Information
-
Patent Grant
-
6276906
-
Patent Number
6,276,906
-
Date Filed
Thursday, November 18, 199925 years ago
-
Date Issued
Tuesday, August 21, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Wenderoth, Lind & Ponack, L.L.P.
-
CPC
-
US Classifications
Field of Search
US
- 417 363
- 417 902
- 248 621
-
International Classifications
-
Abstract
A hermetic motor compressor includes a generally spherical casing having a generally spherical side wall and a first downwardly curved bottom wall, an integrated structure accommodated in said casing and having a compression section and a drive section integrally formed with each other, and a plurality of supporting units for elastically supporting the integrated structure. A plurality of legs are secured to the first downwardly curved bottom wall, and each of them is of the same shape as the downwardly curved bottom wall.
Description
TECHNICAL FIELD
The present invention relates generally to a hermetic motor compressor for use in a refrigerator or the like and, in particular but not exclusively, to a hermetic motor compressor capable of reducing noise emission.
BACKGROUND ART
Recently, hermetic motor compressors (hereinafter referred to simply as compressors) with reduced vibration and reduced noise emission are demanded. Because conventional refrigerants have a tendency to cause ozone layer damage or global warming, the use of hydrocarbon refrigerants having an ozone damaging coefficient of zero and a global warming coefficient of zero is commenced to protect global environment.
FIG. 6
depicts a conventional compressor as disclosed in Japanese Patent Publication (examined) No. 1-47632, which includes a hermetically sealed casing
1
and an integrated structure
4
accommodated in the casing
1
. The integrated structure
4
is made up of a compression section
2
and a drive section
3
integrally formed with each other. The compression section
2
includes a cylinder
5
, a piston
6
reciprocally mounted in the cylinder
5
, a crankshaft
7
connected to a rotor
3
a
of the drive section
3
for rotation together therewith, and a connecting rod
8
for connecting the piston
6
to the crankshaft
7
to convert rotation of the crankshaft to a reciprocating motion of the piston
6
.
The casing
1
has a generally flat bottom wall
1
a
and a generally cylindrical side wall
1
b
unitarily formed with each other. A gas inlet tube
10
is welded to the side wall
1
b
, while a plurality of legs
11
are welded or secured to the bottom wall
1
a
. The integrated structure
4
is supported by a stay
12
welded to the inner surface of the side wall
1
b
, while the drive section
3
is electrically connected to a power source (not shown) via a hermetic terminal
13
hermetically welded to the side wall
1
b.
In the above-described construction, because the bottom wall
1
a
is generally flat, the plurality of legs
11
can be welded thereto with good workability. Also, because the side wall
1
b
is generally cylindrical and not spherical, the stay
12
can be welded thereto with good workability.
The casing
1
is, however, low in rigidity due to the generally flat shape of the bottom wall
1
a
and the generally cylindrical shape of the side wall
1
b
. Because of this, the casing
1
oscillates slightly and generates noise, or sound produced during operation of the integrated structure
4
accommodated therein leaks through the generally flat or cylindrical portion, thus increasing the noise.
Particularly, in applications where a hydrocarbon refrigerant such as, for example, isobutane is used for a compression refrigerant, the concentration of circulating refrigerant is reduced during cyclic operation of the compressor at the same condensation and evaporation temperatures as in the operation with the use of a conventional refrigerant (for example, CFCR12, HFCR134a or the like) including fluorine or chlorine. Accordingly, enlargement of the internal volume of the cylinder
5
is required, which in turn causes an increase in unbalanced mass, thus increasing vibration and generating noise.
The present invention has been developed to overcome the above-described disadvantages.
It is accordingly an objective of the present invention to provide a hermetic motor compressor capable of reducing vibration and noise emission even if the unbalanced mass is increased which has been hitherto caused by enlargement of the internal volume of the cylinder.
DISCLOSURE OF THE INVENTION
In accomplishing the above and other objectives, the hermetic motor compressor according to the present invention includes a generally spherical casing having a generally spherical side wall and a first downwardly curved bottom wall, an integrated structure accommodated in the casing and having a compression section and a drive section integrally formed with each other, a plurality of supporting units for elastically supporting the integrated structure, and a plurality of legs secured to the first downwardly curved bottom wall and having the same shape as the downwardly curved bottom wall.
This construction is particularly useful when a hydrocarbon refrigerant is used. The reason for this is that the use of the hydrocarbon refrigerant requires enlargement of the internal volume of a cylinder, which in turn causes an increase in unbalanced mass, thus increasing noise. The noise can be considerably reduced by forming the casing into a generally spherical shape having no flat or cylindrical portions, because the generally spherical casing has a high rigidity. In addition, the legs secured to the bottom wall rigidify the casing and reduce noise.
