This patent application is related to U.S. patent application Ser. No. 14/256,427, which was filed on Apr. 18, 2014, now U.S. Pat. No. 9,493,187, issued on Nov. 15, 2016, entitled “CONTROL FOR TRAILER BACKUP ASSIST SYSTEM” which is a continuation-in-part of U.S. patent application Ser. No. 14/249,781, which was filed on Apr. 10, 2014, now U.S. Pat. No. 9,374,562, issued on Jun. 21, 2016, entitled “SYSTEM AND METHOD FOR CALCULATING A HORIZONTAL CAMERA TO TARGET DISTANCE,” which is a continuation-in-part of U.S. patent application Ser. No. 14/243,530, which was filed on Apr. 2, 2014, now U.S. Pat. No. 9,513,103, issued on Dec. 6, 2016, entitled “HITCH ANGLE SENSOR ASSEMBLY,” which is a continuation-in-part of U.S. patent application Ser. No. 14/201,130, which was filed on Mar. 7, 2014, now U.S. Pat. No. 9,290,202, issued on Mar. 22, 2016, entitled “SYSTEM AND METHOD OF CALIBRATING A TRAILER BACKUP ASSIST SYSTEM,” which is a continuation-in-part of U.S. patent application Ser. No. 14/188,213, which was filed on Feb. 24, 2014, now abandoned, entitled “SENSOR SYSTEM AND METHOD FOR MONITORING TRAILER HITCH ANGLE,” which is a continuation-in-part of U.S. patent application Ser. No. 13/847,508, which was filed on Mar. 20, 2013, now abandoned, entitled “HITCH ANGLE ESTIMATION.” U.S. patent application Ser. No. 14/188,213 is also a continuation-in-part of co-pending U.S. patent application Ser. No. 14/161,832, which was filed on Jan. 23, 2014, now U.S. Pat. No. 9,346,396, issued on May 24, 2016, entitled “SUPPLEMENTAL VEHICLE LIGHTING SYSTEM FOR VISION BASED TARGET DETECTION,” which is a continuation-in-part of U.S. patent application Ser. No. 14/068,387, which was filed on Oct. 31, 2013, now U.S. Pat. No. 9,102,271, issued on Aug. 11, 2015, entitled “TRAILER MONITORING SYSTEM AND METHOD,” which is a continuation-in-part of U.S. patent application Ser. No. 14/059,835, which was filed on Oct. 22, 2013, now U.S. Pat. No. 9,248,858, issued on Feb. 2, 2016, entitled “TRAILER BACKUP ASSIST SYSTEM,” which is a continuation-in-part of U.S. patent application Ser. No. 13/443,743 which was filed on Apr. 10, 2012, now U.S. Pat. No. 8,825,328, issued on Sep. 2, 2014, entitled “DETECTION OF AND COUNTERMEASURES FOR JACKKNIFE ENABLING CONDITIONS DURING TRAILER BACKUP ASSIST,” which is a continuation-in-part of U.S. patent application Ser. No. 13/336,060, which was filed on Dec. 23, 2011, now. U.S. Pat. No. 8,909,426, issued on Dec. 9, 2014, entitled “TRAILER PATH CURVATURE CONTROL FOR TRAILER BACKUP ASSIST,” which claims benefit from U.S. Provisional Patent Application No. 61/477,132, which was filed on Apr. 19, 2011, entitled “TRAILER BACKUP ASSIST CURVATURE CONTROL.” The aforementioned related applications are hereby incorporated by reference in their entirety. The above-identified patents and patent applications may be collectively referred to herein as “The Related Patents and Patent Applications.”
The present invention generally relates to systems for controlling/assisting vehicles during backup operations, and in particular to a system that controls vehicle speed during parking or trailer backup operations.
Backing up a vehicle with a trailer can be a difficult task. In conventional motor vehicles, the operator must control the steering and vehicle speed while the vehicle is moving in reverse. Trailer backup assist systems have been developed to assist operators when backing up a vehicle having a trailer attached thereto.
