inlet and the fluid flow outlet. The rotor assembly is configured to be acted on by the fluid flow through the fluid flow passage such that the rotor assembly and the output shaft are rotated about the drive axis by the fluid flow.
A speed control mechanism in the form of a centrifugally movable fluid flow governor is coupled to the output shaft and is configured to be rotated by the output shaft about the drive axis. The fluid flow governor is located in the fluid flow passage between the fluid flow inlet and the fluid flow outlet and includes at least one movable structure configured to move outwardly with respect to the output shaft in dependence on a magnitude of a centrifugal force acting on the at least one movable structure. The centrifugal force depends in part on a rotation speed of the output shaft. The at least one movable structure is configured to alter a force acting on the rotor assembly in response to the output shaft reaching a predetermined speed. The predetermined speed may be any desired speed and may depend on the ratings of one or more of the components of the tool. In one embodiment, the predetermined speed is 10,000-50,000 rpm. In one particular embodiment, the predetermined speed is based on the speed rating of accessory tools, e.g., not to exceed 35,000 rpm.
The movable structure(s) of the fluid flow governor may be configured to alter the force acting on the rotor assembly in a number of ways. In one embodiment, when the at least one movable structure moves outwardly from the output shaft, the at least one movable structure is configured to alter the force acting on the rotor assembly by restricting the fluid flow in the fluid flow passage acting on the rotor assembly. In another embodiment, when the at least one movable structure moves outwardly from the output shaft, the at least one movable structure is configured to alter the force acting on the rotor assembly by contacting a non-moving surface within the housing to increase a friction force acting on the rotor assembly via the output shaft.
In yet another embodiment, the movable structure may configured to alter the force acting on the rotor assembly by opening a bypass vent in the housing to reduce the fluid flow acting on the rotor assembly. The movable structure may also be configured to alter the force acting on the rotor assembly by generating a torsional force on the output shaft in the opposite direction from the direction of rotation of the output shaft. The torsional force in the opposite direction may be generated by fan blades that are oriented in the appropriate direction with respect to the fluid flow in the housing.
The fluid flow governor can be provided in a variety configurations. For example, the fluid flow governor may comprise at least one lever arm pivotably coupled to the output shaft. The lever arm may be biased toward the output shaft by a biasing member that applies a biasing force to the lever arm. In this embodiment, the at least one lever arm is configured to be pivoted outwardly from the output shaft when the centrifugal force acting on the at least one lever arm is capable of overcoming the biasing force. To enable this, the biasing force of the biasing member is selected based in part on the predetermined speed so that the biasing force is overcome by the centrifugal force that results from the output shaft reaching the predetermined speed. The lever arm may be configured to alter the force acting on the rotor assembly in one or more of the ways mentioned above, e.g., by restricting air flow, contacting a non-moving surface to generate friction, carrying a fan blade that is configured to generate a reverse torsional force, or opening a bypass vent.
The fluid flow governor may be provided on the rotor assembly itself. In one embodiment, the fluid flow governor comprises at least one flap structure attached to an outer circumferential portion of the rotor assembly. The flap structure(s) may be integral with the rotor assembly and attached to the rotor assembly by weakened points that are configured to allow the flaps to move, e.g., by pivoting, bending, or flaring, outwardly with respect to the rotor assembly and into contact with the non-moving surface when the output shaft reaches the predetermined speed. In another embodiment, the fluid flow governor may be provided as a split ring wrapped around an outer circumferential portion of the rotor assembly. The split ring being may be configured to expand outwardly from the rotor assembly and into contact with the non-moving surface when the output shaft reaches the predetermined speed.
Referring now to
A pneumatic drive system is enclosed within the housing. The drive system includes an output shaft 16 that is rotatably supported within the housing in bearings 17 for rotation about a drive axis D. The output shaft 16 extends through the nose portion 14 of the housing. A tool holder 18, such as a collet, is provided on the end of the output shaft 16 and is accessible at the nose portion 14 of the housing. The accessory attachment mechanism 18 is configured to receive the shank of an accessory tool (not shown) and to clamp onto the shank in order to secure the accessory tool to the output shaft.
The drive system is configured to utilize a fluid flow, e.g., air, gas, oxygen, to rotate the output shaft 16. The housing 12 defines at least one fluid inlet 19, at least one fluid outlet 21, and a fluid flow passage or channel 20 that fluidly connects the inlet 19 and the outlet 21. At least one of the inlet and outlet is configured to be connected to a fluid flow source that is configured to generate a fluid flow in he channel 20.
