Spheroid cell culture article and methods thereof

Information

  • Patent Grant
  • 12146154
  • Patent Number
    12,146,154
  • Date Filed
    Friday, August 28, 2020
    4 years ago
  • Date Issued
    Tuesday, November 19, 2024
    a month ago
Abstract
A spheroid cell culture article including: a chamber including: an opaque side wall surface;a top aperture; anda gas-permeable, liquid impermeable bottom including at least one concave surface, wherein at least a portion of the bottom is transparent, wherein at least a portion of the bottom includes a low-adhesion or no-adhesion material in or on the at least one concave surface, and wherein the gas permeable, liquid impermeable bottom includes polystyrene.
Description
BACKGROUND

The disclosure generally relates to a cell culture well article and methods of making and using the article


SUMMARY

In embodiments, the disclosure provides a well article for culturing and assaying, for example, spheroidal cell masses. The well article includes at least one chamber having an opaque side wall; a transparent, round or concave bottom surface; and the transparent bottom is gas-permeable.


In embodiments, the disclosure provides methods for making the well article, and methods of using the well article in spheroid cell culture or in cellular assays.


In embodiments, the disclosure also provides a multi-well plate article having wells or chambers with opaque walls and a gas-permeable, transparent round-bottom, and methods for making the round-bottom multi-well plate article. The transparent round-bottom, such as an optically clear bottom window, permits convenient microscopic visualization or examination of the cultured spheroid cell mass.


In embodiments, the disclosure provides a well plate having a base, the base having a conical or tapered geometry, such as a forty five degree (45°) angle, or like taper angles, from the sidewall to a radius at the apex (i.e., the very bottom of the well) to provide a round-bottom well or multiwell plate having an opaque sidewall and an optically clear window or base for optical visualization, such as with a microscopic or like devices, of a spheroid cell culture.





BRIEF DESCRIPTION OF THE DRAWINGS

In embodiments of the disclosure:



FIG. 1 schematically shows methods for joining preformed or molded components to make examples of the disclosed articles.



FIGS. 2A to 2C show an alternative method for making a disclosed article having an opaque sleeve or chamber wall surface and a pre-formed clear base insert.



FIG. 3 shows another alternative method of making the disclosed article using distortion printing.



FIG. 4 shows in a cross-section view of a single well or single chamber in the frame of an alternative exemplary article (400).



FIG. 5 shows in a partial top or plan view aspects of the exemplary article of FIG. 4.



FIG. 6 shows in perspective aspects of an exemplary perfusion plate apparatus (600).



FIG. 7 shows in a cross-section view aspects of an exemplary multi-spheroidal well article (700).



FIG. 8 shows in a partial top or plan view aspects of the exemplary article of the multi-spheroidal well article (700) of FIG. 7.



FIGS. 9A and 9B show a cross-section view of the combination (900) of the injection molding pin shut-off in contact with a well-bottom having different geometries.



FIGS. 10A and 10B show cross-section views of an alternative design for a pin shut-off.



FIGS. 11A to 11D show images of cell spheroids in alternative well-bottoms having different geometries.





DETAILED DESCRIPTION

Various embodiments of the disclosure will be described in detail with reference to drawings, if any. Reference to various embodiments does not limit the scope of the invention, which is limited only by the scope of the claims attached hereto. Additionally, any examples set forth in this specification are not limiting and merely set forth some of the many possible embodiments of the claimed invention.


In embodiments, the disclosed apparatus and the disclosed method of making and using the apparatus provide one or more advantageous features or aspects, including for example as discussed below. Features or aspects recited in any of the claims are generally applicable to all facets of the invention. Any recited single or multiple feature or aspect in any one claim can be combined or permuted with any other recited feature or aspect in any other claim or claims.


Definitions

“Include,” “includes,” or like terms means encompassing but not limited to, that is, inclusive and not exclusive.


“About” modifying, for example, the quantity of an ingredient in a composition, concentrations, volumes, process temperature, process time, yields, flow rates, pressures, viscosities, and like values, and ranges thereof, or a dimension of a component, and like values, and ranges thereof, employed in describing the embodiments of the disclosure, refers to variation in the numerical quantity that can occur, for example: through typical measuring and handling procedures used for preparing materials, compositions, composites, concentrates, component parts, articles of manufacture, or use formulations; through inadvertent error in these procedures; through differences in the manufacture, source, or purity of starting materials or ingredients used to carry out the methods; and like considerations. The term “about” also encompasses amounts that differ due to aging of a composition or formulation with a particular initial concentration or mixture, and amounts that differ due to mixing or processing a composition or formulation with a particular initial concentration or mixture.


“Optional” or “optionally” means that the subsequently described event, circumstance, or structure, can or cannot occur, and that the description includes instances where the event, circumstance, or structure, occurs and instances where it does not.