Motor vehicles may also include active park assist systems that assist a driver during vehicle parking operations. Such systems may be configured to provide automated parking. During parking operations, the vehicle may be moved in a reverse direction.
The path that a vehicle is capable of following in reverse is limited by the design of the vehicle and trailer (if present), and road conditions. Furthermore, the path that a vehicle (and trailer) is capable of in a reverse direction may be more limited at higher vehicle speeds.
One aspect of the present invention is a trailer backup assist system for motor vehicles. The trailer backup assist system includes an auxiliary user input feature that can be used by a vehicle operator to provide a steering curvature command corresponding to a desired vehicle path curvature without requiring a user to move a steering wheel of the motor vehicle. The trailer backup assist system is configured to control a vehicle speed while the vehicle is backing up with a trailer attached thereto utilizing an input comprising at least one of a steering curvature command and an angle of a trailer relative to the vehicle. The trailer backup assist system generates a command to control at least one of a brake system, an engine torque, and a transmission gear selection to thereby control vehicle speed in a reverse direction based, at least in part, on the steering curvature command and/or the angle of a trailer relative to the vehicle.
Another aspect of the present invention is a method of controlling a speed of a motor vehicle in a reverse direction when a trailer is connected to the motor vehicle. The method includes utilizing at least one of a trailer angle and a steering curvature command from an auxiliary user input feature positioned in a vehicle interior as a control input. The method further includes controlling vehicle speed in a reverse direction based at least in part on the control input.
Another aspect of the present invention is a method of controlling a speed of a motor vehicle when the motor vehicle is traveling in a reverse direction. The method includes determining a desired vehicle path in a reverse direction based at least in part on a steering command. The method also includes determining an acceptable error criteria relative to the desired vehicle path. A speed of the vehicle is limited by controlling at least one of a vehicle brake, an engine torque, and an automatic gear selection such that the vehicle is capable of moving in a reverse direction along the desired vehicle path within the acceptable error criteria.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the invention as oriented in
With reference to
The trailer back-up assist control module 6 is operably connected to a brake system control module 12 and a power system control module 14. The vehicle 1 also includes a power steering assist system 16 including a power steering assist control module 18 and a steering angle detection apparatus 20. The power steering assist control module 18 is operably connected to the trailer backup assist control module 6. Trailer 10 may include a hitch angle detection component 22 that is operably connected to the hitch angle detection apparatus 8 of vehicle 1. Hitch angle detection component 22 is configured to measure the angle of trailer 10 relative to vehicle 1 about a vertical axis. A trailer angle of zero generally corresponds to an operating condition wherein the trailer 10 is aligned with vehicle 1 such that the vehicle 1 and trailer 10 move along a straight path. Hitch angle detection component 22 may also be configured to measure an orientation of trailer 10 relative to vehicle 1 about a first horizontal axis that extends side-to-side, and a second horizontal axis that extends in a vehicle fore-aft direction. This enables the trailer backup assist system 2 to determine if trailer 10 has begun to move up a slope and/or if trailer 10 has twisted relative to vehicle 1 due to moving onto a surface that is sloped to the side. It will be understood that various hitch angle detection/measuring devices may be utilized, and the components may be mounted on vehicle 1, on trailer 10, or on both. The vehicle 1, trailer backup assist system 2, trailer 10, and related components of
Vehicle 1 may also include an active park assist system 30 to provide automated or assisted vehicle parking. The active park assist system 30 may be operably connected to one or more of the trailer backup assist system 2, trailer backup steering input apparatus 4, trailer backup assist control module 6, hitch angle detection apparatus 8, trailer 10, brake system control module 12, power train system control module 14 and power steering assist system 16, power steering assist control module 18, and steering angle detection apparatus 20. As discussed in more detail below in connection with
With further reference to
With further reference to
With further reference to
The trailer backup assist system 2 may be configured to limit vehicle speeds in reverse when a trailer 10 is attached to vehicle 1 to ensure that vehicle 1 can be controlled and to prevent jackknifing or other problematic operating conditions.
