Spherical perfluoroethers

Information

  • Patent Grant
  • 5446209
  • Patent Number
    5,446,209
  • Date Filed
    Monday, October 25, 1993
    30 years ago
  • Date Issued
    Tuesday, August 29, 1995
    28 years ago
Abstract
Perfluoroethers having a spherical shape are described. The perfluoroethers can be represented by the formula ##STR1## wherein R.sub.f1, R.sub.f2, R.sub.f3 and R.sub.f4 are the same or different and are selected from short, straight or branched chain perfluoroalkyl or perfluoroether groups. R.sub.f1, R.sub.f2, R.sub.f3, or R.sub.f4 can also be; ##STR2## wherein R'.sub.f1 -R'.sub.f3 are defined as R.sub.f1 -R.sub.f3 above The perfluoropolyethers are designed to act like "molecular ball bearings" and have high thermal stability and lubrication properties. They are useful as stable fluids, heat transfer fluids, vapor phase soldering fluids and oxygen carriers.
Description

BACKGROUND
Fluorocarbons and related compounds such as fluorocarbon amines and ethers have become an essential component of many `high technology` industries. The unique combination of properties such as resistance to chemical oxidation, thermal stability, low toxicity and non-flammability have assured the use of such materials in situations where a particular need is of such importance that the relatively high cost is justified.
Several types of fluorocarbon fluids have found specialized uses as coolants and insulators in high voltage equipment, immersion media for leak testing, and heat transfer agents in vapor phase soldering processes. Preparation, Properties and Industrial Applications of Organofluorine Compounds (ed. R. E. Banks) Wiley and Sons, New York, 1982. They are used as vacuum pump fluids where their chemical stability allows a very clean vacuum even where hostile chemical and physical conditions are involved. Caporiccio, G., et al., Ind. Eng. Chem. Prod. Res. Dev. 21, 515-519 (1982).
Several commercially available polyether fluids are made by the telomerization of hexafluoropropylene oxide. These materials are produced by the photo-oxidation of liquid hexafluoropropylene to yield polyperoxides, --(C.sub.3 F.sub.6 O).sub.m --(C.sub.3 F.sub.6 OO).sub.n -- which are heated to destroy the peroxide linkages. The resultant polymers are end capped by reaction with elemental fluorine. The material is then separated into various fractions by distillation. Sianesi, D., et al., Chim. Ind. (Milan) 1973, 55(2), 208-221.
Fluorocarbon polyethers have been made by several routes by direct fluorination. The direct reaction of polyethers such as poly(ethylene glycol) (Gerhardt, G. and Lagow, R. J., J. Org. Chem. 43, 4505, (1978)) poly(propylene oxide) and poly(methylene oxide) (Gerhardt, G. and Lagow, R. J., Chem. Soc. Perkin Trans. 1 1321 (1981)) gave corresponding fluorocarbon polyethers. The fluorination of copolymers of hexafluoroacetone and either ethylene oxide, propylene oxide or trimethylene oxide (Persico, D. F. and Lagow, R. J., Macromolecules 18, 1383 (1985)) yielded perfluoropolyethers with a branched structure. Finally, the action of sulfur tetrafluoride on polyesters (Persico, D. F. and Lagow, R. J., Makromol. Chem. Rapid Commun. 6, 85 (1985)) also gives fluorocarbon polyethers of various structures.
SUMMARY OF THE INVENTION
This invention pertains to perfluorinated "spherical" ethers and to methods of synthesizing these compounds. The perfluoroethers of this invention are represented by the formula: ##STR3## wherein R.sub.f1, R.sub.f2, R.sub.f3 and R.sub.f4 are the same or different and are selected from short, straight or branched chain perfluoroalkyl or perfluoroether groups. R.sub.f1, R.sub.f2, R.sub.f3, or R.sub.f4 can also be; ##STR4## wherein R'.sub.f1 -R'.sub.f3 are defined as R.sub.f1 -R.sub.f3 above. For example R.sub.f1 -R.sub.f4 (and R'.sub.f1 -R'.sub.f3) can be selected from CF.sub.3, C.sub.2 F.sub.3, C.sub.3 F.sub.7, C.sub.4 F.sub.9, C.sub.5 F.sub.11, C.sub.2 F.sub.4 OCF.sub.3, CF.sub.2 OC.sub.4 F.sub.9, CF.sub.2 OC.sub.5 F.sub.11 and CF.sub.2 OC.sub.2 F.sub.4 OCF.sub.3. Preferred ethers are represented by the formula:
C(CF.sub.2 OR.sub.f).sub.4
(R.sub.f CF.sub.2 O).sub.3 CCF.sub.2 OCF.sub.2 C(OCF.sub.2 R.sub.f).sub.3
wherein R.sub.f is defined as above.
