The disclosure relates to a spherical compressor.
A spherical compressor is a newly invented variable-volume mechanism with a novel structure. The spherical compressor requires no intake/exhaust valve, few moving parts, and has the advantages of small vibration, high mechanical efficiency, reliable sealing performance, etc. There are many patents of spherical compressors, such as Chinese Patent No. 03114505.1 (titled “Variable-volume Mechanism for Compressor”), CN200610104569.8 (titled “Spherical Compressor Capable of Multi-stage Compression”), and CN201010264211.8 (titled “Hinge Sealing Automatic Compensation Mechanism for Spherical Compressor”). The application and development of spherical compressors have made steady progress in recent years. Spherical compressors can be widely used in various fields such as gas compressors, refrigerator and refrigeration air-conditioning compressors and pump machinery. Various power machines based on spherical compressors are undergoing industrialization.
Since the rotation of a piston of an existing spherical compressor is powered by an eccentric main shaft, when the main shaft rotates to the point where the axis of a turntable coincides with the axis of the piston, the resultant force of the main shaft acting on the turntable perpendicularly intersects with the axis of the piston and the axis of the turntable, so that the torque of the piston rotating around the axis of the piston is zero and the piston cannot rotate, thus causing clamping stagnation of the mechanism, which is the dead center of the mechanism. The Chinese Patent No. 201410100390.X titled “Anti-Locking Mechanism for Rotor of Spherical Compressor” aims to solve the problem of locking at a dead center of a spherical compressor. Specifically, a pin boss is added to a turntable shaft; a guide sleeve is arranged on the pin boss; a concave sliding chute is arranged on a base spherical surface of a cylinder body or a lower spherical surface of the cylinder body; and the concave sliding chute is distributed on the sliding track of the guide sleeve on the corresponding base spherical surface of the cylinder body or the lower spherical surface of the cylinder body during the rotation of a turntable. At the moment when the rotating torque of the turntable is zero, when the main shaft drives the turntable, the contact force generated by the guide sleeve and the concave sliding chute can still keep the turntable moving, so that the turntable is not prone to clamping stagnation, fundamentally solving the dead center problem during the movement of the spherical compressor mechanism. However, high precision of the concave sliding chute is required to ensure a good fit between the guide sleeve and the concave sliding chute, and a cooling mechanism is needed to prevent heat generation caused by friction of the guide sleeve and the concave sliding chute during the movement of the anti-locking mechanism, thus increasing manufacturing and operation costs.
This application is to design a novel spherical compressor based on the existing spherical compressor so that the spherical compressor is a mechanism without dead center.
The spherical compressor includes:
a cylinder body having a hemispherical inner cavity and a turntable shaft hole in communication with an outside of the cylinder body;
a cylinder head having a hemispherical inner cavity; wherein the cylinder head is combined with the cylinder body to form a spherical inner cavity; an intake passage, an exhaust passage and a piston shaft hole are provided on an inner spherical surface of the cylinder head; the intake passage and the exhaust passage on the cylinder head are arranged in an annular space perpendicular to an axis of the piston shaft hole; the intake passage and the exhaust passage communicate with an intake hole and an exhaust hole on the cylinder head in communication with the outside of the cylinder body, respectively;
a piston having a spherical top surface, two side faces which form an angle and a piston pin boss at the lower part of the two side faces; where the spherical top surface of the piston and the spherical inner cavity have the same center and form a sealed loose fit; the piston pin boss is a semi-cylinder; a middle part of the semi-cylinder is provided with a groove; a piston pin hole which penetrates is provided on a central axis of the semi-cylinder; a piston shaft protrudes from a center of the spherical top surface of the piston; and an axis of the piston shaft passes through the center of the spherical top surface of the piston;
a turntable having a turntable pin boss corresponding to the piston pin boss; wherein the turntable pin boss is arranged at an upper part of the turntable; an outer peripheral surface between the upper part and a lower end face of the turntable is a turntable spherical surface; the turntable spherical surface has the same center with the spherical inner cavity and is closely attached to the spherical inner cavity to form a sealed loose fit; two ends of the turntable pin boss are provided with semi-cylindrical grooves; a middle part of the turntable pin boss is provided with a protruding semi-cylinder; a turntable pin hole which penetrates is formed on a central axis of the semi-cylinder; a turntable shaft protrudes from a center of a lower end of the turntable; and the turntable shaft passes through the center of the turntable spherical surface; and
