The present disclosure relates to a sperm sorting method, and more particularly to a sperm sorting method introducing temperature difference and swim-up methods.
Infertility is a major health problem worldwide and is estimated to affect 8-12% of couples in the reproductive age group (Agarwal et al., Lancet 2021; 10271:319-333). Assisted reproductive technology (ART) such as in-vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) has been widely used for infertility treatment.
While selecting highly motile and morphologically normal sperm is the obvious key to in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) success. The performance of current standard ART procedures, such as swim-up technique and density gradient separation, is not entirely satisfactory due to ROS generation and increasing the level of oxidative DNA damage in sperm cells (Punjabi et al., J Assist Reprod Genet. 2019; 36:1413-21).
Horizontal microfluidic chips enable the use of small volumes for the separation of sperm into viable and motile sperm from non-viable or non-motile sperm. Only sperms with high motility could reach the contracted region of the channel against the flow field and be transported to the outlet. Such devices can be found, for example, in patent publications U.S. Ser. No. 10/532,357, CN 102242055B, and U.S. Ser. No. 10/450,545. However, the process is often a time-consuming task and can have severe volume restrictions.
The device disclosed in patent publication U.S. Pat. No. 10,422,737 incorporates a filter to cause sperm to move against the filter and gravity to reach the outlet. However, when patients with low sperm concentration and/or low motility, the separation result of the low yield and lower quality after sorting need to be overcome. Especially, men's sperm has been decreased in number and getting worse in swimming for some time now.
Sperm thermotaxis is one of the mechanisms for selecting capacitated spermatozoa to fertilize the oocyte. Thermotaxis is dependent on a temperature gradient established within the fallopian tube. Guided by this gradient, capacitated mammalian spermatozoa can swim away from the utero-tubal junction towards the warmer temperature where the oocyte awaits. In a recent publication, spermatozoa selection by thermotaxis in mice and human possess higher DNA integrity and increased blastocyst production as well as live birth rate of ICIS (Pdrez-Cerezales et al. Scientific Reports 2018, 8:2902.). In addition, a mild heat treatment of asthenozoospermic males increased the number of motile sperm and pregnancy rate (Küçük et al. J Assist Reprod Genet 2008, 25:235-238).
Current methods of sperm selection by thermotaxis were operating on a petri dish or microfluidic chip with a horizontal thermal gradient provided by a laboratory hot plate or resistive heater (Pdrez-Cerezales et al., Scientific Reports 2018; 8:2902). Li et al. disclosed a horizontal temperature-gradient system for spermatozoa isolation (CN 108504563A). However, using the methods described above did not provide the throughput needed to meet IVF criteria. Furthermore, in a horizontal temperature gradient system, to establish an effective temperature difference, the hot and cold reservoirs need to be separated by a distance, resulting in space constraints for the system. Besides, there's no thermotaxis-based device to assist the sorting of motile spermatozoa on the market so far.
Aspects and advantages of embodiments of the present disclosure will be set forth in part in the following description, or may be learned from the description, or may be learned through practice of the embodiments.
An example aspect of the present disclosure is directed to a sperm sorting method. The sperm sorting method includes the following steps: providing a porous layer with a first side and a second side opposite to the first side; disposing an unsorted sperm group at the second side; forming a temperature difference between the first side and the second side; and collecting a sorted sperm group which arrives the first side and passes through the porous layer from the second side based on the temperature difference and overcoming gravity.
In some implementations, the sperm sorting method further includes the following step: aligning the first side and the second side vertically.
In some implementations, the sperm sorting method further includes the following steps: providing a sperm sorting device formed with an upper chamber, wherein the upper chamber is disposed at the first side of the porous layer, and the porous layer communicates with the upper chamber; and disposing a buffer into the upper chamber.
In some implementations, the step of forming the temperature difference between the first side and the second side includes: heating the upper chamber through a temperature controlling component.
In some implementations, the sperm sorting method further includes the following step: providing a temperature difference device formed with a sorting device accommodating portion, wherein the temperature controlling component is disposed at the temperature difference device and adjacent to the upper chamber, and the sorting device accommodating portion is adapted to accommodate at least a portion of the sperm sorting device.
In some implementations, the sperm sorting method further includes the following steps: providing a sperm sorting device formed with a lower chamber, wherein the lower chamber is disposed at the second side of the porous layer, and the porous layer communicates with the lower chamber; and disposing the unsorted sperm group into the lower chamber.
In some implementations, the step of forming the temperature difference between the first side and the second side includes dissipating heat from the lower chamber through a temperature controlling component.
In some implementations, the sperm sorting method further includes the following steps: providing a temperature difference device formed with a sorting device accommodating portion, wherein the temperature controlling component is disposed at the temperature difference device and adjacent to the lower chamber, and the sorting device accommodating portion is adapted to accommodate at least a portion of the sperm sorting device.
In some implementations, the step of forming the temperature difference between the first side and the second side includes: maintaining the temperature of the first side at 35-38° C.; and maintaining the temperature of the second side at 30-36° C., and the temperature of the first side is higher than the second side.
