Spherical precious metal based powder particles and process for producing same

Information

  • Patent Grant
  • 4711660
  • Patent Number
    4,711,660
  • Date Filed
    Monday, September 8, 1986
    38 years ago
  • Date Issued
    Tuesday, December 8, 1987
    37 years ago
Abstract
A powdered material and a process for producing the material are disclosed. The powdered material consists essentially of precious metal based spherical particles which are essentially free of elliptical shaped material and elongated particles having rounded ends. The material has a particle size of less than about 20 micrometers. The process for making the spherical particles involves mechanically reducing the size of a starting material to produce a finer powder which is then entrained in a carrier gas and passed through a high temperature zone above the melting point of the finer powder to melt at least about 50% by weight of the powder and form spherical particles of the melted portion. The powder is directly solidified.
Description

CROSS REFERENCE TO RELATED APPLICATIONS
This invention is related to the following applications: Ser. No. 905,013, filed 9/8/86, entitled "Fine Spherical Particles and Process For Producing Same," Ser. No. 905,015, filed 9/8/86, entitled "Iron Group Based And Chromium Based Fine Spherical Particles And Process For Producing Same," Ser. No. 904,997, filed 9/8/86, entitled "Spherical Refractory Metal Based Powder Particles and Process for Producing Same", Ser. No. 905,011, filed 9/8/86, entltled "Spherical Copper Based Powder Particles and Process For Producing Same", Ser. No. 904,318, filed 9/8/86 entitled "Spherical Light Metal Based Powder Particles And Process For Producing Same," and Ser. No. 904,317, filed 9/8/86, entitled "Spherical Titanium Based Powder Particles And Process For Producing Same," all of which are filed concurrently herewith and all of which are by the same inventors and assigned to the same assignee as the present application.
BACKGROUND OF THE INVENTION
This invention relates to spherical powder particles and to the process for producing the particles which involves mechanically reducing the size of a starting material followed by high temperature processing to produce fine spherical particles. More particularly the high temperature process is a plasma process.
U.S. Pat. No. 3,909,241 to Cheney et al relates to free flowing powders which are produced by feeding agglomerates through a high temperature plasma reactor to cause at least partial melting of the particles and collecting the particles in a cooling chamber containing a protective gaseous atmosphere where the particles are solidified.
Fine spherical precious metal powders such as gold, silver, platinum, palladium, ruthenium, and osmium and their alloys are useful in applications such as electronics, electrical contacts and parts, brazing alloys, dental alloy applications such as fixed restorations, crown and bridge, amalgam alloys, and solders. Typically materials used in microcircuits have a particle size of less than about 20 micrometers as shown in U.S. Pat. No. 4,439,468.
The only commercial process for producing such metal powder particles is by gas or water atomization. Only a small percentage of the powder produced by atomization is less than about 20 micrometers to size. Therefore yields are low and powder costs are high as a result.
Therefore, a process for efficiently producing fine spherical precious metal powder particles would be an advancement in the art.
In European Patent Application WO8402864 published Aug. 2, 1984, there is disclosed a process for making ultra-fine powder by directing a stream of molten droplets at a repellent surface whereby the droplets are broken up and repelled and thereafter solidified as described therein. While there is a tendency for spherical particles to be formed after rebounding, it is stated that the molten portion may form elliptical shaped or elongated particles with rounded ends.
SUMMARY OF THE INVENTION
In accordance with one aspect of this invention, there is provided a powdered material which consists essentially of precious metal based spherical particles which are essentially free of elliptical shaped material and elongated particles having rounded ends. The material has a particle size of less than about 20 micrometers.
In accordance with another aspect of this invention, there is provided a process for producing the above described powder particles. The process involves mechanically reducing the size of a starting material to produce a finer powder which is then entrained in a carrier gas and passed through a high temperature zone above the melting point of the finer powder to melt at least about 50% by weight of the powder and form spherical particles of the melted portion. The powder is directly solidified.





DETAILED DESCRIPTION OF THE INVENTION
For a better understanding of the present invention, together with other and further objects, advantages and capabilities thereof, reference is made to the following disclosure and appended claims in connection with the above description of some of the aspects of the invention.