The maximum allowable vehicle speed for a given trailer angle may be determined empirically to provide a plurality of pairs of data points, and the data may be interpolated utilizing a curve fit to thereby generate a line representing the maximum allowable vehicle speed as a function of the trailer angle. Alternatively, the maximum allowable vehicle speed as a function of a trailer angle may be modeled utilizing a straight (linear) line of the form y=mx+b, or a curved (nonlinear) line of the form y=mx2+cx+b, or other suitable equation.
The trailer backup assist system 2 and/or active park assist system 30 may also take into account other variables to determine the maximum allowable vehicle speed for a given operating condition. For example, the curves illustrated in
Also, the hill angle may be determined utilizing topographical information that may be stored by the trailer backup assist system 2 or obtained utilizing a GPS system. Vehicle 1 may include an electronic compass or other device whereby the location and orientation of vehicle 1 on a topographical map may be determined, such that the hill angle of the vehicle 1 and trailer 10 can be determined.
Also, road condition data can be obtained from a remote source, and the maximum allowable vehicle speed can be adjusted if required. For example, if weather data in the vicinity of vehicle 1 indicates that it is raining or snowing, the maximum allowable vehicle speed for a given (measured) trailer angle may be reduced to account for the decrease in traction. Similarly, map data concerning the road surface (e.g. gravel or paved road) may be utilized to adjust the maximum allowable vehicle speed as a function of trailer angle.
In operation, a user actuates the trailer backup assist system 2, and begins to back up the vehicle 1 and trailer 10. The user utilizes the auxiliary user input knob 25 to provide steering requests to the trailer backup assist system 2. The trailer backup assist system 2 utilizes vehicle speed and trailer angle data to determine a maximum allowable vehicle speed, taking into account road conditions and the like as discussed above.
In general, the trailer backup assist system 2 can ensure that the vehicle 1 and trailer 10 do not exceed the maximum vehicle speed versus trailer angle criteria of
The trailer backup assist system 2 may also be configured to control the angle of the steering wheels to ensure that the vehicle speed versus trailer angle (
Furthermore, trailer backup assist system 2 may be configured to prioritize the user-requested steering input from knob 25 over the vehicle speed when determining whether to limit the vehicle speed or limit the turn angle to avoid the maximum allowable values as shown in
Also, as discussed above in connection with
Vehicle speed may also be controlled during parking operations if the vehicle 1 is on a sloped surface. As shown in
The steering lag shown in
In general, the vehicle speed and steering can be controlled to optimize the vehicle path in any combination. For example, the power train system control module 14 (
In addition to the automated control discussed above, the vehicle may also include a warning system that alerts a user when the vehicle speed and/or steering angle are excessive, such that the desired path cannot be achieved by the vehicle. For example, the vehicle 1 may include a visual display (not shown), or the vehicle may be operably connected to an operator's smart device such as a cell phone or tablet. An illuminated camera display, heads up display, illuminated mirrors (text) or schematic screen displays may be used with a variety of color, intensity, and blank frequencies to provide feedback to the driver that a collision mitigation function is active and/or to help guide the driver to avoid the collision. The vehicle may also be configured to provide audible tones or voice commands utilizing speakers in the vehicle and/or a driver's smart device (e.g. cell phone) to instruct the driver how to avoid a collision, or to inform the driver that an automated collision mitigation function is active. Still further, a steering wheel torque and/or vibration may be utilized to help a driver avoid a collision or to inform the driver that an automated collision mitigation function is active. Other subsystems or devices such as phones, tablets, vibrating seats, or the like may also be used to warn a driver. The frequency of the vibration can be changed to convey additional information about the probability of the collision.
Numerous communication/warning arrangements may be utilized to convey information to the driver. Such devices may include, without limitation, the vehicle audio system, park aid speakers, text display, navigation system, reverse camera system, messaging seats, joystick, a steering wheel, mirrors, a mobile phone, a mobile computing device, and/or a mobile gaming device.