The casing preferably has a second downwardly curved bottom wall having a radius of curvature different from that of the first downwardly curved bottom wall. The two downwardly curved bottom walls having different radii of curvature further rigidify the casing, thus reducing noise.
Advantageously, each of the plurality of supporting units includes a stay of substantially the same shape as the side wall. This stay increases the rigidity of the casing, thus reducing noise.
The stay preferably has a protruding portion integrally formed therewith, a ring-shaped elastic member through which the protruding portion extends, and a stopper mounted on the ring-shaped elastic member, with the protruding portion inserted into the stopper.
Because the ring-shaped elastic member acts as a cushioning member, vibration caused by the compression section and increased with the increase in unbalanced mass is not easily transmitted to the stay via the stopper, thus reducing noise during operation of the compressor.
The casing is generally of two-piece construction having two halves welded together. In this case, it is preferred that the side wall has a radius of curvature smaller than 100% of a radius of curvature of an opening of one of the two halves, while the first downwardly curved bottom wall has a radius of curvature smaller than 120% of the radius of curvature of the opening. It is also preferred that the second downwardly curved bottom wall has a radius of curvature smaller than 35% of the radius of curvature of the opening. The above limitations in radius of curvature are particularly effective in increasing the rigidity of the casing to reduce noise.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and other objectives and features of the present invention will become more apparent from the following description of preferred embodiments thereof with reference to the accompanying drawings, throughout which like parts are designated by like reference numerals, and wherein:
FIG. 1
is a vertical sectional view of a hermetic motor compressor according to the present invention;
FIG. 2
is a side view of a casing, partly in section, particularly showing one of a plurality of supporting units secured to the casing;
FIG. 3
is a view similar to
FIG. 1
, particularly showing radii of curvature at various portions of the casing;
FIG. 4
is a vertical sectional view of another hermetic motor compressor according to the present invention;
FIG. 5
is an enlarged fragmentary side view, partly in section, of a portion shown by V in
FIG. 4
; and
FIG. 6
is a vertical sectional view of a conventional hermetic motor compressor.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
This application is based on application No. 9-130774 filed May 21, 1997 in Japan, the content of which is incorporated hereinto by reference.
Referring now to the drawings, there is shown in
FIG. 1
a hermetic motor compressor according to the present invention. As shown therein, the compressor includes a hermetically sealed generally spherical casing
21
and an integrated structure
24
accommodated in the casing
21
. The integrated structure
24
is made up of a compression section
22
and a drive section
23
integrally formed with each other. As is the case with the conventional compressor shown in
FIG. 6
, the compression section
22
includes a cylinder, a piston reciprocally mounted in the cylinder, a crankshaft connected to a rotor of the drive section for rotation together therewith, and a connecting rod for connecting the piston to the crankshaft. The casing
21
has a downwardly curved central bottom wall
21
a
and a downwardly curved annular bottom wall
21
b
formed externally of the central bottom wall
21
a
so as to be continuous thereto. The central bottom wall
21
a
and the annular bottom wall
21
b
have different radii of curvature. As illustrated, each of the central bottom wall
21
a
and the annular bottom wall
21
b
protrudes downwardly and a junction between the central bottom wall
21
a
and annular bottom wall
21
b
is constituted by an upwardly protruding portion protruding upwardly beyond downwardly protruding portions of the central bottom wall
21
a
and the annular bottom wall
21
b.
The casing
21
has a plurality of legs
26
welded or secured to the annular bottom wall
21
b
and, hence, a portion of each of the plurality of legs
26
is of substantially the same shape as the annular bottom wall
21
b.
Although in the illustrated embodiment the plurality of legs
26
are welded to the annular bottom wall
21
b
, they may be welded to the central bottom wall
21
a
, as shown in FIG.
3
.
As shown in
FIG. 2
, the integrated structure
24
is elastically supported by a plurality of supporting units
25
each having a stay
27
welded to a generally spherical side wall
21
c
of the casing
21
. To this end, the stay
27
is formed into substantially the same spherical shape as the side wall
21
c
of the casing
21
.
If the casing
21
has generally flat portions, sound of 2-3 kHz generated within the integrated structure
24
resonates at such flat portions, thus amplifying the sound. On the other hand, if the casing
21
does not have any flat portions but has a spherical shape, the vibration frequency is in the neighborhood of 4 kHz that differs from the frequency of 2-3kHz referred to above, resulting in a quiet compressor.
According to modal analysis tests made so far by the inventors of the present invention, the casing
21
had the highest rigidity when the casing
21
has the following radii of curvature:
Radius of curvature R
2
of the side wall
21
c
as measured in the vertical direction: smaller than 100% of an inlet radius of curvature R
1
;
Radius of curvature r
1
of the central bottom wall
21
a
: smaller than 120% of the inlet radius of curvature R
1
; and
Radius of curvature r
2
of the annular bottom wall
21
b
: smaller than 35% of the inlet radius of curvature R
1
.