In some implementations, the step of collecting the sorted sperm group includes: incubating the unsorted sperm group for 15-30 minutes.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the figures and the following detailed description.
The aforementioned and other technical features, characteristics and effects of the present disclosure may be clearly presented by the detailed description of exemplary embodiments together with the attached figures. In addition, in the following embodiments, the same or similar components will use the same or similar reference numerals.
In addition, the methods, processes and steps disclosed by the embodiments are only illustrative and not intended to limit. Therefore, a person skilled in the art can appropriately increase, omit, modify or execute each method, process or step alone without departing from the spirit and the scope of the invention, unless the change results in timing or technical inconsistencies. Besides, the orders of each method, process or step can also be altered or adjusted.
Refer to
Refer to
Moreover, the upper portion 110 may be further formed with an injecting port 112 and a collecting port 113. The injecting port 112 is configured to inject the sperm sample. The collecting port 113 communicates with the upper chamber 111 for collecting sorted sperm and injecting an optional buffer 140 during sorting. The lower portion 120 may be formed with a guiding portion 122. The guiding portion 122 is exemplary to be an inclined concave and communicate with the lower chamber 121. When the upper portion 110 and the lower portion 120 are joined, the injecting port 112 is aligned and communicates with the guiding portion 122. As shown in figure, the upper chamber 111 and the collecting port 113 are located at a first side of the porous layer 130, and the lower chamber 121 is located at a second side of the porous layer 130. By the configuration, user can inject an unsorted sperm group via the injecting port 112 and make it travel through the guiding portion 122 to the lower chamber 121 at the second side of the porous layer 130. Then, a temperature difference can be formed between the first side and the second side, while providing a heating source from the top plate 116. Since motile sperms have stronger thermotaxis behavior, the motile sperms 10 among the unsorted sperm group will overcome the gravity based on the temperature difference to pass through the porous layer 130 from the second side to the first side with higher temperature. The immotile sperms 20 tend to stay in the lower chamber 121 at the second side, and the sperm sorting is achieved.
In order to maximize the proportion of sperm motility dedicated to overcoming gravity rather than being consumed by relative motion friction with the porous layer 130, preferably, the porous layer 130 is disposed horizontally. That is, the first side and the second side are arranged vertically. Besides, in some embodiments, user can also deploy the buffer 140 into the upper chamber 111 at first side of the porous layer 130 through the collecting port 113. The buffer 140 may be a conventional sperm washing medium with bicarbonate, or an HEPES buffer to maintain the motility of the motile sperms 10 after passing through the porous layer 130.
Due to the moving characteristic of sperms to swim along the sidewall or towards obstacles, in some embodiments, the width between side walls of the guiding portion 122 may be designed to be gradually wider as approaching the lower chamber 121. Thereby, more sperms are allowed to travel towards the lower chamber 121. Besides, in some embodiments, the lower portion 120 further includes a guiding member 126. The guiding members 126 are exemplary to be two conical columns disposed on the guiding portion 122, and appropriate clearances are formed between the guiding members 126 and side walls of the guiding portion 122 and between the guiding member 126 themselves. By the configuration, the sperms can be promoted to travel along the side walls of the guiding portion 122 and the periphery of the guiding member 126, which further improves the chance of the sperms to advance to the lower chamber 121.
During the sperm sorting process, the porous layer 130 not only acts as a filtering member for the motile sperms 10 and the immotile sperms 20 to overcome the gravity, but also delays the thermal equilibrium between the upper chamber 111 and the lower chamber 121. On the other hand, in this embodiment, the method to form the temperature difference is exemplary to heat the buffer 140 at the first side of the porous layer 130 by a temperature controlling component 200, and the temperature of the upper chamber 111 is higher than that of the lower chamber 121. The temperature controlling component 200 may be a heat plate and disposed outside the upper portion 110 to avoid direct contact with the sperms in the upper chamber 111 and the buffer 140. Specifically, the upper portion 110 may include a top plate 116, and the temperature controlling component 200 is attached to the top plate 116. By the arrangement, the temperature controlling component 200 is capable of heating the upper chamber 111 through the top plate 116 uniformly rather than merely forming a regional temperature difference. In the embodiment, the temperature of the first side may be kept between 35-38° C., the temperature of the second side may be kept between 30-36° C., and the temperature of the first side is higher than the temperature of the second side. Preferably, the predetermined temperature mention above is slightly higher than the desired temperature of fluids in the chamber. By experiments, when the temperature difference is set to be 1-4° C., a better sorting result can be obtained without affecting the motility of the sperms, but it is not limited thereto.