“Consisting essentially of” or “consisting of” in embodiments can refer to, for example:

    • a spheroid cell culture article having:
      • a frame having a chamber or a plurality of chambers, for example, a well, each chamber having:
      • an opaque side wall surface, such as a well having an opaque side wall;
      • a top aperture for operational access to the chamber;
      • a gas-permeable, transparent bottom surface; and
      • optionally a porous membrane insert in at least one of the chambers,


        at least a portion of the transparent bottom includes at least one concave arcuate surface, or a plurality of concave arcuate surfaces within a single chamber;
    • a method of making the abovementioned spheroid cell culture article including:
      • combining the gas-permeable, transparent arcuate bottom surface portion and an opaque side wall surface portion to form the article, wherein the combining is accomplished with any of the methods disclosed herein or any other suitable methods; and
      • optionally inserting a porous membrane liner in at least one of the chambers; and
    • a method of using the article for culturing spheroids including:
      • charging the disclosed spheroid cell culture article with culture media; and
      • adding spheroid forming cells to the culture media, as defined herein.


The article, the method of making the article, and the method of using the article, of the disclosure can include the components or steps listed in the claim, plus other components or steps that do not materially affect the basic and novel properties of the compositions, articles, apparatus, or methods of making and use of the disclosure, such as a particular article configuration, particular additives or ingredients, a particular agent, a particular structural material or component, a particular irradiation or temperature condition, or like structure, material, or process variable selected.


The indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.


Abbreviations, which are well known to one of ordinary skill in the art, may be used (e.g., “h” or “hrs” for hour or hours, “g” or “gm” for gram(s), “mL” for milliliters, and “rt” for room temperature, “nm” for nanometers, and like abbreviations).


Specific and preferred values disclosed for components, ingredients, additives, dimensions, conditions, and like aspects, and ranges thereof, are for illustration only; they do not exclude other defined values or other values within defined ranges. The apparatus and methods of the disclosure can include any value or any combination of the values, specific values, more specific values, and preferred values described herein, including explicit or implicit intermediate values and ranges.


The formation of uniformly-sized spheroids of, for example, tumor cells, can be facilitated if the cells are cultured in a round-bottom vessel that has low-adhesion properties. Researchers from the Institute of Cancer Research in Sutton, UK, used Corning, Inc.'s, ultra-low-adhesion (ULA)-coated 96-well clear, round-bottom, polystyrene microplates to produce tumor spheroids that enabled target validation and drug evaluation (see Vinci et al., BMC Biology, 2012, 10:29). The spheroids enhanced the biological relevance of the tumor cell cultures and facilitated a range of functional assays. The round-bottom well shape along with gravity and the ultra-low attachment coat or coating, encouraged the cells to come together and self-assemble into the spheroid shape rather than to form a monolayer of cells.


While the clear, round-bottom, ULA-coated wells of the 96-well plate were utilized with good results for migration and invasion assays due to the optical clarity of the structural polymer, evaluation of anti-cancer agents using fluorescent or luminescent detection in this plate were less optimal since the clear sidewalls added to the noise in the detected signal. While the tumor cells could be moved into opaque 96-well plates, this calls for pipetting the spheroids, which can be delicate, difficult, and time-consuming.


In embodiments, the present disclosure provides a spheroid cell culture article comprising:

    • a frame having a chamber, for example, a well, comprising:
      • an opaque side wall surface;
      • a top aperture; and
      • a gas-permeable, transparent bottom surface,


        and at least a portion of the bottom surface comprises at least one concave arcuate surface, that is, a rounded or curved surface.


The disclosed well plate having a well base having a conical or tapered geometry is superior for injection molding of the well's opaque side wall since it is unnecessary to alter existing flat pins that have been previously used to over-mold on a flat insert (i.e., base). Injection molding with existing flat pins can also be accomplished on a well-bottom geometry having a full radius (i.e., a hemispherical or untapered base). An optional distortion collar feature on the base can enhance the ability of an existing flat pin to achieve shut-off on the well-bottom geometry.


A well plate having the disclosed tapered or chevron shaped (e.g., a 45 degree angle from the sidewall to a radiused apex) well-bottom geometry has been successfully demonstrated for use in the formation of cell spheroids. The tapered well-base or well-bottom geometry also enables over-molding of the opaque well wall onto an insert (base) pre-formed with the tapered geometry using existing flat pins that would ordinarily be used to over-mold on a flat insert. The optional distortion collar feature integral with or attached to the insert (base) can facilitate resin flow shut-off of the injection molding pin. The well-bottom geometry can alternatively be generated by thermal-forming a polymer film prior to over-molding, or after over-molding using a thermal reforming process. Thermal reforming permits rapid change-over to generate well geometries for alternative multiple formats.


The disclosed well plate having a tapered or chevron shaped base (e.g., an approximate 45 degree angle) is advantaged by, for example, permitting over-molding onto the insert using the same pin equipment to over-mold on a flat insert. This over-molding can be facilitated by the addition of a distortion collar that can flex to permit the pin to shut-off the polymer flow. Using the flat pin for molding results in saving time and reducing cost for the generation of this well plate product since the mold-cavity pins do not need to be modified for different well geometries or different well count formats.


