1. Field of the Invention
This invention relates generally to a speed measuring device and, more particularly, to a speed measuring device including a low profile collection housing and a Fresnel zone plate lens antenna mounted thereto that focuses a transmit beam and a receive beam.
2. Discussion of the Related Art
Speed measuring devices have many applications in the art, such as vehicle speed detection. One type of speed measuring device uses RF signals and the Doppler effect to determine the speed of an object. A speed measuring device that uses the Doppler effect includes a transceiver that transmits a narrow band RF beam towards a target, and receives a reflected beam from the target. The reflected beam will be shifted in frequency from the transmitted beam relative to the speed of the target. Known speed measuring devices of this type typically employ an antenna horn that directs and focuses the transmitted beam from the transceiver, collects the reflected beam and focuses the reflected beam onto a detector in the transceiver. However, horn antennas typically have a long profile that is determined based on the frequency being transmitted, which adds significant size to the device. Further, horn antennas have a small aperture size, which reduces the system gain.
In accordance with the teachings of the present invention, a speed measuring device is disclosed that employs a Fresnel zone plate lens antenna. The Fresnel lens antenna is mounted to one end of a low profile collection housing, typically cylindrical in configuration. An opposite end of the collection housing includes a back plate having an opening. A transceiver unit is mounted to the outside surface of the back plate so that a transmitter and a detector within the transceiver are in communication with the opening. A signal is transmitted from the transceiver unit through the opening, and is directed by the lens antenna. A reflected signal is received and focused by the lens antenna, and collected by the housing to be directed through the opening to the transceiver. The transceiver uses the Doppler effect to detect a difference in frequency between the transmitted beam and the reflected beam to determine the speed of a target from which the transmitted beam is reflected.
Additional features of the present invention will become apparent from the following description and appended claims, taken in conjunction with the accompanying drawings.
The following discussion of the embodiments of the invention directed to a speed measuring device employing a Fresnel zone plate lens antenna is merely exemplary in nature, and is in no way intended to limit the invention or its applications or uses.
A planar Fresnel zone plate lens antenna 20 is mounted, here by bolts, to a shoulder 18 provided in the collection housing 12.
The Fresnel lens antenna 20 is made of a circular planar dielectric material and includes a plurality of spaced apart metallized rings 32 separated by dielectric rings 38. In this non-limiting embodiment, the lens antenna 20 includes two metallized rings 34 and 36, where the interior ring 34 is wider than the exterior ring 36, but where the area of the rings 34 and 36 is about the same. The width of the rings 32 determines the focal length of the lens antenna 20. In one embodiment, the material of the lens antenna 20 is a low-loss dielectric material, such as polystyrene, and the rings 32 are deposited thereon by a suitable deposition process. In one non-limiting embodiment, the lens antenna 20 has a dielectric constant of εr=4.7+0.03j. The thickness of the lens antenna 20 is determined by choosing low reflection coefficients from wave transmitting simulations through multi-layered dielectrics. In one non-limiting embodiment, the Fresnel lens antenna 20 has approximately a 22 dB gain, a diameter of about 4.0 inches and a thickness of about one-eighth of an inch.
The operation of a Fresnel lens is well understood to those in the art. An RF beam propagates through the dielectric rings 38 between the metallized rings 32, and is prevented from propagating through the metallized rings 32 of the lens antenna 20. Therefore, a Fresnel lens can be designed so that the parts of the beam that are at one phase are blocked, and the parts of the beam that are in phase with each other pass through the lens antenna 20 and can be combined.
For a phase-reversing zone plate, the successive radius of the zones (rings) are chosen so that the distance from a selected focal point, such as the opening 22, on the central axis increases by one-half the wavelength of the center frequency of the beam going from the inner radius to the outer radius of any ring 32. This is illustrated in
The following equations are used to define the size of the zones for phase calculation purposes.
R
i1
=D+0.5λ (1)
r
i1
=√{square root over (Ri12−D2)} (2)
R
o1
=D+λ (3)
r
o1
=√{square root over (Ro12−D2)} (4)
R
i2
=D+1.5λ (5)
r
i2
=√{square root over (Ri22−D2)} (6)
R
o2
=D+2λ (7)
r
o2
=√{square root over (Ro22−D2)} (8)
In this non-limiting embodiment, the transceiver module 24 includes a Gunn diode transceiver 48. The transceiver module 24 is a commercially available integrated module with a Gunn diode mounted in a cavity for the transmitter and one or two Shottkey barrier diode in the receiver. In one non-limiting embodiment, the transceiver module 24 is one of several modules available from MDT depending on the transmit frequency. An IF output is generated whose frequency is proportional to the targets velocity. With the two-mixer design, the direction-of-motion is obtained as a phase difference between the two intermediate frequency (IF) outlets. The Doppler sensor within the transceiver module 24 has about 5 mWs of output power and supports dual IFs, which are capable of detecting the direction of the moving object.
The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims.