The invention relates to sprinkler where a water driven turbine causes the sprinkler nozzle to rotate to provide coverage over a desired area.
Sprinkler systems in the northern climates must be drained or blown-out with air to clear the water to prevent freezing damage. In many cases the simplest installation provides only for allowing the irrigation system pipes and sprinklers to be cleared of water by blowing out the system using compressed air. This can be very damaging to the sprinklers which have water turbines which are normally water powered and rotate at a much slower speed with the water which is a relatively heavy incompressible fluid and does not generate the high turbine stator velocities produced when air, an expandable relatively light fluid, is expanded across the turbine stator onto the turbine blades.
The high turbine shaft velocities can heat the shaft and cause it to seize to the plastic housing material. This prevents the turbine from turning and renders it unusable in the future unless care is taken to limit the system air, blow-out time and pressures. This has proved to be one of the major causes for premature failure of gear driven sprinkler in colder climates, where sprinklers are used for only part of the year, and should last much longer than in warmer climates where they are run year round.
Devices are known for controlling the rotational speed of turbine-driven sprinklers. One such device, shown in Clark U.S. Pat. No. 5,375,768, is designed to maintain constant turbine speed despite variations of inlet water pressure. The patented sprinkler relies on a throttling device to direct part of the water to the turbine rotor, and a pressure responsive valve to divert some of the water around the turbine. This design, however, can not effectively limit rotational speed when the turbine is driven by a compressible fluid such as air, and still allow the turbine to run at a sufficiently high speed when it is driven by an incompressible fluid such as water because of the rapid expansion of the compressed air as it enters the turbine chamber.
Other turbine speed limiting mechanisms are known, but to applicant's knowledge, none of these are suitable for turbines which must run on both compressible and incompressible fluids.
It is accordingly the primary object of this invention to provide a turbine-driven sprinkler which incorporates a speed limiting mechanism which protects the turbine from damage when compressed air is used to blow out the system in preparation for winter, but still permits satisfactory operation when the turbine is water-driven.
A related object of the invention is to provide a turbine-driven sprinkler having a speed limiting mechanism for air (compressible flow) as described which is reliable and can be manufactured inexpensively.
The above objects are achieved according to one aspect of the invention by choking the turbine flow discharge area to be relatively the same as or slightly larger than the inlet stator area. According to another aspect of the invention, the inlet stator flow area can be separated from the turbine blades by a flow bleed area to bleed off a significant portion of the expanding flow before a portion of the gases are deflected to strike the turbine blades to produce the turbine rotation. Water, being incompressible, does not experience the continued expansion after flow through the stator inlet flow area and does not flow out the intermediate bleed but continues in its line of flow to be directed onto the turbine blades to run the turbine in a normal manner. In the case of air (compressible flow) the portion remaining after the intermediate bleed can be limited to just enough to turn the turbine at its normal speed when water-driven.
Other features and advantages of the present invention will become apparent from the following description of the invention which refers to the accompanying drawings.
The turbine itself is comprised of a rotor 11 located in a rotor chamber 13 formed by a stator cover assembly 15 positioned on the upstream side of the turbine, and a lower cover 12 for gearbox 7. Stator cover assembly 15 is in the form of an inverted cup with a central portion 4 that houses a flow by-pass valve sub-assembly 6 described below. Extending radially from the bottom of central portion 4 is a shoulder 18 which terminates in an upwardly extending skirt portion 19.
Circumferentially spaced around the bottom shoulder 18 of stator cover 15 are a plurality of tangentially directed turbine stator flow inlet ports 8 through which water flows into rotor chamber 13. As the incoming fluid passes through openings 8, it experiences acceleration due to the pressure difference between the inlet area 9 to the turbine housing and the pressure in cavity 13 as maintained by the turbine by-pass assembly valve 6, and then tangentially strikes the turbine rotor 11, causing it to turn, and to drive gearbox box 7 through shaft 5. The fluid then exits rotor chamber 13 through an annular discharge port 10 between the turbine rotor 11 and a circumferential blade support ring 20 and the lower gear box cover ring 12. Discharge port 10 communicates with an outer chamber 16 above stator cover 15, which, in turn, communicates with discharge passage 17.
The hub portion 21 of rotor 11 passes through a circular opening 22 at the top of stator 15. Circular opening 22 also provides communication between the interior of stator cup 4 and outer chamber 16.
Located within stator cup 4 is turbine by-pass valve assembly 6. This is comprised of a valve plug 23 which is biased into a closed position against the upper surface of a valve seat member 25 by a spring 24. As will be understood, when the inlet fluid pressure is sufficient to overcome the force of spring 24, a portion of incoming fluid is diverted by valve 6 to discharge passage 17 through the interior of stator cup 4, circular opening 22, and outer chamber 16. The purpose of this valve is to maintain the desired differential pressure across the turbine inlet ports 8, to drive the turbine at the desired speed and power with water.
Achieving proper performance for the sprinkler both when the turbine is water-driven and also preventing over speeding when it is air-driven depends on the selection of the area of turbine circumferential discharge port 10 and the flow pressure drop established by flow control valve 6. To assure over-speed protection for turbine rotor 11 during blow out, the area of discharge port 10 must be restricted, but the area must be large enough for the turbine to provide the desired torque to gearbox 7 for the pressure drop established by spring 24 of the flow bypass valve assembly 6 when operating in water.