Thermal reforming permits rapid change-over to generate well geometries for many different well formats. Thermal reforming also permits design flexibility for assessment of different well geometries for each format and the ability to rapidly produce prototype or production samples for customer evaluation or specification.


A well base having an approximate 45 degree tapered angle also allows for a smaller radiused apex, which apex centers the collection of cells that settle by gravity to form a cell spheroid, and enhances optical imaging.


Referring to the Figures, FIG. 4 shows in a cross-section view an exemplary article (400) having a chamber (410), and a chamber annex (420) for receiving an aspirating pipette (440), and optionally a porous membrane (480), for example, a high throughput screening membrane insert or liner, for dividing the chamber into upper (410a) and lower (410b) chambers, or upper and lower chamber volumes. The chamber annex (420) or chamber extension is not physically separated from the main chamber (410) space, but is instead a spatial extension or expansion of the main chamber. Thus, dotted line (425) represents a non-physical boundary between the main chamber and the chamber annex. The chamber annex and the optional porous membrane provide an excellent geometry that permits aspiration of the medium without aspirating the spheroid (450) mass from the well chamber. The chamber annex (420) having an optional second bottom (430) or stop-ledge provides space to accommodate a pipette tip (440) of a pipette to exchange fluid medium without significantly disturbing the spheroid (450) in the transparent arcuate round bottom surface area and volume (460) of the lower chamber (410b). The stop ledge (430) prevents the pipette tip from entering the lower spheroid chamber.



FIG. 5 shows aspects of the exemplary article of FIG. 4. FIG. 5 shows in the well area μl, a partial top or plan view (500) of the exemplary article of FIG. 4, having a plurality of the chambers (410), each chamber having a chamber annex (420) for receiving the aspirating pipette (440). Additionally or alternatively, FIG. 5 shows in well area B1, the chamber (410) includes the optional porous membrane (480) or liner for dividing the chamber into the upper chamber and the lower chamber (410a and 410b, respectively, not shown) where the porous membrane (480) covers the underlying or hidden spheroid (450). An article having wells configured as shown in area B1 including the porous membrane (480) provide a functioning nested 96-well HTS Transwell® spheroid plate.


Well plates having opaque sidewalls and gas permeable, rounded-bottom wells having clear windows can provide significant advantages including, for example: no need to transfer the spheroid from one multiwell plate (in which spheroids can be formed and visualized) to another plate for conducting assays to, for example, evaluate drug compounds; avoiding the spheroid transfer step can save time and avoid potential loss or disruption of the spheroid; and the spheroids can receive superior oxygenation with well-bottoms made from a polymer having gas permeable properties at a given wall thickness. Increased oxygen availability to the cells in the spheroid culture is particularly helpful for cells with high oxygen requirements such as hepatocytes.


In embodiments, the article having a chamber having at least one concave arcuate surface can include, for example, a plurality of adjacent concave arcuate surfaces having, for example, from 1 to about 1,000 concave arcuate surfaces on the bottom of the same chamber, see for example, FIGS. 7 and 8.


In embodiments, the article can be, for example, a single well or multi-well plate configuration having numerous “spheroidal wells”, such as a plurality of dimples or pits in the bottom or base of each well. The plurality of spheroids or spheroid wells per chamber can preferably accommodate, for example, a single or one spheroid per spheroid well.


In embodiments, the gas permeable, transparent well bottom having the at least one concave arcuate surface or “cup” can be, for example, a hemi-spherical surface, a conical surface having a rounded bottom, and like surface geometries, or a combination thereof. The well and well bottom ultimately terminates, ends, or bottoms-out in a spheroid “friendly” rounded or curved surface, such as a dimple, a pit, and like concave frusto-conicial relief surfaces, or combinations thereof.


In embodiments, the opaque side wall surface (i.e., a surround) can be, for example, a vertical cylinder or shaft, a portion of a vertical conic of decreasing diameter from the chamber top to the chamber bottom, a vertical square shaft or vertical oval shaft having a conical transition, i.e., a square or oval at the top of the well, transitioning to a conic, and ending with a bottom having at least one concave arcuate surface, i.e., rounded or curved, or a combination thereof. Other illustrative geometric examples include holey cylinders, holey conic cylinders, first cylinders then conics, and other like geometries, or combinations thereof.


In embodiments, the article can further comprise, for example, a low-adhesion or no-adhesion coating on a portion of the chamber, such as on the at least one concave arcuate surface.


In embodiments, the article can further comprise, for example, a chamber annex, chamber extension area, or an auxiliary side chamber, for receiving a pipette tip for aspiration, the chamber annex or chamber extension (e.g., a side pocket) can be, for example, an integral surface adjacent to and in fluid communication with the chamber. The chamber annex can have a second bottom spaced away from the gas-permeable, transparent bottom. The chamber annex and the second bottom of the chamber annex can be, for example spaced away from the gas-permeable, transparent bottom such as at a higher elevation or relative altitude. The second bottom of the chamber annex deflects fluid dispensed from a pipette away from the transparent bottom to avoid disrupting or disturbing the spheroid.