It will be understood that the vehicle may be configured to utilize the speed and trajectory control and/or warning features discussed above when the vehicle is traveling in a forward direction with or without a trailer, and when the vehicle is traveling in a reverse direction with or without a trailer.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
3542390 | Fikse | Nov 1970 | A |
3756624 | Taylor | Sep 1973 | A |
3860257 | Mesly | Jan 1975 | A |
4042132 | Bohman et al. | Aug 1977 | A |
4735432 | Brown | Apr 1988 | A |
4752080 | Rogers | Jun 1988 | A |
4754828 | Morishita | Jul 1988 | A |
4848499 | Martinet et al. | Jul 1989 | A |
5001639 | Breen | Mar 1991 | A |
5108158 | Breen | Apr 1992 | A |
5246242 | Penzotti | Sep 1993 | A |
5247442 | Kendall | Sep 1993 | A |
5558350 | Kimbrough et al. | Sep 1996 | A |
5586814 | Steiner | Dec 1996 | A |
6042196 | Nakamura et al. | Mar 2000 | A |
6056371 | Lin et al. | May 2000 | A |
6292094 | Deng et al. | Sep 2001 | B1 |
6351698 | Kubota et al. | Feb 2002 | B1 |
6409288 | Yoshida et al. | Jun 2002 | B2 |
6494476 | Masters et al. | Dec 2002 | B2 |
6498977 | Wetzel et al. | Dec 2002 | B2 |
6567731 | Chandy | May 2003 | B2 |
6838979 | Deng et al. | Jan 2005 | B2 |
7032705 | Zheng et al. | Apr 2006 | B2 |
7117077 | Michi et al. | Oct 2006 | B2 |
7136754 | Hahn et al. | Nov 2006 | B2 |
7139650 | Lubischer | Nov 2006 | B2 |
7154385 | Lee et al. | Dec 2006 | B2 |
7165820 | Rudd, III | Jan 2007 | B2 |
7219913 | Atley | May 2007 | B2 |
7319927 | Sun et al. | Jan 2008 | B1 |
7690737 | Lu | Apr 2010 | B2 |
7706944 | Tanaka et al. | Apr 2010 | B2 |
7793965 | Padula | Sep 2010 | B2 |
7969326 | Sakakibara | Jun 2011 | B2 |
8010253 | Lundquist | Aug 2011 | B2 |
8027773 | Ahn | Sep 2011 | B2 |
8033955 | Farnsworth | Oct 2011 | B2 |
8036792 | Dechamp | Oct 2011 | B2 |
8108116 | Mori et al. | Jan 2012 | B2 |
8170726 | Chen et al. | May 2012 | B2 |
8244442 | Craig et al. | Aug 2012 | B2 |
8260518 | Englert | Sep 2012 | B2 |
8267485 | Barlsen et al. | Sep 2012 | B2 |
8280607 | Gatti et al. | Oct 2012 | B2 |
8374749 | Tanaka | Feb 2013 | B2 |
8430792 | Noll | Apr 2013 | B2 |
8469125 | Yu et al. | Jun 2013 | B2 |
8571758 | Klier et al. | Oct 2013 | B2 |
8755982 | Heckel et al. | Jun 2014 | B2 |
8755984 | Rupp et al. | Jun 2014 | B2 |
8798860 | Dechamp | Aug 2014 | B2 |
8909426 | Rhode et al. | Dec 2014 | B2 |
8930140 | Trombley et al. | Jan 2015 | B2 |
9047778 | Cazanas | Jun 2015 | B1 |
9102271 | Trombley et al. | Aug 2015 | B2 |
9108598 | Headley | Aug 2015 | B2 |
9132856 | Shepard | Sep 2015 | B2 |
9180890 | Lu et al. | Nov 2015 | B2 |
9227474 | Liu | Jan 2016 | B2 |
9229453 | Lee | Jan 2016 | B1 |
9238483 | Hafner et al. | Jan 2016 | B2 |
9248858 | Lavoie et al. | Feb 2016 | B2 |
9315212 | Kyrtsos et al. | Apr 2016 | B1 |