The starting material of this invention is a precious metal based material. The term "based materials" as used in this invention means precious metals or their alloys with either of these possibly containing additives selected from the group consisting of oxides, nitrides, borides, carbides, silicides, as well as complex compounds such as carbonitrides, and mixtures thereof. The preferred additives are wear resistant conductive dispersed phases, such as titanium diboride, cadmium oxide, germanium oxide, tin oxide, and mixtures thereof. According to Hackh's Chemical Dictionary. 4th Edition, McGraw Hill, N.Y., 1969, "precious metals" are defined as noble metals. Noble metals are defined as "A metal that is not readily oxidized; as the gold, platinum, and palladium family of the periodic system."
The size of the starting material is first mechanically reduced to produce a finer powder material. The starting material can be of any size or diameter initially, since one of the objects of this invention is to reduce the diameter size of the material from the initial size. The size of the major portion of the material is reduced to less than about 20 micrometers.
The mechanical size reduction can be accomplished by techniques such as by crushing, jet milling, attritor, rotary, or vibratory milling with attritor ball milling being the preferred technique for materials having a starting size of less than about 1000 micrometers in size.
A preferred attritor mill is manufactured by Union Process under the trade name of "The Szegvari Attritor". This mill is a stirred media ball mill. It is comprised of a water jacketed stationary cylindrical tank filled with small ball type milling media and a stirrer which consists of a vertical shaft with horizontal bars. As the stirrer rotates, balls impact and shear against one another. If metal powder is introduced into the mill, energy is transferred through impact and shear from the media to the powder particles, causing cold work and fracture fragmentation of the powder particles. This leads to particle size reduction. The milling process may be either wet or dry, with wet milling being the preferred technique. During the milling operation the powder can be sampled and the particle size measured. When the desired particle size is attained the milling operation is considered to be complete.
The particle size measurement throughout this invention is done by conventional methods as sedigraph, micromerograph, and microtrac with micromerograph being the preferred method.
The resulting reduced size material or finer powder is then dried if it has been wet such as by a wet milling technique.
If necessary, the reduced size material is exposed to high temperature and controlled environment to remove carbon and oxygen, etc.
The reduced size material is then entrained in a carrier gas such as argon and passed through a high temperature zone at a temperature above the melting point of the finer powder for a sufficient time to melt at least about 50% by weight of the finer powder and form essentially fine particles of the melted portion. Some additional particles can be partially melted or melted on the surface and these can be spherical particles in addition to the melted portion. The preferred high temperature zone is a plasma.
Details of the principles and operation of plasma reactors are well known. The plasma has a high temperature zone, but in cross section the temperature can vary typically from about 5500.degree. C. to about 17,000.degree. C. The outer edges are at low temperatures and the inner part is at a higher temperature. The retention time depends upon where the particles entrained in the carrier gas are injected into the nozzle of the plasma gun. Thus, if the particles are injected into the outer edge, the retention time must be longer, and if they are injected into the inner portion, the retention time is shorter. The residence time in the plasma flame can be controlled by choosing the point at which the particles are injected into the plasma. Residence time in the plasma is a function of the physical properties of the plasma gas and the powder material itself for a given set of plasma operating conditions and powder particles. Larger particles are more easily injected into the plasma while smaller particles tend to remain at the outer edge of the plasma jet or are deflected away from the plasma jet.
After the material passes through the plasma and cools, it is rapidly solidified. Generally the major weight portion of the material is converted to spherical particles. Generally greater than about 75% and most typically greater than about 85% of the material is converted to spherical particles by the high temperature treatment. Nearly 100% conversion to spherical particles can be attained. The major portion of the spherical particles are preferably less than about 20 micrometers. The particle size of the plasma treated particles is largely dependent on the size of the material obtained in the mechanical size reduction step. As much as about 100% of the spherical particles can be less than about 20 micrometers.
Most preferred particle sizes are less than about 15 micrometers in diameter and most preferably less than about 10 micrometers in diameter. The particle size measurements are done by the methods described previously.