The perfluoroethers of this invention are synthesized by direct elemental fluorination of corresponding hydrocarbon ethers under controlled conditions. The perfluoroethers are useful lubricants, heat exchange fluids, vapor phase soldering fluids and oxygen carriers.
DETAILED DESCRIPTION OF THE INVENTION
The perfluoroethers of this invention are represented by the formula: ##STR5## wherein R.sub.f1, R.sub.f2, R.sub.f3 and R.sub.f4 are the same or different and are selected from short, straight or branched chain perfluoroalkyl or perfluoroether groups. R.sub.f1, R.sub.f2, R.sub.f3, or R.sub.f4 can also be; ##STR6## wherein R'.sub.f1 -R'.sub.f3 are defined as R.sub.f1 -R.sub.f3 above. For example R.sub.f1 -R.sub.f4 (and R'.sub.f1 -R'.sub.f3) can be the same or different and can be selected from CF.sub.3, C.sub.2 F.sub.5, C.sub.3 F.sub.7, C.sub.4 F.sub.9, C.sub.5 F.sub.11, C.sub.2 F.sub.4 OCF.sub.3, CF.sub.2 OC.sub.4 F.sub.9, CF.sub.2 OC.sub.5 F.sub.11 and CF.sub.2 OC.sub.2 F.sub.4 OCF.sub.3. Preferred ethers are represented by the formulae:
C(CF.sub.2 OR.sub.f).sub.4
(R.sub.f CF.sub.2 O).sub.3 CCF.sub.2 OCF.sub.2 C(OCF.sub.2 R.sub.f).sub.3
wherein R.sub.f is defined as above.
The perfluoroethers of this invention are produced by the direct fluorination technique of Lagow and Margrave, Prog. of Org. Chem. 26, 161: (1979). The corresponding hydrocarbon ether is selected or synthesized (for example, by the syntheses described below). The hydrocarbon ethers are represented generally by the formula: ##STR7## wherein R.sub.1, R.sub.2, R.sub.3 and R.sub.4 are the same or different and are selected from short, straight or branched chain alkyl or alkyl ether groups. In addition, R.sub.1, R.sub.2, R.sub.3 or R.sub.4 can be ##STR8## wherein R'.sub.1, R'.sub.2 and R'.sub.3 are defined as R.sub.1, R.sub.2 and R.sub.3 above.
The starting material is placed in a fluorine reactor such as the reactor described below. Preferably the reactor is designed so that low vapor pressure starting materials can be coated onto an inert support. The support can be in a powder form to maximize the surface area exposed to the fluorine and evenly distribute the material throughout the reaction zone. When the mixture is not carefully distributed extensive degradation of the reaction and localized burning can occur. Copper turnings can be used as a support and heat sink, drawing the heat of reaction away from the reactants. The whole reactor can be placed inside an oven that can be heated or cooled as desired and provide better control over the temperature in the reaction zone.
The reactor is cooled and flushed with an inert gas such as helium or nitrogen after which the fluorine is initiated under controlled conditions. Typically, low fluorine concentrations between about one and about ten percent are used initially. The dilute fluorine is passed over the material to be fluorinated. As the fluorination reaction proceeds the fluorine concentration and flow rate of the gas are gradually increased until pure fluorine conditions are achieved and the ether is perfluorinated.
The best results are obtained when the fluorination is performed in the presence of a hydrogen fluoride scavenger such as sodium fluoride as described in U.S. patent application Ser. No. 924,198, entitled "Perfluorination of Ethers in the Presence of Hydrogen Fluoride Scavengers", filed Oct. 27, 1986, the teachings of which are incorporated herein. The presence of a hydrogen fluoride scavenger allows the use of more severe fluorination conditions in this direct fluorination procedure, that is, higher fluorine concentrations and faster rates of fluorine delivery can be used in the presence of a hydrogen fluoride scavenger than can be used in the absence of a scavenger. For example, initial fluorine levels of over 15% and up to 25% and fluorine flow rates of over 8cc/min/gram of starting material can be used.