a center pin inserted into a pin hole formed by matching the turntable pin boss with the piston pin boss to form a cylindrical hinge; wherein matching surfaces of the cylindrical hinge form a sealed loose fit;
wherein the axis of the piston shaft hole and the axis of the turntable shaft hole both pass through the center of the spherical inner cavity; and an included angle between the axis of the piston shaft hole and the axis of the turntable shaft hole is a; a sliding chute swinging mechanism is arranged between the piston shaft and the piston shaft hole or between the turntable shaft and the turntable shaft hole; the sliding chute swinging mechanism between the piston shaft and the piston shaft hole allows the piston to swing along a sliding chute relative to the axis of the piston shaft hole; and the sliding chute swinging mechanism between the turntable shaft and the turntable shaft hole allows the turntable to swing along the sliding chute relative to the axis of the turntable shaft hole with a swing amplitude of 2α; the turntable shaft is driven to rotate so that the piston and the turntable relatively swing around the center pin; and a V1 working chamber and a V2 working chamber with alternatively variable volumes are formed between the upper end face of the turntable, the two side faces of the piston and the spherical inner cavity.
Further, a rotary sleeve in a cylindrical shape is arranged in the piston shaft hole on the cylinder head. An outer cylinder of the rotary sleeve is coaxial with the piston shaft hole, and the rotary sleeve can rotate around the axis of the piston shaft hole. A rotary sleeve sliding chute in a direction of an axis of the center pin is arranged on an end face of the rotary sleeve, and two side faces of the rotary sleeve sliding chute are symmetrically arranged on both sides of a plane of the axis of the center pin and the axis of the piston shaft hole. A piston shoe is fixedly arranged at an end of the piston shaft, and the piston shoe is arranged in the rotary sleeve sliding chute. Two side faces of the piston shoe are attached to two side faces of the rotary sleeve sliding chute and slide along the two side faces of the rotary sleeve sliding chute to form a loose fit, and the rotary sleeve sliding chute on the rotary sleeve and the piston shoe on the piston shaft form the sliding chute swinging mechanism. The turntable shaft is inserted into the turntable shaft hole on the cylinder body to form a rotating pair with the cylinder body, and a sealing plug is arranged at an end of the piston shaft hole on the cylinder head.
A piston shaft pin hole is provided at the end of the piston shaft. A piston shoe shaft hole and a piston shoe pin hole matched with the piston shaft pin hole are provided at a center of the piston shoe, and the piston shaft is inserted into the piston shoe shaft hole after passing through a via hole through which the piston shaft hole communicates with the spherical inner cavity. A fixing pin is inserted into a pin hole formed by matching the piston shoe pin hole with the piston shaft pin hole to fix the piston shoe at the end of the piston shaft. The two side faces of the piston shoe are parallel planes, and the two side faces of the piston shoe are attached to the two side faces of the rotary sleeve sliding chute respectively to form a loose fit.
The turntable shaft extends out of the cylinder body and is connected to a power mechanism to serve as a power input end of the compressor.
Further, a lower end of the cylinder body is connected to a main shaft through a main shaft support. An upper end of the main shaft is placed in the turntable shaft hole, and an outer cylinder at the upper end of the main shaft is coaxial with the turntable shaft hole. The main shaft rotates around the turntable shaft hole. A main shaft sliding chute is provided on an upper end face of the main shaft in a direction of an axis of the center pin, and two side faces of the main shaft sliding chute are symmetrically arranged on both sides of a plane of the axis of the turntable shaft hole and the axis of the center pin. A piston shoe is fixedly arranged at the end of the turntable shaft, and the piston shoe is arranged in the main shaft sliding chute. Two side faces of the piston shoe are attached to the two side faces of the main shaft sliding chute and slide along the two side faces of the main shaft sliding chute to form a loose fit, and the main shaft sliding chute on the main shaft and the piston shoe on the turntable shaft form the sliding chute swinging mechanism.