9335162 | Kyrtsos et al. | May 2016 | B2 |
9340228 | Xu et al. | May 2016 | B2 |
20010037164 | Hecker | Nov 2001 | A1 |
20010052434 | Ehrlich et al. | Dec 2001 | A1 |
20040143416 | Hattori | Jul 2004 | A1 |
20050206225 | Offerle et al. | Sep 2005 | A1 |
20050236201 | Spannheimer et al. | Oct 2005 | A1 |
20050236896 | Offerle et al. | Oct 2005 | A1 |
20060103511 | Lee et al. | May 2006 | A1 |
20060142936 | Dix | Jun 2006 | A1 |
20070027581 | Bauer et al. | Feb 2007 | A1 |
20070198190 | Bauer et al. | Aug 2007 | A1 |
20080177443 | Lee et al. | Jul 2008 | A1 |
20090082935 | Leschuk et al. | Mar 2009 | A1 |
20090157260 | Lee | Jun 2009 | A1 |
20090198425 | Englert | Aug 2009 | A1 |
20090271078 | Dickinson | Oct 2009 | A1 |
20090306854 | Dechamp | Dec 2009 | A1 |
20090306861 | Schumann et al. | Dec 2009 | A1 |
20090326775 | Nishida | Dec 2009 | A1 |
20100063702 | Sabelstrom | Mar 2010 | A1 |
20100152989 | Smith et al. | Jun 2010 | A1 |
20110087398 | Lu et al. | Apr 2011 | A1 |
20120041658 | Turner | Feb 2012 | A1 |
20120095649 | Klier et al. | Apr 2012 | A1 |
20120123642 | Kojo | May 2012 | A1 |
20120200706 | Greenwood et al. | Aug 2012 | A1 |
20120271512 | Rupp et al. | Oct 2012 | A1 |
20120271514 | Lavoie et al. | Oct 2012 | A1 |
20120271515 | Rhode et al. | Oct 2012 | A1 |
20120271522 | Rupp et al. | Oct 2012 | A1 |
20120283909 | Dix | Nov 2012 | A1 |
20120310594 | Watanabe | Dec 2012 | A1 |
20120316732 | Auer | Dec 2012 | A1 |
20120323473 | Irie | Dec 2012 | A1 |
20130148748 | Suda | Jun 2013 | A1 |
20130179038 | Goswami et al. | Jul 2013 | A1 |
20130268160 | Trombley et al. | Oct 2013 | A1 |
20140052337 | Lavoie et al. | Feb 2014 | A1 |
20140058614 | Trombley et al. | Feb 2014 | A1 |
20140058622 | Trombley et al. | Feb 2014 | A1 |
20140058655 | Trombley et al. | Feb 2014 | A1 |
20140058668 | Trombley et al. | Feb 2014 | A1 |
20140067154 | Yu et al. | Mar 2014 | A1 |
20140067155 | Yu et al. | Mar 2014 | A1 |
20140085472 | Lu et al. | Mar 2014 | A1 |
20140121930 | Allexi et al. | May 2014 | A1 |
20140142798 | Guarnizo Martinez | May 2014 | A1 |
20140160276 | Pliefke et al. | Jun 2014 | A1 |
20140172232 | Rupp et al. | Jun 2014 | A1 |
20140188344 | Lavoie | Jul 2014 | A1 |
20140188346 | Lavoie | Jul 2014 | A1 |
20140210456 | Crossman | Jul 2014 | A1 |
20140218506 | Trombley et al. | Aug 2014 | A1 |
20140218522 | Lavoie et al. | Aug 2014 | A1 |
20140222288 | Lavoie et al. | Aug 2014 | A1 |
20140236532 | Trombley et al. | Aug 2014 | A1 |
20140249691 | Hafner et al. | Sep 2014 | A1 |
20140267688 | Aich et al. | Sep 2014 | A1 |
20140267689 | Lavoie | Sep 2014 | A1 |
20140267868 | Mazzola et al. | Sep 2014 | A1 |
20140267869 | Sawa | Sep 2014 | A1 |
20140277942 | Kyrtsos et al. | Sep 2014 | A1 |
20140297128 | Lavoie et al. | Oct 2014 | A1 |
20140297129 | Lavoie et al. | Oct 2014 | A1 |