In addition, the yield and quality of the perfluoropolyether product is improved when fluorination is conducted in the presence of a hydrogen fluoride scavenger. The scavenger is believed to prevent the formation of ether-HF acid base complexes during the fluorination reaction.
Fluorination in the presence of a hydrogen fluoride scavenger can be performed in several ways. In one mode, the hydrogen fluoride scavenger (in powdered or pellet form) is mixed with the ether to be fluorinated. The blend is placed in a suitable fluorination reactor and fluorinated by exposure to gradually increasing concentrations of fluorine gas. In the preferred mode, the ether is coated onto the hydrogen scavenger and fluorinated in this form.
The perfluoroethers of this invention are useful as lubricants, heat exhange fluids, vapor phase soldering fluids, solvents and oxygen carriers. For example, the oils are useful as vacuum pump oils and oils for diffusion pumps. The more volatile are used to cool without corrosion electronic devices such as computers. The perfluoroethers are also useful as perfluorocarbon solvents, as oxygen carriers in biomedical applications and as oxygen carriers for organic oxidation reactions.





The invention is illustrated further by the following examples.
EXAMPLES
All of the ethers were synthesized by phase transfer catalyst conditions. Freedman, H. H. and Dubois, R. A. Tetrahedron Lett. (1975), 38, 3251-54 Pentaerythritol, 1,1,1-tris(hydroxymethyl)ethane, dimethyl sulfate, diethyl sulfate, 1-bromopropane, 1-bromobutane, 1-bromobutane, and 2-chloroethyl ether were all used as received. A five fold excess of 50% sodium hydroxide over the alcohol, an excess of alkyl halide, land 5 mole % of phase transfer catalyst (methyltrialkyl (C.sub.8 -C.sub.10)-ammonium chloride, Adogen 464, Aldrich Chem. Co) were stirred at 70.degree. C., generally overnight. The ethers were fractionally distilled and stored over 4A molecular sieve until use. ##STR9##
For the fluorination of the hydrocarbon ethers, a 9 inch (i.d.) by 2 inch tall cylindrical reactor was used. The reactor was fitted with 3/8 inch inlet and outlet and a thermocouple probe. A Viton.RTM. O-ring provided a gas tight seal. The reactor was held in an insulated oven equipped with a cryogenic controller and liquid nitrogen cooling. A heating coil and fan provided the elevated temperatures at the end of the reactions.
In a typical fluorination reaction 5 to 10 grams of the ether starting material was mixed with 100 grams of dry #120 mesh sodium fluoride powder.The mixture was stirred and shaken until it appeared homogenous. The mixture was then distributed on tightly packed copper turnings in the reactor cavity. The reactor assembly was then connected to the fluorination system, cooled to -50.degree. C. and purged overnight with a 60 cc min.sup.-1 flow of helium. Fluorination conditions are outlined in Table 1.
TABLE 1______________________________________ ##STR10##Fluorination ConditionsHe F.sub.2 Temperature Time(cm.sup.3 min.sup.-1) (cm.sup.3 min.sup.-1) (.degree.C.) (hours)______________________________________50 0.5 -80 2450 1 -80 2450 2 -80 2450 4 -80 2420 4 -80 2410 4 -80 24 0 4 -80 24 0 2 -50 24 0 2 -10 24 0 2 25 24 0 2 60 1860 0 150 24______________________________________
After the reaction with fluorine was complete, the compounds were purged from the reactor by heating the oven to 200.degree. C. and turning the helium flow to 100 cc min.sup.-1 The products were caught in a Kel-F.sup.Rtrap held at --80.degree. C. with a dry ice--acetone slush. The heavier compounds were better removed by extracting the reactor contents with 1,1,2-trichlorotrifluoroethane. Removal of the solvent on a rotary evaporator yields the crude product. One half milliliter of hexamethyl disilazane was added to react with any acidic fluorides in the liquid. Theliquid was then fractionally distilled. Further purification was done on a Hewlett Packard 5880A gas chromatograph. The columns used were 1/4 inch by10 foot stainless steel packed with either 25% OV -210 or 25% Fomblin Z on Chromosorb A (60/80 mesh).