A lower end of the main shaft is connected to a power mechanism.
A turntable shaft pin hole is provided at the end of the turntable shaft. A piston shoe shaft hole and a piston shoe pin hole matched with the turntable shaft pin hole are provided at a center of the piston shoe, and the turntable shaft is inserted into the piston shoe shaft hole after passing through a via hole through which the turntable shaft hole communicates with the spherical inner cavity. A fixing pin is inserted into a pin hole formed by matching the piston shoe pin hole with the turntable shaft pin hole to fix the piston shoe at the end of the turntable shaft. The two side faces of the piston shoe are parallel planes, and the two side faces of the piston shoe are attached to the two side faces of the main shaft sliding chute respectively to form a loose fit.
The piston shaft hole on the cylinder head communicates with the outside of the cylinder body, and the piston shaft extends out of the piston shaft hole and is connected to the power mechanism to serve as the power input end of the compressor.
Further, the piston includes a piston insert. The piston insert is of a fan-shaped block structure with thick sides and a thin middle, and is embedded in the groove in the middle part of the piston pin boss of the piston. The shape of an inner cylindrical surface of the piston insert is matched with the shape of a protruding semi-cylindrical surface of the turntable to form a sealed loose fit. A protruding top surface of the piston insert is an outer cylindrical surface which is matched with a bottom surface of the groove of the piston pin boss of the piston. Two side faces of the piston insert are flush with the two side faces of the piston, and two end faces of the piston insert form a sealed loose fit with two side walls of the groove in the middle part of the piston pin boss.
The present application has the following advantages:
1. the spherical compressor is a mechanism without dead center;
2. the spherical compressor requires a simple structure, a small number of parts and low processing precision;
3. there is no power consumption loss caused by friction and heating when passing through a dead-center mechanism, and there is no need to arrange a special cooling mechanism; and
4. the spherical compressor can be widely used in refrigeration compressors, air conditioning compressors, air compressors and pump machinery.
As shown in
The piston shaft hole 105 on the cylinder head 1 communicates with the spherical inner cavity of the cylinder head 1 through a via hole, and the radial dimension of the via hole is smaller than the diameter of the piston shaft hole 105. An annular positioning surface is formed at the lower end of the piston shaft hole 105. The piston shaft hole 105 on the cylinder head 1 is provided with a rotary sleeve 6 in a cylindrical shape which is placed in the piston shaft hole 105. The end face of the rotary sleeve 6 is attached to the annular positioning surface. The outer cylinder of the rotary sleeve 6 is coaxial with the piston shaft hole 105. The rotary sleeve 6 can rotate around the axis of the piston shaft hole 105. As shown in
The piston 3 swings around the axis of the center pin 4 relative to the turntable 5, and a V1 working chamber 1001 and a V2 working chamber 1002 with alternatively variable volumes are formed between the upper end face of the turntable 5, the two side faces of the piston 3 and the spherical inner cavity. The intake passage 103 and the exhaust passage 104 on the cylinder head 1 are arranged in an annular space perpendicular to the axis of the piston shaft hole 105, and the intake passage 103 and the exhaust passage 104 communicate with an intake hole 101 and an exhaust hole 102 in the cylinder head 1 respectively. The intake hole 101 and the exhaust hole 102 communicate with the outside of the cylinder body 2. The air intake and discharge control is realized by the rotation of the piston 3, and when the working chambers need to discharge air or introduce air, the corresponding working chamber communicates with the intake passage 103 or the exhaust passage 104.
As shown in
A sealing plug 11 is provided at the end of the piston shaft hole 105 on the cylinder head 1, and an internal thread is provided on the inner hole in the outer end of the piston shaft hole 105. The sealing plug 11 is provided with an external thread matched with the internal thread, and the sealing plug 11 is arranged at the end of the piston shaft hole 105 by the threads in a blocking mode, so that compression media and lubricating oil cannot leak from the piston shaft hole 105.