In any event, the discharge port area must be, at a minimum, slightly larger than the collective area of the multiple turbine stator inlet ports 8. However, since the water is incompressible, and does not expand, increasing the area beyond a certain point does not improve turbine torque performance and just allows for greater expansion and flow of air when the turbine is air-driven, and allows it to overspeed.
For a turbine driven by an incompressible fluid such as water, and especially in the simple, single-stage turbines used to drive sprinklers the turbine flow exist velocity remains relatively high, the difference in velocity resulting from energy absorbed by the turbine wheel and flow friction inefficiencies. Thus, in accordance with the continuity equation for flow that requires that the product of inlet flow area and inlet flow velocity must equal the product of the exit flow area and the exit flow velocity, large increases in exit flow area are not required for proper operation and power for water.
Taking all these factors into consideration, good results, in terms of enhancement of the life of turbine-driven sprinklers, and elimination of destructive turbine over-speeding during blowout with air, can be achieved by limiting the turbine discharge area to no more than twice the collective turbine stator inlet area, and preferably about 1.5 times the collective turbine stator inlet area. This can be made smaller (but no less than equal to the collective turbine stator inlet area) to limit even further the turbine speed when driven by air.
As shown in
In most of the sprinklers being manufactured today, the turbine discharge area is not restricted and is simple to open to allow turbine flow to move through the sprinkler housing 2 and area 16 and 17 up to the sprinkler's discharge nozzle (not shown).
Referring to
The turbine is comprised of a rotor 46 located in a rotor chamber 48 formed by an internal housing 50 having spaced legs 54 around its outside circumference. A flow directing swirl member 52 includes a lower (upstream) body portion 66 having a plurality of circumferentially spaced longitudinal ribs 68. A by-pass flow valve 62 described below having a central opening 70 is positioned in radially spaced relationship around the upstream body portion 66. As illustrated in
At the upper (downstream) end 74 of swirl member 66, the radial inner edges of ribs 68 are also curved outwardly and circumferentially to form swirl deflector surfaces 80. These cooperate with a series of circumferentially spaced swirl ribs 76 that spiral outwardly as shown in
When the turbine is water-driven, the inertia of the incompressible water carries it straight up ribbed passages 72, past deflector surfaces 77A and swirl ribs 76, and though swirl ring opening 73 to strike turbine rotor blades 47 which are rotating in rotor chamber 48. However, when compressed air is used to blow out the irrigation system during winterization, the air continues to expand after traveling through passage 72 as it moves upwardly, and a significant amount escapes through open bleed area 80 into a bypass flow area 67, and from there, into discharge area 49 around gear box 60 to the sprinkler nozzle at the exit top end of the sprinklers.
Only the air that continues straight up along the ribbed passages 72 passes through the swirl ring opening 73 to drive turbine rotor 46, and thus the energy transferred to the rotor is much less than if the entire incoming air flow had been allowed to enter rotor chamber 48. The shape and opening size of the swirl ring opening 73A can be used to determine how much air flow is allowed to reach the turbine without limiting the water flow.
Bypass flow valve 62 includes an outwardly tapered upper portion 63 that serves a valve closure member with ring 56. A beveled radially inner surface 58 of ring 56 forms a valve seat that cooperates with valve closure member 63. A spring 88 biases valve closure member 63 upward against valve seat 58 so that valve 62 is normally closed, as illustrated in
In
The turbine rotor speed is a result of momentum interchange between the flowing fluid and the turbine rotor blades and depends on turbine design for simplicity and efficiency. Many different designs may be employed to achieve the required power to rotate the sprinkler head, as will be appreciated by those skilled in the art.
To allow simpler construction, inner housing 50 may be eliminated. However, inner housing 50 provides protection from high bypass flow velocities and dirt for turbine rotor 46. Discharge ports 65 also provide an additional throttling mechanism to limit the turbine speed when it is being blown out.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is intended, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
This application is based on and claims benefit of U.S. Provisional Patent Application No. 60/289,227 filed May 7, 2001 entitled SPEED LIMITING TURBINE FOR ROTARY DRIVEN SPRINKLER, the disclosure of which is hereby incorporated by reference and to which a claim of priority is hereby made.
Number | Name | Date | Kind |
---|---|---|---|
3107056 | Hunter | Oct 1963 | A |
4568024 | Hunter | Feb 1986 | A |
4624412 | Hunter | Nov 1986 | A |
4718605 | Hunter | Jan 1988 | A |
4763837 | Livneh | Aug 1988 | A |
4796809 | Hunter | Jan 1989 | A |
4815662 | Hunter | Mar 1989 | A |
4867379 | Hunter | Sep 1989 | A |
4948052 | Hunter | Aug 1990 | A |
5288022 | Sesser | Feb 1994 | A |
5372307 | Sesser | Dec 1994 | A |
5375768 | Clark | Dec 1994 | A |
5377914 | Christen | Jan 1995 | A |
5762270 | Kearby et al. | Jun 1998 | A |
5823440 | Clark | Oct 1998 | A |
5971297 | Sesser | Oct 1999 | A |
6199584 | Brown et al. | Mar 2001 | B1 |
6732950 | Ingham, Jr. et al. | May 2004 | B2 |
20020162901 | Hunter et al. | Nov 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20020162902 A1 | Nov 2002 | US |
Number | Date | Country | |
---|---|---|---|
60289227 | May 2001 | US |