20140303847 | Lavoie | Oct 2014 | A1 |
20140309888 | Smit et al. | Oct 2014 | A1 |
20140324295 | Lavoie | Oct 2014 | A1 |
20140343795 | Lavoie | Nov 2014 | A1 |
20140379217 | Rupp et al. | Dec 2014 | A1 |
20150025732 | Min et al. | Jan 2015 | A1 |
20150057903 | Rhode et al. | Feb 2015 | A1 |
20150066296 | Trombley et al. | Mar 2015 | A1 |
20150066298 | Sharma et al. | Mar 2015 | A1 |
20150120141 | Lavoie et al. | Apr 2015 | A1 |
20150134183 | Lavoie et al. | May 2015 | A1 |
20150138340 | Lavoie | May 2015 | A1 |
20150158527 | Hafner et al. | Jun 2015 | A1 |
20150203156 | Hafner et al. | Jul 2015 | A1 |
20150210317 | Hafner et al. | Jul 2015 | A1 |
20150217693 | Pliefke | Aug 2015 | A1 |
20150232092 | Fairgrieve et al. | Aug 2015 | A1 |
20150298738 | Hoel | Oct 2015 | A1 |
20160001705 | Greenwood et al. | Jan 2016 | A1 |
20160009288 | Yu | Jan 2016 | A1 |
20160052548 | Singh et al. | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
202159367 | Mar 2012 | CN |
3931518 | Apr 1991 | DE |
9208595 | Aug 1992 | DE |
10154612 | May 2003 | DE |
102005043466 | Mar 2007 | DE |
102005043467 | Mar 2007 | DE |
102005043468 | Mar 2007 | DE |
102006002294 | Jul 2007 | DE |
102007029413 | Jan 2009 | DE |
102006035021 | Apr 2010 | DE |
102008043675 | May 2010 | DE |
102009007990 | Aug 2010 | DE |
102009012253 | Sep 2010 | DE |
102010029184 | Nov 2011 | DE |
0418653 | Mar 1991 | EP |
1361543 | Nov 2003 | EP |
1655191 | May 2006 | EP |
1810913 | Jul 2007 | EP |
2388180 | Nov 2011 | EP |
2644477 | Oct 2013 | EP |
2515379 | Apr 1983 | FR |
09267762 | Oct 1997 | JP |
10119739 | May 1998 | JP |
2012166580 | Sep 2012 | JP |
0044605 | Aug 2000 | WO |
2012059207 | May 2012 | WO |
2012103193 | Aug 2012 | WO |
2013186208 | Dec 2013 | WO |
WO2014092611 | Jun 2014 | WO |
2015187467 | Dec 2015 | WO |
Entry |
---|
M. Khatib, H. Jaouni, R. Chatila, and J.R Laumond; “Dynamic Path Modification for Car-Like Nonholonomic Mobile Robots,” IEEE, International Conference on Robotics and Automation, Albuquerque, New Mexico, Apr. 1997, 6 pages. |
SH. Azadi, H.R. Rezaei Nedamani, and R. Kazemi, “Automatic Parking of an Articulated Vehicle Using ANFIS”, Global Journal of Science, Engineering and Technology (ISSN: 2322-2441), 2013, pp. 93-104, Issue No. 14. |
F. Cuesta and A. Ollero, “Intelligent System for Parallel Parking of Cars and Tractor-Trailers”, Intelligent Mobile Robot Navigation, Star, 2005, pp. 159-188, Springer-Verlag Berlin Heidelberg. |
Haviland, G S, “Automatic Brake Control for Trucks—What Good Is It?”, TRID, Society of Automotive Engineers, Sep. 1968, 1 pg. |
Altafini, C.; Speranzon, A.; Wahlberg, B., “A Feedback Control Scheme for Reversing a Truck and Trailer Vehicle”, IEEE, Robotics and Automation, IEEE Transactions, Dec. 2001, vol. 17, No. 6, 2 pgs. |