In embodiments, the article can further comprise a porous membrane, such as a liner or membrane insert, situated within a portion of the chamber, situated within a portion of the chamber annex, or both the chamber and the chamber annex portion. The porous membrane can provide isolation or separation of a second cellular material, such as a different cell type or different cell state, situated in an upper portion of the chamber, in an upper portion of the chamber formed by the porous membrane, or both chambers, from first cellular material in a lower portion of one or both chambers near the transparent bottom.


In embodiments, the at least one concave arcuate surface can be, for example, a hemisphere, or a portion of a hemisphere, such as a horizontal section or slice of a hemisphere, having a diameter of, for example, from about 250 to about 5,000 microns (i.e., 0.010 to 0.200 inch), including intermediate values and ranges, depending on, for example, the well geometry selected, the number of concave arcuate surfaces within each well, the number of wells in a plate, and like considerations. Other concave arcuate surface can have, for example, parabolic, hyperbolic, chevron, and like cross-section geometries, or combinations thereof.


In embodiments, the spheroid can be, for example, substantially a sphere, having a diameter of, for example, from about 100 to about 500 microns, more preferably from about 150 to about 400 microns, even more preferably from about 150 to about 300 microns, and most preferably from about 200 to about 250 microns, including intermediate values and ranges, depending on, for example, the types of cells in the spheroid. Spheroid diameters can be, for example, from about 200 to about 400 microns, and the upper diameters being constrained by diffusion considerations (for a review of spheroids and spheroid vessels see Achilli, T-M, et. al. Expert Opin. Biol. Ther. (2012) 12(10)).


In embodiments, the disclosure provides a perfusion plate apparatus comprising:

    • at least one cell culture article comprising:
      • a frame having a chamber, for example, a well, comprising:
      • an opaque side wall surface;
      • a top aperture;
      • a gas-permeable, transparent bottom surface; and
      • optionally a chamber annex surface,
    • the at least a portion of the bottom comprises at least one concave arcuate surface, that is, a rounded or curved surface,
    • media source well in fluid communication with at least one chamber of the cell culture article that controllably provides a source of fresh media to at least one chamber; and
    • a waste well in fluid communication with the at least one chamber of the cell culture article that controllably receives waste media from cell metabolism in the at least one chamber.



FIG. 6 shows in perspective aspects of an exemplary perfusion plate apparatus (600). In embodiments, the aforementioned perfusion plate apparatus can further comprise a porous liner (480) situated within a portion of the chamber (610), situated within a portion of the chamber annex (not shown), or both the chamber and the chamber annex, the porous liner provides isolation or separation of a second cellular material (660) such as Caco 2 cells, in an upper portion of the chamber, an upper portion of the chamber annex, or both upper portion of the chamber and the chamber annex, from first cellular material, such as a spheroid (450), situated in the lower portion of the chamber or the chamber annex and near the transparent bottom region (460).


In embodiments, the aforementioned perfusion plate apparatus can further comprise, for example: a source liquid (not shown), a perfusion plug (655), i.e., liquid permeable material, situated in a liquid connection member (635), such as a tube, between a source well (630) and the cell culture rounded-bottom well of the apparatus (600), a perfusion plug (655) situated in a liquid connection member (645) between the cell culture rounded-bottom well and the waste well (640), or both situations. The waste well (640) preferably can have an arcuate bottom surface to facilitate removal of waste liquid medium (not shown) using, for example, a pipette, a vacuum pump, or like liquid removal equipment.


A related but distinct cell culture article (i.e., FloWell™ plate) is disclosed in commonly owned and assigned copending application, U.S. Provisional Patent Application Ser. No. 61/594,039, filed on Feb. 2, 2012, now PCT/US13/24030, to Goral, et al., entitled “Automatic continuous perfusion cell culture microplate consumables”. The related application mentions, for example, a microplate for culturing cells with automatic, continuous perfusion of a liquid medium, and can include, for example, a well frame which defines a plurality of cavities therethrough. The microplate can further include a planar substrate connected with the well frame. The planar substrate can provide a bottom surface to the plurality of cavities, forming a plurality of wells. The plurality of wells may include a first well, a second well fluidly connected with the first well, and a third well fluidly connected with the first well. The first well may be employed for culturing the cells in the liquid medium. The second well may be employed for providing an outflow or source of the liquid medium to the first well. The third well may be employed for receiving an inflow or waste stream of the liquid medium from the first well. The second well may be fluidly connected with the first well with a first perfusion membrane. A first perfusion membrane can be disposed in between the well frame and the planar substrate and may extend from an outlet section of the second well to an inlet section of the first well. The third well may be fluidly connected with the first well with a second perfusion membrane. The first and second perfusion membranes can have a porosity of, for example, from about 0.2 to about 200 microns. The second perfusion membrane can be disposed in between the well frame and the planar substrate and extend from an outlet section of the first well to an inlet section of the third well. Upon introduction of a perfusion-initiating amount of the liquid medium into the second well, the liquid medium flows from the second well through the first perfusion membrane to the first well and from the first well through the second perfusion membrane to the third well (see for example FIG. 5 therein). The related application also mentions methods of fabricating the microplate and methods of culturing cells.