It is noted that the temperature controlling component 200 is exemplified as a heating element for heating the upper chamber 111 in the embodiment. However, in some embodiments, the temperature controlling component 200 may be also a heat dissipation element for cooling the lower chamber 121, as shown in the step S125 in
In addition, the cooling method for the lower chamber 121 is not limited to indirect contact with a cooling source through a heat spreader. For example, cooling can be achieved through chemical means by applying thermal paste to the outer wall of the lower chamber 121, or through physical means by disposing cooling components such as fans outside the lower chamber 121. Another option is through materials with high thermal conductivity, such as metals, for the lower portion 120 to enhance heat dissipation. Alternatively, the platform that supports the lower portion 120 can be designed with multiple cooling holes for structural cooling. The present invention does not impose any limitations on these cooling methods.
On the other hand, when user injects the buffer 140 into the upper chamber 111, bubbles tend to be formed to affect the flow of sperms. Therefore, varied height difference is formed between a lower surface of the top plate 116 and a bottom of the upper chamber 111 in the embodiment. Specifically, the lower surface of the top plate 116 is formed as an incline, and a through-hole 116a is formed at a higher end of the incline. Thereby, during the injection of the buffer 140, the bubbles generated will rise along the mixed fluid and move along the incline, eventually being discharged through the through-hole 116a. However, in other embodiments, the lower surface of the top plate 116 may be also curved or stair-shaped, as long as it smoothly guides the bubbles towards the through-hole 116a.
It is noted that the dissolved oxygen in the fluid in the chamber is likely to generate free radicals which in turn damage the sperms, and the amount of the dissolved oxygen mentioned above is proportional to the contact area and contact time between the fluid and the air. Therefore, the area occupied by the through-hole 116a relative to the top plate 116 is suggested to be limited to avoid excessive contact area to the air. The cross-sectional area of the through-hole 116a in the embodiment is about to 4.73% of the area of the lower surface of the top plate 116, but below 10% is an acceptable range.
Refer to
The specific steps of the sperm sorting method in the embodiment are illustrated below:
Human Sperm Handling and Sperm Sorting
Human semen samples were obtained from donors after 3 days of sexual abstinence. Informed consent was obtained from each donor. After obtaining semen samples from the hospital, liquefied-semen samples were then analyzed by CASA (computer-assisted semen analysis). Subsequently, a semen sample was split into two fractions for sperm sorting in the presence and absence of temperature difference condition. Spermatozoa were separated from crude semen sample by the following process. Briefly, a semen sample was injected into the lower chamber 121 at the second side of the porous layer 130 through the injecting port 112; the buffer 140 (mHTF medium) is then injected into the upper chamber 111 at the first side of the porous layer 130. Whether to use the temperature controlling component 200 is decided according to the tested group. After disposing the unsorted sperms, the sorted sperms were collected after 15 to 30 minutes incubation and analyzed by CASA.
Immunofluorescence Staining
To compare the quality of spermatozoa before and after sorting, approximately 2×106 spermatozoa were centrifuged for 7 minutes and resuspended in PBS containing 4% of paraformaldehyde. After fixation, the samples were centrifuged and washed with PBS twice, and then resuspended in PBS at 200 μL. Fixed cells were then aliquoted and smeared onto a glass microscope slide and left to dry. The air-dried slides can be placed into storage at −80° C. or performed immunofluorescence staining directly. The assessment of sperm DNA fragmentation (sDF) in spermatozoa was evaluated by using with TUNEL assay.
Vertical Temperature Difference Establishment
In some embodiments, the temperature difference may be formed between the upper chamber 111 and the lower chamber 121 through the temperature controlling component 200, and the temperature of the mild heat source and heat released by the temperature controlling component 200 were detected by an Infrared thermal imager (MT-4606, Proskit). It is noted that the PCTE membrane selected for the porous layer 130 not only allows motile sperms to travel from the lower chamber 121 to the upper chamber 111, but also has the direct benefit of enhancing the temperature difference. As shown in
Sperm Motility, Concentration, and Isolation Efficiency
The improvement of sperm sorting with a vertical temperature difference system was assessed in compared to sperm sorting without a vertical temperature difference system. The sperm concentration, motility as well as sperm parameters of the sperm collected through the collecting port 113 were analyzed by CASA. As shown in
Refer to
Sperm Velocity Analysis
The sperms and moving paths of the sorted sperm were tracked by CASA, as shown in
Quality of Thermotactic Spermatozoa
To assess the genetic quality of spermatozoa selected by thermotaxis, we examined DNA fragmentation level after sorting with our vertical temperature difference sorting system by TUNEL assay. As shown in
The disclosure imitates the avigation mechanism of spermatozoa in the female genital tract, it could be used as a tool in the ART setting to select the best spermatozoa as human spermatozoa after capacitation responds positively to a temperature difference.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope being indicated by the following claims, along with the full scope of equivalents to which such claims are entitled. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
This application is a continuation-in-part patent application of U.S. application Ser. No. 17/835,626 filed on Jun. 8, 2022, the entire contents of which are hereby incorporated by reference for which priority is claimed under 35 U.S.C. § 120.
Number | Date | Country | |
---|---|---|---|
Parent | 17835626 | Jun 2022 | US |
Child | 18329595 | US |