The spherical particles of the present invention are different from those of the gas atomization process because the latter have caps on the particles whereas those of the present invention do not have such caps. Caps are the result of particle-particle collision in the molten or semi-molten state during the gas atomization event.
After cooling and resolidification, the resulting high temperature treated material can be classified to remove the major spheroidized particle portion from the essentially non-spheroidized minor portion of particles and to obtain the desired particle size. The classification can be done by standard techniques such as screening or air classification. The unmelted minor portion can then be reprocessed according to the invention to convert it to fine spherical particles.
The powdered materials of this invention are essentially relatively uniform spherical particles which are essentially free of elliptical shaped material and essentially free of elongated particles having rounded ends. These characteristics can be present in the particles made by the process described in European Patent Application WO8402864 as previously mentioned.
Spherical particles have an advantage over non-spherical particles in injection molding and pressing and sintering operations. The lower surface area of spherical particles as opposed to non-spherical particles of comparable size, and the flowability of spherical particles makes spherical particles easier to mix with binders and easier to dewax.
Many precious metal based materials are useful in electronic circuitry applications in the form of inks and pastes. The finely divided spherical powders of the present invention provide improved carrier addition and removal, uniformity of application, and uniformity of electrical and thermal properties. Precious metals such as gold are used in conjunction with dispersed phases such as cadmium oxide as electrical contacts. The uniform shape of the silver powders of this invention enables more uniform distribution of cadmium which is converted to the oxide by conventional processes. Precious metal brasing alloys may be utilized as pastes or as metal preforms. The materials of this invention when used as pastes provide more uniformity and enable more rapid carrier removal. When the materials of this invention are formed as foils by the conventional doctor blade method, a greater uniformity in the foil is achieved than by using prior art powders. When used as dental alloys, the powders of this invention yield finer dispersions of the particulate phase, greater corrosion resistance, and higher strength for improved marginal integrity.
While there has been shown and described what are at present considered the preferred embodiments of the invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the invention as defined by the appended claims.
Claims
  • 1. A process comprising:
  • (a) mechanically reducing the size of a precious metal based material to produce a finer powder, the major portion of which has a particle size of less than about 20 micrometers;
  • (b) entraining said finer powder in a carrier gas and passing said powder through a high temperature zone at a temperature above the melting point of said finer powder, said temperature being from about 5500.degree. C. to about 17,000.degree. C., said temperature being created by a plasma jet, to melt at least about 50% by weight of said finer powder to form essentially fine spherical particles of said melted portion;
  • (c) rapidly and directly solidifying the resulting high temperature treated material while in flight to form fine spherical particles having a particle size of less than about 20 micrometers in diameter, said particles being essentially free of elliptical shaped material and essentially free of elongated particles having rounded ends.
  • 2. A process of claim 1 wherein the size of said material is reduced by attritor milling to produce said finer powder.
  • 3. A process of claim 1 wherein after said resolidification, said high temperature treated material is classified to obtain the desired particle size of said spherical particles.
  • 4. A process of claim 1 wherein said precious metal based material is a precious metal selected from the group consisting of gold, silver, platinum, palladium, ruthenium, and osmium.
  • 5. A process of claim 1 wherein said precious metal based material is a precious metal alloy selected from the group consisting of gold alloys, silver alloys, platinum alloys, palladium alloys, ruthenium alloys, and osmium alloys.
  • 6. A process of claim 1 wherein said precious metal based material is a precious metal with additives selected from the group consisting of titanium diboride, cadmium oxide, germanium oxide, tin oxide, and mixtures thereof.
  • 7. A process of claim 1 wherein said precious metal based material is a precious metal alloy with additives selected from the group consisting of titanium diboride, cadmium oxide, germanium oxide, tin oxide, and mixtures thereof.
  • 8. A process of claim 1 wherein said precious metal based material is a precious metal with additives selected from the group consisting of oxides, nitrides, borides, carbides, silicides, carbonitrides, and mixtures thereof.