Physical Measurements
Elemental analyses were performed by E+R Micro analytical Laboratory, Inc.,Corona, N.Y. Infrared analyses were done on a Biorad Digilabs FTS-40 spectrometer using a thin film on KBr windows. Fluorine nmr spectra were recorded on a Varian EM-390 spectrometer operating at 84.6 MHz. Chemical ionization mass spectra were performed on a Finnigan-MAT TSQ-70 mass spectrometer.
EXAMPLE 1
Perfluoro-4,4-Bis(Methoxymethyl)-2,6-Dioxaheptane
A 5.04 gram sample of the hydrocarbon ether was fluorinated as described above. The crude product was separated on a vacuum line first, using trapsheld at -45.degree. C., -78.degree. C., and -196.degree. C. The majority ofthe product stopped in the -45.degree. C. trap. The final purification was done on the 25% Fomblin Z column held at 100.degree. C. isothermal. The crude product was shown to be 80% pure with no one major impurity. The final weight of product was 3.5 grams corresponding to a yield of 38%.
The fluorinated ether is a colorless liquid with a boiling freezing point of -87.degree. C. Elemental analysis of the compound: calculated for C 19.56%, F 68.66%; found C 19 34%, F 68 84%. Chemical ionization mass spectrometry gives m/e 552 as the largest peak.
EXAMPLE 2
Perfluoro-5,5-Bis(Ethoxymethyl)-3,7-Dioxanonane
A 5.97 gram sample of the starting material was prepared as previously described. The crude product was vacuum distilled at 40 mm Hg, boiling at 65.degree.-70.degree. C. Final purification was done by gas chromatographyusing the 25% Fomblin Z column at 185.degree. C. isothermal. The final weight of product was 4.18 grams corresponding to a yield of 25%. The fluoroether is a clear liquid with a boiling poing of 170.degree. C. and afreezing point of -60.degree. C. Elemental analysis of the compound: calculated for C 20.76%, F 70.73%; found for C 20.44%, F 70.61%. Negative ion chemical ionization mass spectrometry showed the largest m/e to be 752.
EXAMPLE 3
Perfluoro-6,6-Bis(Propoxymethyl)-4,8-Dioxaundecane
5.37 grams of hydrocarbon ether was loaded into the reactor and fluorinatedusing the conditions essentially outlined in Table 1. The crude product wasfirst vacuum distilled at a pressure of 15 mm Hg, boiling at 185.degree.-190.degree. C. The final purification was done on the 25% Fomblin column at 185.degree. C. A final weight of 5.32 grams gave a yieldof 31%. The clear liquid has a boiling point of 232.degree. C. and a melting point of -54.degree. C. Elemental analysis of the product corresponded with calculated values.
EXAMPLE 4
Perfluoro-7,7-Bis(Methoxyethoxymethyl)-2,5,9,12-Tetraoxatridecane
10.03 grams of starting ether was loaded into the reactor as previously described. After purging the fluorination was started. The contents of the -80.degree. C. trap was fractionally distilled (bp.sub.10 95.degree. C.). Final purification was done on the 25% OV-210 column at 185.degree. C. Thefinal weight of product was 8.42 grams for a yield of 30%. Elemental analysis of the product corresponded with calculated values. Mass spectrometry gave m/e 1016.
EXAMPLE 5
Perfluoro-7,7-Bis(Butoxymethyl)-5,9-Dioxatridecane
A sample of 10.21 grams of starting material was fluorinated essentially asoutlined in Table 2. The contents of the trap was fractionally distilled (bp.sub.10 126.degree. C.). 12.09 grams of heavy liquid was collected giving a 37% yield for the reaction. Elemental analysis for the compound corresponded with calculated values. A peak at m/e 1152 appeared in the mass spectrum.