In the embodiment f
The power tool includes a rotor assembly 22 mounted onto the output shaft 16 that is configured to use the fluid flowing through the channel 20 to rotate the output shaft 16. In the embodiment of
In accordance with the disclosure, the power tool 10 includes a centrifugal governor 26 that is configured to influence the rotation speed of the rotor assembly 22/output shaft 16. The governor 26 is used to limit the rotation speed of the output shaft 16 from exceeding a predetermined level. For example, in the presence of an air flow generated by a standard vacuum cleaner, a rotor assembly with one or more turbine fans can cause the output shaft 16 to rotate at speeds up to 60,000 rpm. This speed may exceed the speed rating for certain components and accessories that are used in/on the tool. For example, many accessory tools for use with rotary power tools have a speed rating of 35,000 rpm (not to exceed). The centrifugal governor 26 may be configured to limit the rotation speed of the output shaft 16 to a speed that is within or does not exceed this speed rating. However, in practice, the governor 26 may be configured to impose substantially any desired speed limit on the tool.
The centrifugal governors described herein include at least one movable structure that is configured to be moved outwardly with respect to the output shaft by the centrifugal force acting on the at least one movable structure due to rotation of the output shaft 16. The movement of the at least one movable structure is used to alter a force acting on the rotor assembly 22 in a manner that limits the rotation speed of the output shaft, e.g., by restricting air flow in the channel 20, by increasing friction/resistance working against the rotation of the output shaft 16, by opening a bypass valve to reduce the air flowing through the rotor assembly, and the like. As is known in the art, the centrifugal force acting on the movable structure(s) depends in part on the rotation speed of the output shaft. Taking this into consideration, the movement of the at least one movable structure can be configured to move in a predetermined manner at a predetermined rotation speed in order to produce the desired result.
In the embodiment of
In the deployed position, the lever arms 30 are pivoted outwardly from the output shaft 16. Referring to
The biasing force counters the centrifugal force acting on the lever arms 30 during rotational movement of the output shaft 16. The biasing force is configured to retain the lever arms 30 in the closed position until the rotational speed of the output shaft 16 reaches a certain level at which the centrifugal force on the arm overcomes the biasing force and the lever arm pivots away from the output shaft 16 toward the deployed position as depicted in
In the embodiment of
Flap structures, such as depicted in
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same should be considered as illustrative and not restrictive in character. It is understood that only the preferred embodiments have been presented and that all changes, modifications and further applications that come within the spirit of the invention are desired to be protected.
This application claims priority to U.S. Provisional Application Ser. No. 61/994,178 entitled “SPEED LIMITING GOVERNOR OF A ROTATING SHAFT IN AIR” by Padget et al., filed May 16, 2014, the disclosure of which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2375490 | Overly | May 1945 | A |
2428726 | Sturrock | Oct 1947 | A |
2975517 | Brittain | Mar 1961 | A |
3138870 | Stachon | Jun 1964 | A |
3312105 | Amtsberg | Apr 1967 | A |
3385377 | Amtsberg | May 1968 | A |
3697189 | Tibbott | Oct 1972 | A |
3740174 | Amtsberg | Jun 1973 | A |
3749530 | Amador | Jul 1973 | A |
3923429 | Schaedler | Dec 1975 | A |
3932055 | Flatland | Jan 1976 | A |
4057113 | Paule | Nov 1977 | A |
4281457 | Walton, II | Aug 1981 | A |
4298317 | Hansson | Nov 1981 | A |
4592430 | Hall | Jun 1986 | A |
4729436 | Amador | Mar 1988 | A |
5340233 | Motl | Aug 1994 | A |
5383771 | Ghode | Jan 1995 | A |
6347985 | Loveless | Feb 2002 | B1 |
7040972 | Hoffmann | May 2006 | B2 |
8528659 | Nelson | Sep 2013 | B2 |
20020197123 | Kopras | Dec 2002 | A1 |
20050200087 | Vasudeva | Sep 2005 | A1 |
20050221739 | Hoffmann | Oct 2005 | A1 |
20060251485 | Hirschburger | Nov 2006 | A1 |
20080028568 | Tiede | Feb 2008 | A1 |
20080142091 | Meinig | Jun 2008 | A1 |
20080146125 | Loveless | Jun 2008 | A1 |
20090017737 | Hesse | Jan 2009 | A1 |
20090017738 | Fuchs | Jan 2009 | A1 |
20090104860 | Stierle | Apr 2009 | A1 |
20110297412 | Suzuki | Dec 2011 | A1 |
20140030081 | Bullock | Jan 2014 | A1 |
20140034346 | Eklund | Feb 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20150328762 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
61994178 | May 2014 | US |