FIG. 7 shows aspects of an exemplary multi-spheroidal well article (700), which is reminiscent of aspects of FIG. 4 including, for example, one or more chambers (410), each chamber having the chamber annex (420) area bounded by line (425) and stop-ledge (430), for receiving an aspirating pipette (not shown). Unlike FIG. 4, the bottom of each chamber (410) in FIG. 7 can include a plurality of arcuate dimples (465), which dimples can be either or both transparent and gas permeable, and can each receive or cultivate a single spheroid (450). Cells can be seeded into the wells of the apparatus at a low density to permit single spheroid formation and cultivation in the neighboring but separated cups. The multi-spheroidal well article (700) can include the optional porous membrane (480) or liner insert for dividing the chamber into the upper (410a) and the lower (410b) chamber.



FIG. 8 shows aspects of the exemplary article of the multi-spheroidal well article (700) of FIG. 7. FIG. 8 shows, in the well area μl, a top view (800) of the exemplary article of FIG. 7, having a plurality of the chambers (410), each chamber having the chamber annex (420) for receiving the aspirating pipette (not shown). The bottom of each chamber (410) includes a plurality of arcuate dimples (465), which dimpled surfaces can receive or cultivate a plurality of spheroids (450). Additionally or alternatively, FIG. 8 shows, in the well area B1, the chamber (410) includes the optional porous membrane (480) or liner insert for dividing the chamber into the upper chamber and the lower chamber (410a and 410b, respectively, not shown). The membrane (480) or liner insert conceals and protects the underlying spheroids (450) and spheroid wells (465) from disturbances or disruption from forces or activity above the membrane, such as during the addition or removal of liquid medium.


In embodiments, the article having a chamber can include, for example, from 1 to about 2,000 chambers, from 10 to about 1,500 chambers, including intermediate values and ranges, and each chamber is physically separated from any other chamber, and each chamber has a single concave arcuate surface. In embodiments, such a multi-well plate product configuration can have, for example, one spheroid per chamber.


In embodiments, the at least one concave arcuate surface can have, for example, a plurality of adjacent concave arcuate bottom surfaces within the same well. In embodiments, a single well or multi-well plate configuration can have numerous spheroidal wells, such as dimples or pits in the bottom or base of each well. In embodiments, the article can accommodate a plurality of isolated spheroids in separated spheroid wells in a single chamber, preferably having, for example, one spheroid per spheroid well.


In embodiments, the disclosure provides a method of making an article, the article comprising:

    • a frame having a chamber, for example, a well, comprising:
      • an opaque side wall surface;
      • a top aperture;
      • a gas-permeable, transparent bottom surface; and
      • optionally a chamber annex surface having a second bottom remote from the transparent bottom surface; and
      • at least a portion of the transparent bottom comprises at least one concave
      • arcuate surface, that is, a transparent rounded or curved surface;
    • the method of making comprising:
    • combining the gas-permeable, transparent arcuate bottom surface portion and an opaque side wall surface portion to form the article.


The method of making the article can further comprise, for example, inserting a porous membrane in at least one of the chambers.


There are several methods that can be used to make an opaque round-bottom multiwell plate having opaque sidewalls and a base with a clear window. The multiwell plate made by Examples 1 or 2, and having flat well bottom geometry can be subsequently thermally-reformed to create an alternative well-bottom geometry. A multiwell plate having a flat well-bottom geometry can be, for example, positioned in a nest that has at each well-bottom position areas removed from the nest that have a circular perimeter in roughly the same dimensions as the well format, or the nest can have a tapered angle, for example, from about 30 to about 60 degrees, including intermediate values and ranges, such as 40 to 50, and 45 degrees, turning into a radius at the apex, that is, rounded at the very bottom of the well. A heated platen, heated for example at 180 to 400 degrees F., more preferably 250 to 300 degrees F., having an array of pins that have, for example, a matching 45 degree tapered angle from the sidewall sloping into a radius at the apex, is held stationary, with a pin positioned over each well. The pin-platen is actuated so that the pins descend into the wells of the multiwell plate to contact the clear flat well-bottom surface. Time, temperature, and pressure can change the well-bottom material geometry as the pins advance until the reformed well-bottom material meets the matching nest geometry. The array of pins may be coated with a release agent, such as PTFE, to prevent the reformed well-bottom geometry from sticking to the heated pins, or the pins can be uncoated. The nest may also have a vacuum assist on the nest to help draw the polymer into the well geometry. Cooling air can be injected into the top of the wells above the heated pins to cool the hot pins slightly and facilitate their release from the polymer of the reformed well-bottom geometry. The platen with the pin array and the nest with the matching geometry can be rapidly changed to comply with many multiple well formats, including 384- and 1536-wells. Any number of wells may be reformed at the same time. In embodiments, the pin-platen can be held stationary while the nest holding the insert can be actuated to be brought into contact with the stationary pin-platen. In embodiments, both the pin-platen and the nest holding the insert can be actuated to provide relative motion that achieves contact and closure between the pins and the wells of the insert.