In order to improve the manufacturability of the piston 3, as shown in
Inspired by this embodiment, those skilled in the art can perform the following deformation treatment on the turntable 5 and the cylinder body 2 without creative labor, and can also achieve the technical effect of the present invention: since the movement of the turntable 5 is rotation around the axis of the turntable shaft hole 201 on the cylinder body 2, the turntable spherical surface can be deformed into various forms of rotating surfaces around the axis of the turntable shaft hole 201 on the cylinder body 2, and the rotating surface can be spherical, cylindrical, conical and other forms. The inner spherical surface of the cylinder body 2 is also deformed into a rotating surface matched with the rotating surface of the turntable 5. The end faces of the two ends of the cylindrical hinge formed by the piston pin boss, the center pin 4 and the turntable pin boss and the inner surface of the cylinder body 2 are attached to each other and form a sealed loose fit during the movement of the piston 3 and the turntable 4. For this reason, the above-mentioned deformation scheme of the turntable and the cylinder body is also protected by this patent, and any technical scheme adopting the above deformation treatment also falls within the scope of the present application.
As shown in
The lower end of the cylinder body 2 is connected to a main shaft 12 through a main shaft support 13, and the main shaft support 13 is fixedly connected to the lower end of the cylinder body 2 through screws to provide support for the rotation of the main shaft 12. The upper end of the main shaft 12 is placed in the turntable shaft hole 201. The outer cylinder at the upper end of the main shaft 12 is coaxial with the turntable shaft hole 201, and the main shaft 12 can rotate around the turntable shaft hole 201. A main shaft sliding chute 121 is provided on the upper end face of the main shaft 12 in the direction of the axis of the center pin 4, and the two side faces of the main shaft sliding chute 121 serve as sliding working surfaces and are symmetrically arranged on both sides of a plane of the axis of the turntable shaft hole 201 in the cylinder body 2 and the axis of the center pin 4. Similar to the structure of the piston shoe 14 in the first embodiment, a piston shoe shaft hole 141 is provided at the center of the piston shoe 14. As shown in
The lower end of the main shaft 12 extends out of a shaft hole of the main shaft support 13 and is connected to a power mechanism. The main shaft 12 drives the turntable shaft 501 to rotate through the two side faces of the main shaft sliding chute 121. The turntable 5 drives the piston 3 to move through the cylindrical hinge. The movement of the piston 3 is rotation around the axis of the piston shaft hole 105. The movement of the turntable 5 is rotation around the axis of the turntable shaft hole 201 and swings around the center pin 4 relative to the piston 3. Meanwhile, the turntable 5 swings along the two side faces of the main shaft sliding chute 121 through the piston shoe 14 relative to the axis of the turntable shaft hole 201 in the cylinder body 2 at a swing angle of 2α. The length of the two side faces of the main shaft sliding chute 121 in the direction of the axis of the center pin 4 should be long enough to ensure that the swing of the piston shoe 14 is not interfered. In this embodiment, the sliding chute swinging mechanism 16 is used to provide the turntable 5 with a degree of freedom to swing along the two side faces of the main shaft sliding chute 121.
The turntable 5 swings around the center pin 4 relative to the piston 3, and a V1 working chamber 1001 and a V2 working chamber 1002 with alternatively variable volumes are formed between the upper end face of the turntable 5, the two side faces of the piston 3 and the spherical inner cavity. The intake passage 103 and the exhaust passage 104 on the cylinder head 1 are arranged in an annular space perpendicular to the axis of the piston shaft hole 105. The intake passage 103 and the exhaust passage 104 communicate with an intake hole 101 and an exhaust hole 102 in the cylinder head 1 respectively, and the intake hole 101 and the exhaust hole 102 communicate with the outside of the cylinder body 2. The air intake and discharge control is realized by the rotation of the piston 3, and when the working chambers need to perform air discharge or air intake, the corresponding working chamber communicates with the intake passage 103 or the exhaust passage 104.