TABLE 2______________________________________He F.sub.2 Temperature Time(cm.sup.3 min.sup.-1) (cm.sup.3 min.sup.-1) (.degree.C.) (days)______________________________________20 1 -80 120 2 -80 120 4 -80 110 4 -80 1 0 4 -80 1 0 4 -40 1 0 4 0 1 0 4 rt 1 0 4 50 160 0 rt 0.5______________________________________
EXAMPLE 6
Perfluoro-8,8-Bis(Pentyloxymethyl)-6,10-Dioxapentadecane
11.71 grams of hydrocarbon ether was loaded into the reactor and fluorinated using the conditions essentially as outlined in Table 3. Fractional vacuum distillation of the trap contents yielded 3.20 grams of clear heavy liquid (bp.sub.10 150.degree. C.). The yield of fluorinated ether was 8 4%. Elemental analysis of the product corresponded with calculated values. Mass spectrometry showed m/e 1352.
TABLE 3______________________________________He F.sub.2 Temperature Time(cm.sup.3 min.sup.-1) (cm.sup.3 min.sup.-1) (.degree.C.) (days)______________________________________20 1 -80 120 2 -80 120 4 -80 110 4 -80 1 0 4 -80 1 0 4 0 1 0 4 rt 1 0 4 50 160 0 rt 0.5______________________________________
EXAMPLE 7
Perfluoro-7-Methyl-7-Methoxyethoxymethyl)-2,5,9,12-Tetraoxatridecane
6.00 grams of starting material ether was fluorinated as described above and in Table 4. Vacuum fractional distillation of the trap contents followed by chromatography on the 25% OV-210 column at 185.degree. C. isothermal gave 3.57 grams of material (bp.sub.10 92.degree. C.). Elemental analysis of clear liquid corresponded with calculated values. Mass spectrometry gave m/e 834.
TABLE 4______________________________________He F.sub.2 Temperature Time(cm.sup.3 min.sup.-1) (cm.sup.3 min.sup.-1) (.degree.C.) (days)______________________________________60 2 -80 130 2 -80 130 3 -50 110 3 -20 110 3 0 1 0 4 40 1 0 4 80 1 0 4 120 160 0 rt 0.5______________________________________
EXAMPLE 8
Perfluoro-7-Methyl-7-(Butoxymethyl)-5,9-Dioxatridecane
A sample of 4.55 grams of the ether was subjected to the fluorination conditions essentially as described. After completion of the fluorination,the contents of the trap were fractionally distilled (bp.sub.10 105.degree.C.). 5.32 grams of clear heavy liquid was collected. The overall yield of the reaction was 36%. Elemental analysis of the product corresponded with calculated values. A m/e of 936 appeared in the mass spectrum.
EXAMPLE 9
Perfluoro-8-Methyl-8-(Pentoxymethyl)-6,10-Dioxapentadecane
4.50 grams of starting material was fluorinated as described in Table 3. After purging the reactor at 200.degree. C. with a 100 cc min.sup.-1 flow of helium into the Kel-F.RTM. trap. Fractional vacuum distillation of the contents yielded (bp.sub.10 130.degree. C.) 1.36 grams of heavy clear liquid. The overall yield of the reaction was 9.2%. Elemental analysis of the material corresponded with calculated values. A peak at m/d 1086 appeared in the mass spectrum.
EXAMPLE 10
Perfluoro-4,4,8,8-Tetrakis (Methoxymethyl)-2,6,10-Trioxaundecane
4,4,8,8-Tetrakis(methoxymethyl)-2,6,10-trioxaundecane was formed by the alkylation of dipentaerythritol with dimethyl sulfate in 85% yield. Boiling point 118.degree. C. at 0.3 mm Hg pressure. IR (thin film, KBr): 2978, 2921(s), 2874(s), 2808, 1481, 1458, 1200, 1178, 1109(vs) , 980, 970 cm.sup.-1. .sup.1 H-N M R. analysis, (CDCI.sub.3); 3.25 (9H), 3.28 (8H). Mass spectral analysis (chemical ionization); mle 339 (M+H).sup.+, 307, 254, 221, 191, 161(base), 129, 115, 85.