A v-shaped well base geometry having, for example, a tapered angle of 45 degrees, sloping from the well sidewall to a radius at the apex, is superior for spheroid formation and superior for optical measurement compared to a hemispherical well-bottom geometry. The v-shaped well base geometry also permits overmolding on the well base geometry using the same flat pins that can be used to over-mold opaque polymer onto a flat insert. The 45 degree well base tapered angle permits the pins to contact each well base on the bottom tapered sidewall. While this can also be done with a hemispherical geometry, it is more difficult. If the pin is not able to shut-off on the sidewall, the opaque polymer can leak into or onto the clear well bottom. Alternatively, if the pin cannot achieve shut-off on the sidewall, the pin can be made larger than the well, and achieve shut-off on the flat area surrounding each well at the top of the insert. This alternative solution is not desired because it can create a flat ledge within each well upon which cells can settle. Cells that settle on the ledge cannot contribute to the spheroid in the center of the well bottom, but can cause large variation in experimental results.


In embodiments, the post-forming equipment can have, for example, a heated pin, such as a single pin, a row of pins, or an array of pins, that can match the number and alignment of, for example, a single well or a plurality of wells in a row or an array of wells of an injection molded microwell plate. The geometry at the end of each pin can have, for example, a 45 degree angle or taper from the sidewall and have a radius at or near the apex.


In embodiments, an injection molded plate having a flat well-bottom geometry can be situated and secured in a nest for the post-forming step where the heated pin or pin array assembly is pressed, for example, into the flat well-bottoms of an injection molded microplate. The nest can have a matching 45 degree angle at each well position to match and receive the pin shape. In embodiments, a platen can hold the heated pin or pins and the nest holds the matching well-bottom geometry. The plane of the pin platen and the plane of the nest can be aligned in parallel and both can be perpendicular to a common axis for proper reversible and reproducible pressing.


The platen, the nest, or both, can be rapidly interchanged to accommodate other multiwell plate formats such as 384- and 1536-well plates. The platen bearing the heated pin(s) can be pressed into a matching well(s) of the multiwell plate to form the selected geometry defined by the geometry or cross-section of the pin's tip, such as hemispherical, conical, v-shaped, w-shaped, wedged shaped, and like geometries, or combined geometries, in the clear base of the well.


In embodiments, the disclosure provides a method of culturing spheroids comprising, for example:

    • charging any of the aforementioned articles with culture media; and
    • adding spheroid forming cells to the culture media.


Materials and Methods

There are several methods that can be used to make the disclosed article or articles. In embodiments, the disclosed article can be, for example, a multiwell plate having an opaque side wall for the wells and having an arcuate or concave rounded base or bottom surface, the base or bottom surface can be gas permeable and transparent or clear to visible light.


Commonly owned and assigned U.S. Pat. No. 7,674,346, mentions methods of making well plates such as bonding a polymeric holey plate to a glass or polymeric base and using, for example, heat or radiation to weld a gas permeable thin film to a holey plate to form the bottom of microplates (see e.g., col 2, lines 4 to 44).


Commonly owned and assigned U.S. Pat. No. 5,759,494, mentions methods of making well plates having opaque sidewalls by, for example, over-molding inserts to prevent cross-talk. Polymethylpentene (TPX) of the presently disclosed gas permeable spheroid plate can be selected as a suitable base or wall material that can be used in methods of making in the '494 patent and the present disclosure.


In embodiments, the structure of the presently disclosed gas permeable spheroid plate can also include one or more ridges arranged in one or more grid patterns as disclosed in the '494 patent, see for example, col. 4, line 30 to col. 5, line 54, to further reduce or prevent cross-talk. In over-molded plates without a grid, the perimeter of the well, a film, tended to peel away from the molded plate body. The grid appears to keep the film from peeling away from the plate body as it is reforming. The grid also appears to prevent stress marks from appearing in the film, since stress marks do appear in the plates without the grid.


U.S. Pat. No. 6,811,752, mentions methods of making a device having micro-chambers and microfluidic flow, and gas permeable, liquid impermeable membranes.


In one method (insert molding), the multiwell plate bottom or base portion having at least one rounded, cupped, or dimpled impression in the base is injection molded, or thermoformed using a clear polymer. Next, the molded or thermoformed clear multiwell bottom plate is inserted into a vertical press, then an opaque polymer is injected forming the remainder of the multiwell plate onto the clear, round well bottoms. An alternative to insert molding uses a 2-shot molding process.