The power mechanism drives the main shaft 12 to rotate, and the main shaft 12 drives the turntable shaft 501 to rotate through the two side faces of the main shaft sliding chute 121. The volumes of the V1 working chamber 1001 and the V2 working chamber 1002 change constantly. In
A needle bearing is arranged on the portion, matched with the turntable shaft hole 201 on the cylinder body 2, of the upper cylindrical part of the main shaft 12. A sealing ring 7 is arranged on the inner side of the portion, engaged with the main shaft support 13, of the main shaft 12, and a bearing 8 is arranged at the end of the engagement portion. A piston shaft sleeve 9 is arranged on the portion, matched with the piston shaft hole 105 on the cylinder head 1, of the piston shaft 301.
As an application extension of this embodiment, the piston shaft hole 105 on the cylinder head 1 communicates with the outside of the cylinder body, and the piston shaft 301 extends out of the piston shaft hole 105 on the cylinder head 1 and is connected to a power mechanism to serve as the power input end of the compressor, or power may be input from the piston shaft.
In order to improve the manufacturability of the piston 3, as shown in
Inspired by this embodiment, those skilled in the art can perform the following deformation treatment on the piston 3 and the cylinder head 1 without creative labor, and can also achieve the technical effect of the present invention: since the movement of the piston 3 is rotation around the axis of the piston shaft hole 105 on the cylinder head 1, the spherical top surface of the piston 3 can be deformed into various forms of rotating surfaces around the axis of the piston shaft hole 105 on the cylinder head 1, and the rotating surface can be spherical, cylindrical, conical and other forms. The inner spherical surface of the cylinder head 1 is also deformed into a rotating surface matched with the rotating surface of the piston 3. The end faces of the two ends of the cylindrical hinge formed by the piston pin boss, the center pin 4 and the turntable pin boss and the inner spherical surface of the cylinder head 1 are attached to each other and form a sealed loose fit during the movement of the piston 3 and the turntable 4. For this reason, the above-mentioned deformation scheme of the piston 3 and the cylinder head 1 is also protected by this patent, and any technical scheme adopting the above-mentioned deformation treatment also falls within the scope of protection of the present invention.
According to the invention, the sliding chute swinging mechanism 16 is arranged between the piston shaft 301 and the piston shaft hole 105 or between the turntable shaft 501 and the turntable shaft hole 201. In the first embodiment, the sliding chute swinging mechanism 16 between the piston shaft 301 and the piston shaft hole 105 allows the piston 3 to swing along the two side faces of the rotary sleeve sliding chute 601 relative to the axis of the piston shaft hole 105, so that the piston 3 obtains a degree of freedom in the direction of the axis of the center pin 4. In the second embodiment, the sliding chute swinging mechanism 16 between the turntable shaft 501 and the turntable shaft hole 201 allows the turntable 5 to swing along the two side faces of the main shaft sliding chute 121 relative to the axis of the turntable shaft hole 201, so that the turntable 5 obtains a degree of freedom in the direction of the axis of the center pin 4.
Number | Date | Country | Kind |
---|---|---|---|
2016 2 0333567 | Apr 2016 | CN | national |
This application is a continuation of International Patent Application No. PCT/CN2017/078509, filed on Mar. 29, 2017 which claims the benefit of priority from Chinese Application Nos. 201610243847.1 and 201620333567.5, filed on Apr. 20, 2016. The content of the aforementioned applications, including any intervening amendments thereto, are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
10316844 | Wang | Jun 2019 | B2 |
Number | Date | Country |
---|---|---|
200971863 | Nov 2007 | CN |
101929463 | Dec 2010 | CN |
103147991 | Jun 2013 | CN |
103541892 | Jan 2014 | CN |
103835955 | Jun 2014 | CN |
203742997 | Jul 2014 | CN |
104314808 | Jan 2015 | CN |
105179197 | Dec 2015 | CN |
105756932 | Jul 2016 | CN |
205559282 | Sep 2016 | CN |
665347 | Sep 1938 | DE |
4325166 | Feb 1995 | DE |
403914 | Jan 1934 | GB |
Number | Date | Country | |
---|---|---|---|
20190055944 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2017/078509 | Mar 2017 | US |
Child | 16166098 | US |