It is to be noted that the casing
21
is of two-piece construction having upper and lower halves welded together and that the inlet radius of curvature R
1
referred to above is the radius of curvature of an opening of the lower half.
As discussed above, the rigidity of the casing
21
can be increased and noise emission can be considerably reduced by forming the casing
21
into a generally spherical shape in place of a generally flat or cylindrical shape.
Noise tests of the compressor revealed that the noise level of the compressor according to the present invention was 53 dB(A), whereas that of the conventional compressor was 60 dB(A).
It is to be noted that a plurality of laterally outwardly protruding projections having a radius of curvature different from those of the central bottom wall
21
a
and the annular bottom wall
21
b
may be formed with the annular bottom wall
21
b
or the side wall
21
c
to further rigidify the casing
21
.
A compressor as shown in
FIG. 4
includes an integrated structure made up of a compression section
34
and a drive section
35
, and a plurality of supporting units for elastically supporting the integrated structure.
As shown in
FIG. 5
, each of the supporting units includes a stay
29
welded to the generally spherical side wall
21
c
of the casing and having an upwardly protruding portion
32
integrally formed therewith. The stay
29
is of substantially the same shape as the generally spherical side wall
21
c
. A ring-shaped elastic member
31
is mounted on the stay
29
, and the upwardly protruding portion
32
extends through the ring-shaped elastic member
31
. The upwardly protruding portion
32
is also inserted in a hole
30
a
defined in a snubber or stopper
30
so that the snubber
30
may be fixedly mounted on the upper surface
31
a
of the ring-shaped elastic member
31
.
A suspension spring
28
is interposed between the compression section
34
and each supporting unit to elastically support the integrated structure. The suspension spring
28
has one end engaged with the snubber
30
and the other end engaged with a snubber or stopper
33
that is formed with the compression section
34
.
In the above-described construction, the ring-shaped elastic member
31
acts as a cushioning member for absorbing vibration transmitted from the compression section
34
via the suspension spring
28
and for preventing such vibration from being transmitted to the stay
29
via the upwardly protruding portion
32
.
Although the present invention has been fully described by way of examples with reference to the accompanying drawings, it is to be noted here that various changes and modifications will be apparent to those skilled in the art. Therefore, unless such changes and modifications otherwise depart from the spirit and scope of the present invention, they should be construed as being included therein.
Claims
- 1. A hermetic motor compressor comprising:a generally spherical casing having a generally spherical side wall and a first downwardly curved bottom wall; an integrated structure accommodated in said casing and having a compression section and a drive section integrally formed with each other; a plurality of supporting units for elastically supporting said integrated structure; and a plurality of legs secured to said first downwardly curved bottom wall and having a same shape as said downwardly curved bottom wall; wherein each of said plurality of supporting units comprises a stay welded to said side wall and having a protruding portion integrally formed therewith, a ring-shaped elastic member through which said protruding portion extends, and a stopper mounted on said ring-shaped elastic member, said protruding portion being inserted into said stopper.
- 2. The hermetic motor compressor according to claim 1, wherein each of said plurality of supporting units comprises a stay of substantially a same shape as said side wall.
- 3. The hermetic motor compressor according to claim 1, wherein said casing is of two-piece construction having two halves welded together and wherein said side wall has a radius of curvature smaller than 100% of a radius of curvature of an opening of one of said two halves, and said first downwardly curved bottom wall has a radius of curvature smaller than 120% of the radius of curvature of said opening.
- 4. The hermetic motor compressor according to claim 3, wherein said second downwardly curved bottom wall has a radius of curvature small than 35% of the radius of curvature of said opening.
- 5. The hermetic motor compressor according to claim 1, wherein said casing has a second downwardly curved bottom wall having a radius of curvature different from that of said first downwardly curved bottom wall.
Priority Claims (1)
Number |
Date |
Country |
Kind |
9-130774 |
May 1997 |
JP |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
102e Date |
371c Date |
PCT/JP98/02173 |
|
WO |
00 |
11/18/1999 |
11/18/1999 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO98/53205 |
11/26/1998 |
WO |
A |
US Referenced Citations (6)
Foreign Referenced Citations (8)
Number |
Date |
Country |
507091 A1 |
Oct 1992 |
EP |
0 521 526 |
Jan 1993 |
EP |
0 561 385 |
Sep 1993 |
EP |
63-061795 |
Mar 1988 |
JP |
1-47632 |
Oct 1989 |
JP |
3-107581 A |
May 1991 |
JP |
3-225084 A |
Oct 1991 |
JP |
5-10266 |
Jan 1993 |
JP |