  • 9. A process of claim 1 wherein said precious metal based material is a precious metal alloy with additives selected from the group consisting of oxides, nitrides, borides, carbides, silicides, carbonitrides, and mixtures thereof.
  • 10. A process of claim 1 wherein said fine spherical particles have a particle size of less than about 20 micrometers.
  • 11. A powdered material consisting essentially of spherical particles of a precious metal based material, said powdered material being essentially free of elliptical shaped material and essentially free of elongated particles having rounded ends, said powdered material having a particle size of less than about 20 micrometers.
  • 12. A powdered material of claim 11 wherein said precious metal based material is a precious metal selected from the group consisting of gold, silver, platinum, palladium, ruthenium, and osmium.
  • 13. A powdered material of claim 11 wherein said precious metal based material is a precious metal alloy selected from the group consisting of gold alloys, silver alloys, platinum alloys, palladium alloys, ruthenium alloys, and osmium alloys.
  • 14. A powdered material of claim 11 wherein said precious metal based material is precious metal with additives selected from the group consisting of titanium diboride, cadmium oxide, germanium oxide, tin oxide, and mixtures thereof.
  • 15. A powdered material of claim 11 wherein said precious metal based material is a precious metal alloy with additives selected from the group consisting of titanium diboride, cadmium oxide, germanium oxide, tin oxide, and mixtures thereof.
  • 16. A powdered material of claim 11 wherein said precious metal based material is a precious metal with additives selected from the group consisting of oxides, nitrides, borides, carbides, silicides, carbonitrides, and mixtures thereof.
  • 17. A powdered material of claim 11 wherein said precious metal based material is a precious metal alloy with additives selected from the group consisting of oxides, nitrides, borides, carbides, silicides, carbonitrides, and mixtures thereof.
  • 18. A powdered material of claim 11 wherein the particle size of said spherical particles is less than about 15 micrometers.
  • 19. A powdered material of claim 11 wherein the particle size of said spherical particles is less than about 10 micrometers.
  • 20. A powdered material consisting essentially of spherical particles of a precious metal based material, said powdered material being directly solidified from high temperature treated material, said powdered material having a particle size of less than about 20 micrometers.
  • 21. A powdered material of claim 20 wherein said precious metal based material is a precious metal selected from the group consisting of gold, silver, platinum, palladium, ruthenium, and osmium.
  • 22. A powdered material of claim 20 wherein said precious metal based material is a precious metal alloy selected from the group consisting of gold alloys, silver alloys, platinum alloys, palladium alloys, ruthenium alloys, and osmium alloys.
  • 23. A powdered material of claim 20 wherein said precious metal based material is precious metal with additives selected from the group consisting of titanium diboride, cadmium oxide, germanium oxide, tin oxide, and mixtures thereof.
  • 24. A powdered material of claim 20 wherein said precious metal based material is a precious metal alloy with additives selected from the group consisting of titanium diboride, cadmium oxide, germanium oxide, tin oxide, and mixtures thereof.
  • 25. A powdered material of claim 20 wherein said precious metal based material is a precious metal with additives selected from the group consisting of oxides, nitrides, borides, carbides, silicides, carbonitrides, and mixtures thereof.
  • 26. A powdered material of claim 20 wherein said precious metal based material is a precious metal alloy with additives selected from the group consisting of oxides, nitrides, borides, carbides, silicides, carbonitrides, and mixtures thereof.
  • 27. A powdered material of claim 20 wherein the particle size of said spherical particles is less than about 15 micrometers.
  • 28. A powdered material of claim 20 wherein the particle size of said spherical particles is less than about 10 micrometers.
US Referenced Citations (7)
Number Name Date Kind
3852061 Wulff Dec 1974
3909241 Cheney et al. Sep 1975
3974245 Cheney et al. Aug 1976
4264354 Cheetham Apr 1981
4502885 Cheney Mar 1985
4568384 Maher Feb 1986
4592781 Cheney et al. Jun 1986
Non-Patent Literature Citations (1)
Entry
Merriman, A. D.; A Dictionary of Metallurgy; MacDonald & Evans, Ltd., London, 1958, p. 257.