Claudio Altafini, Alberto Speranzon, and Karl Henrik Johansson, “Hybrid Control of a Truck and Trailer Vehicle”, Springer-Verlag Berlin Heidelberg, HSCC 2002, LNCS 2289; 2002, pp. 21-34. |
Divelbiss, A.W.; Wen, J.T.; “Trajectory Tracking Control of a Car-Trailer System”, IEEE, Control Systems Technology, Aug. 6, 2002, vol. 5, No. 3, 1 pg. |
Guanrong, Chen; Delin, Zhang; “Backing up a Truck-Trailer with Suboptimal Distance Trajectories”, IEEE, Proceedings of the Fifth IEEE International Conference, vol. 2, Aug. 6, 2002, New Orleans, LA, ISBN:0-7803-3645-3, 1 pg. |
“Understanding Tractor-Trailer Performance”, Caterpillar, 2006, pp. 1-28. |
C. Lundquist; W. Reinelt; O. Enqvist, “Back Driving Assistant for Passenger Cars with Trailer”, ZF Lenksysteme GmbH, Schwäbisch Gmünd, Germany, 2006 (SAE Int'l) Jan. 2006, pp. 1-8. |
Olof Enqvist, “AFS-Assisted Trailer Reversing,” Institutionen för systemteknik Deartment of Electrical Engineering, Jan. 27, 2006, 57 pgs. |
Cedric Pradalier, Kane Usher, “Robust Trajectory Tracking for a Reversing Tractor-Trailer System”, (Draft), Field and Service Robotics Conference, CSIRO ICT Centre, Jul. 2007, 16 pages. |
Hodo, D. W.; Hung, J.Y.; Bevly, D. M.; Millhouse, S., “Effects of Sensor Placement and Errors on Path Following Control of a Mobile Robot-Trailer System”, IEEE, American Control Conference, Jul. 30, 2007, 1 pg. |
Cedric Pradalier, Kane Usher, “Experiments in Autonomous Reversing of a Tractor-Trailer System”, 6th International Conference on Field and Service Robotics, inria-00195700, Version 1, Dec. 2007, 10 pgs. |
Zhe Leng; Minor, M., “A Simple Tractor-Trailer Backing Control Law for Path Following”, IEEE, Intelligent Robots and Systems (IROS) IEEE/RSJ International Conference, Oct. 2010, 2 pgs. |
“2012 Edge—Trailer Towing Selector”, Brochure, Preliminary 2012 RV & Trailer Towing Guide Information, 2011, 3 pgs. |
“Ford Super Duty: Truck Technologies”, Brochure, Sep. 2011, 2 pgs. |
J. Roh; H. Lee; W. Chung, “Control of a Car with a Trailer Using the Driver Assistance System”, IEEE, International Conference on Robotics and Biomimetics; Phuket, Thailand, Dec. 2011, 1 pg. |
Payne, M.L.;Hung, J.Y, and Bevy, D.M; “Control of a Robot-Trailer System Using a Single Non-Collacted Sensor”, IEEE, 38th Annual Conference on IEEE Industrial Electronics Society, Oct. 25-28, 2012, 2 pgs. |
“Optionally Unmanned Ground Systems for any Steering-Wheel Based Vehicle” Universal. Unmanned., Kairos Autonomi, website: http://www.kairosautonomi.com/pronto4_system.html, retrieved Sep. 26, 2014, 2 pgs. |
Micah Steele, R. Brent Gillespie, “Shared Control Between Human and Machine: Using a Haptic Steering Wheel to Aid in Land Vehicle Guidance”, University of Michigan, Date Unknown, 5 pgs. |
Number | Date | Country | |
---|---|---|---|
20160229452 A1 | Aug 2016 | US |