10.10 grams of the hydrocarbon ether was prepared for fluorination as previously described, the conditions for the fluorination reaction are outlined in table 5. Upon completion of the fluorination scheme, the reactor contents were extracted with 600 ml of CFC-113, filtered, and the solvent removed on a rotovap. Distillation of the residue (boiling point 120.degree. C. at 10 mm Hg pressure) gave 8.00 grams of clear dense liquid. Isolated yield was 28.2%. Elemental analysis for C.sub.16 F.sub.34O.sub.7 ; calculated for C 20.21%, F 68.00%; found for C 21.20%, F 66 98%. IR (thin film, KBr): 1307 (vs), 1257 (vs), 1231(vs), 1185, 1128(s), 1111(s), 1079 cm.sup.-1. Chemical ionization mass spectral analysis, positive mode: m/e 931 (M-F).sup.+, 843 (C.sub.15 F.sub.29 O.sub.7).sup.+,533 (C.sub.9 F19O.sub.4).sup.+, 483 (C.sub.8 F.sub.17 O.sub.4).sup.+ , 313,291, 225, 135, 69. .sup.19 F-N.M.R. analysis; .delta.(CFCl.sub.3) -55.7, -65.2, -68.3. .sup.13 C .sup.19 F N.M.R. analysis: .delta.(TMS) 119,875, 119,281, 67,920, 117,793.
TABLE 5______________________________________He F.sub.2 Temperature Time(cm.sup.3 min.sup.-1) (cm.sup.3 min.sup.-1) (.degree.C.) (days)______________________________________50 1 -80 120 1 -80 110 1 -80 110 2 -80 110 4 -80 1 0 4 -80 1 0 4 -40 1 0 4 0 1 0 4 rt 1 0 4 45 160 0 rt 0.5______________________________________
Equivalents
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
Claims
  • 1. Perfluoroethers of the formula: ##STR11## wherein R.sub.f1, R.sub.f2, R.sub.f3 and R.sub.f4 are different and are selected from short, straight or branched chain perfluoroalkyl or perfluoroalkyl-ether groups or R.sub.f1, R.sub.f2, R.sub.f3 or R.sub.f4 is a group of the formula; ##STR12## wherein R.sub.f1 ', R.sub.f2 ', and R.sub.f3 ' are the same or different and are selected from short, straight or branched chain perfluoroalkyl or perfluoroalkyl-ether groups.
  • 2. Perfluoroethers of claim 1, wherein R.sub.f1, R.sub.f1 ', R.sub.f2, R.sub.f2 ', R.sub.f3, R.sub.f3 ' and R.sub.f4 are selected from CF.sub.3, C.sub.2 F.sub.5, C.sub.3 F.sub.7, C.sub.4 F.sub.9, C.sub.5 F.sub.11, C.sub.2 F.sub.4 OCF.sub.3, CF.sub.2 OC.sub.4 F.sub.9, CF.sub.2 OC.sub.5 F.sub.11 and CF.sub.2 OC.sub.2 F.sub.4 OCF.sub.3.
  • 3. Perfluoroethers of the formula: ##STR13## wherein R.sub.f1, R.sub.f1 ', R.sub.f2, R.sub.f2 ', R.sub.f3, R.sub.f3 ' and R.sub.f4 are the same or different and are selected from CF.sub.3, C.sub.2 F.sub.5, C.sub.3 F.sub.7, C.sub.4 F.sub.9, C.sub.5 F.sub.11, C.sub.2 F.sub.4 OCF.sub.3, CF.sub.2 OC.sub.4 F.sub.9, CF.sub.2 OC.sub.5 F.sub.11 and CF.sub.2 OC.sub.2 F.sub.4 OCF.sub.3.
  • 4. Perfluoroethers of the formula: ##STR14## wherein R.sub.f is selected from CF.sub.3, C.sub.2 F.sub.5, C.sub.3 F.sub.7, C.sub.4 F.sub.9, C.sub.5 F.sub.11, C.sub.2 F.sub.4 OCF.sub.3, CF.sub.2 OC.sub.4 F.sub.9, CF.sub.2 OC.sub.5 F.sub.11 and CF.sub.2 OC.sub.2 F.sub.4 OCF.sub.3.
  • 5. Perfluoroethers of the formula: ##STR15## wherein R.sub.f1, R.sub.f2, and R.sub.f3 are the same and R.sub.f4 is different from R.sub.f1 -R.sub.f3 and are selected from short, straight or branched chain perfluoroalkyl or perfluoroalkylether groups or R.sub.f1, R.sub.f2, R.sub.f3 or R.sub.f4 is a group of the formula; ##STR16## wherein R.sub.f1 ', R.sub.f2 ', and R.sub.f3 ' are the same or different and are selected from short, straight or branched chain perfluoroalkyl or perfluoroalkyl-ether groups.