Referring again to the Figures, FIG. 1 schematically shows methods for joining preformed or molded components. An injection molded or thermoformed opaque, holey plate portion (110) of a multiwell plate (i.e., without well bottoms) is joined to the injection molded or thermoformed clear, round, well-bottom plate portion (120). This joining to form the article (130) can be accomplished by any suitable method, for example, by placing the well-bottom plate (120) (or “insert”) into a vertical press and molding the opaque holey plate portion (110) onto the well-bottom plate portion. An alternative method of making can be, for example, injection molding the entire multiwell plate using a 2-shot molding process. The methods form an integral multiwell plate that has clear, rounded-well bottoms and opaque sidewalls. Any method of joinery can be used to attach preformed portions (110) and (120), including, for example, adhesive, ultrasonic, thermal, IR, laser welding, and like methods, or combinations thereof. Subsequent optional well coating with, for example, an ultra-low attachment material, and the force of gravity, can facilitate the cells self-assembling into a spheroid. Using a gas permeable material of appropriate thickness for, at least, the clear, round or cupped well-bottom portion of the multiwell plate enhances oxygen availability for the cells in the spheroid.


EXAMPLE(S)

The following examples serve to more fully describe the manner of using the above-described disclosure, and to further set forth best modes contemplated for carrying out various aspects of the disclosure. These examples do not limit the scope of this disclosure, but rather are presented for illustrative purposes. The working example(s) further describe(s) how to prepare the disclosed cell culture well articles.


Example 1

Injection Mold or Thermoform Methods



FIGS. 2A to 2C show an alternative method for creating an opaque “sleeve.” FIG. 2A shows an injection molded, or thermoformed well portion of a multiwell plate (210) (no skirt) having rounded or cupped well bottoms made using a clear polymer. FIG. 2B shows an injection molded, or thermoformed second multiwell plate including the skirt (220) but without well bottoms made using an opaque polymer. The well diameters of the opaque plate (220) are molded to be slightly larger than the well diameters of the clear plate (210). The clear portion is slipped into the opaque portion and may be permanently attached via a number of suitable methods including, for example, an adhesive, ultrasonic welding, IR welding, thermal welding, laser welding, and like methods. FIG. 2C shows a compression fit of the clear plate into the opaque plate to provide the assembled plate article (230). The opaque plate (220) acts as a sleeve structure to receive the clear plate structure and the combination forms the article having wells having opaque sidewalls and a clear window at the arcuate or rounded base of the well.



FIG. 3 shows another alternative method of making the disclosed article using distortion printing. A clear polymer sheet (310) is selectively printed with an opaque material to form printed sheet (315) having clear window regions or zones (330). The sheet can be selectively thermoformed to introduce the cups (i.e., the distortion) before or after printing so that the clear zones (330) of the printed sheet (315) become the center of the well bottoms. In embodiments, two halves, for example, a holey plate having clear bottoms (350) and sheet (315) of a mold are used to form the complete multiwell plate (340) from the distortion printed polymer sheet. Once thermoformed into a multiwell plate (360), all of the plate will appear opaque except for the clear zone (370) in the cupped-shaped well bottoms that form a window for optical viewing at or from the well bottom.


Example 2

In another method of making, one can mold or thermoform an opaque multiwell plate that has no well-bottoms (i.e., make an opaque “holey plate”). Next, one can injection mold, or thermoform the multiwell plate bottom or base portion using a clear polymer. Then one can attach the holey plate and base components together using any of various assembly processes, including, for example, adhesive, ultrasonic, IR, thermal, laser welding, and like processes.


Example 3

In another method of making, one can injection mold, or thermoform the entire well of a multiwell plate (without a skirt) using a clear polymer. Next, one can injection mold, or thermoform another multiwell plate (including the skirt) but without well bottoms using an opaque polymer. The well diameters of the opaque plate are molded to be slightly larger than the well diameters of the clear plate. The opaque plate acts as a sleeve to receive the clear plate and thus form opaque sidewalls and with a clear window at the base of the well.


Example 4

In another method of making, one can distortion print an opaque coating on the exterior of a clear polymer sheet, leaving a clear zone in the area that will be thermoformed with, for example, a cup or dimple, or multiples thereof, into the center of the well bottom. Once thermoformed into a multiwell plate, all of the plate will appear opaque except for the clear zone that forms a window for optical viewing.