  • 6. Perfluoroethers of claim 5, wherein R.sub.f1, R.sub.f1 ', R.sub.f2, R.sub.f2 ', R.sub.f3, R.sub.f3 ' and R.sub.f4 are selected from CF.sub.3, C.sub.2 F.sub.5, C.sub.3 F.sub.7, C.sub.4 F.sub.9, C.sub.5 F.sub.11, C.sub.2 F.sub.4 OCF.sub.3, CF.sub.2 OC.sub.4 F.sub.9, Cf.sub.2 OC.sub.5 F.sub.11 and CF.sub.2 OC.sub.2 F.sub.4 OCF.sub.3.
  • 7. Perfluoroethers of the formula: ##STR17## wherein R.sub.f1 and R.sub.f2 are the same and R.sub.f3 and R.sub.f4 are the same but are different from R.sub.f1 and R.sub.f2 and are selected from short, straight or branched chain perfluoroalkyl or perfluoroalkyl ether groups or R.sub.f1, R.sub.f2, R.sub.f3 or R.sub.f4 is a group of the formula; ##STR18## wherein R.sub.f1 ', R.sub.f2 ' and R.sub.f3 ' are the same or different and are selected from short, straight or branched chain perfluoroalkyl or perfluoroalkyl ether groups.
  • 8. Perfluoroethers of claim 7, wherein R.sub.f1, R.sub.f1 ', R.sub.f2, R.sub.f2 ', R.sub.f3, R.sub.f3 ' and R.sub.f4 are selected from CF.sub.3, C.sub.2 F.sub.5, C.sub.3 F.sub.7, C.sub.4 F.sub.9, C.sub.5 F.sub.11, C.sub.2 F.sub.4 OCF.sub.3, CF.sub.2 OC.sub.4 F.sub.9, CF.sub.2 OC.sub.5 F.sub.11 and CF.sub.2 OC.sub.2 F.sub.4 OCF.sub.3.
  • 9. Perfluoro-7,7-bis(2-methoxyethoxymethyl)-2,5,9,12-tetraoxatridecane.
  • 10. Perfluoro-7,7-bis(butyloxymethyl)-5,9-dioxatridecane.
  • 11. Perfluoro-8,8 bis(pentyloxymethyl)-6,10-dioxapentadecane.
Parent Case Info

This is a continuation of application Ser. No. 07/998,654 filed on Dec. 28, 1992, now abandoned which is continuation of Ser. No. 07/647,694, filed on Jan. 28, 1991, now abandoned which is a continuation of Ser. No. 07/276,957, filed Nov. 28, 1988, now abandoned which is a CIP of Ser. No. 091,659, filed Sep. 1, 1987, now U.S. Pat. No. 4,788,350.

GOVERNMENT SUPPORT

This invention was made with Government support under grant AFOSR-87-0016 awarded by the Air Force and grant NAG3-602 awarded by the National Aeronautics and Space Administration. This Government has certain rights in this invention.

US Referenced Citations (8)
Number Name Date Kind
2611787 Holm Sep 1952
2973389 Weissermel et al. Feb 1961
3435078 Nychka et al. Mar 1969
3962348 Benninger et al. Jun 1976
4113435 Lagow et al. Sep 1978
4510335 Lagow et al. Apr 1985
4523039 Lagow et al. Jun 1985
4788350 Lagow Nov 1988
Foreign Referenced Citations (4)
Number Date Country
77114 Jul 1983 EPX
2315381 Nov 1974 DEX
2365381 Dec 1974 DEX
WO8702994 Mar 1987 WOX
Non-Patent Literature Citations (3)
Entry
Jones et al, Ind. Eng. Chem Res. 1988, 27, 1497-1502.
International Preliminary Examination Report for the corresponding parent application which has issued as U.S. Pat. 4,788,350.
Jones et al., "The Preparation of New Perfluoroether Fluids Exhibiting Excellent Thermal-Oxidative Stabilities", NASA Technical Memorandum 87284, Apr. 13-18, 1986.
Continuations (3)
Number Date Country
Parent 998654 Dec 1992
Parent 647694 Jan 1991
Parent 276957 Nov 1988
Continuation in Parts (1)
Number Date Country
Parent 91659 Sep 1987