Example 5

Non-Adhesive Coating


The interior well-bottom surface, walls, or both can optionally be made non-adhesive to cells by coating those surfaces with a polymer that does not have any characteristics that promote cell attachment, such as a perfluorinated polymer, olefin, or like polymers, and mixtures thereof. Alternatively, following assembly of the opaque multiwell plate with clear, round or cupped well-bottoms, the interior well-bottom may be coated with a non-binding material such as an ultra-low attachment material, agarose, nonionic hydrogel, or like materials, that can inhibit cell attachment. Coatings can also be applied to the clear well bottom portion of the multiwell plate prior to joining with the opaque portion. The combination of, for example, a low-attachment substrate, the well curvature in the body and the base portions, and gravity, can induce cells to self-assemble into spheroids, which cell clusters are known to maintain differentiated cell function indicative of a more in-vivo like response (see Messner, et al., Archives of Toxicology, Nov. 11, 2012). Perfluorinated polymers or polymers such as poly 4-methylpentene also provide gas permeability at thicknesses normally used in molding processes, which gas permeability can be beneficial for metabolically active cell types. Representative thickness and ranges of gas permeable polymer can be, for example, from about 0.001 inch to about 0.025 inch, from 0.0015 inch to about 0.03 inch, including intermediate values and ranges (where 1 inch=25,400 microns; 0.000039 inches=1 micron). Additionally or alternatively, other materials having high gas permeabilities, such as polydimethylsiloxane polymers, can provide sufficient gas diffusion at a thickness, for example, of up to about 1 inch.



FIGS. 9A and 9B show a cross-section view of the combination (900) of the injection molding pin shut-off in contact with a well-bottom having different geometries (9A; v-shaped, and 9B; hemisphere shaped). FIG. 9A schematically demonstrates how the pin (910), which fits inside the well, can shut-off (912) on the 45 degree angle of the v-shaped well-bottom geometry (915). FIG. 9B schematically demonstrates how the pin (910) can encounter potential difficulty of achieving shut-off (912) on the hemispherical well-bottom geometry (920).



FIGS. 10A and 10B show cross-section views of an alternative design for a pin shut-off. FIGS. 10A and 10B demonstrate the utility of an optional distortion collar (1010). The wall thickness of the distortion collar (1010) can be, for example, from about 0.005 to 0.020 inches, and can be determined by, for example, the modulus of the polymer, and the geometric constraints of the multiwell plate. The distortion collar surrounds or brackets the well and is able to distort, i.e., resiliently flex and stretch, under the pressure of the injection molding pin (910) to shut-off, that is, to seal or seal-off the contoured transparent base portion from the injected opaque resin for the side walls. FIG. 10A shows a pin (910) centered in the well and on a common axis (1011) with the pin. FIG. 10B shows the pin slightly offset (1015) from the original common axis (1011) and pin axis (1012), for example as shown, to the left of center. The distortion collar permits the pin to still adequately shut-off or be sealed to prevent the flow of opaque side wall polymer into the clear well-bottom. The distortion collar yields to a greater extent to the left side and yields to a lesser extent on the right side as illustrated by the respective force vector arrows (1016, 1017).


Example 6

Post Forming Method Another method of making a well plate article of the disclosure is accomplished by thermal reforming. In the thermal reforming method a commercially available plate, for example, having standard black (opaque) side-walls and a clear flat plastic bottom is selected. Using a combination of vacuum on the outside and pressure supplied by a hot forming tool with a full radius pushed into the interior of the well(s) on the opposite side of the plate and further into the bottom of the well, the concave arcuate base or tapered base having a round bottom radius is formed in the well bottom. The outside bottom area can be, for example, preheated with IR radiation to facilitate forming the cupped or internal concave arcuate bottom radius, or the tapered base.


Example 7

Method of Use; Culturing of Cells



FIGS. 11A to 11D show images of cell spheroids in different well-bottom geometries. The images were captured on a light microscope at 20× magnification (the reference scale equals 1,000 micrometers).


Image 11A shows a spheroid in an all clear control 96-well plate (i.e., the walls of this comparative plate are transparent) having a full hemisphere well-bottom geometry.


Image 11B shows a spheroid in a prototype thermally reformed 96-well plate having a v-shaped or 45 degree tapered well-bottom geometry.


Image 11C shows a spheroid in an injection-molded single well with the v-shaped or 45 degree well-bottom geometry.


Image 11D shows a spheroid in an injection-molded single well having a full hemisphere well-bottom geometry.


HT-29 cells were seeded into wells including the comparative well (11A) and inventive v-shaped wells (11B and 11C) and hemisphere shaped well (11D) at a concentration of 10,000 cells per well, and incubated for 96 hours at 37 degrees C. in an incubator with 5% CO2 and 85% humidity. The FIGS. 11A to 11D images were captured at 20× magnification on a light microscope after 96 hours of incubation.


The cell seeding procedure generally included the following steps: trypsinize; count the cells; centrifuge to remove medium from the cells; and re-suspend the cells. Seeding densities can be, for example: 10 k, 20 k or 30 k cells per well. The seeding volume can be, for example, 200 microliters per well. Monitoring images can be recorded, for example, at 30 minutes, at 24 hrs, and at 96 hrs after seeding, including intermediate values and ranges.


The spheroids in images 11B and 11C are in the center of the v-shaped well base. The spheroids in images 11A and 11D are not in the center of the hemisphere. The v-shaped base geometry appears to promote centering of the spheroids in the center of the well base, which centering facilitates optical visualization.


In embodiments, one can form a gas permeable, rounded well-bottom using the thermal reforming process. In existing methods, the plates can be molded on flat inserts of, for example, polystyrene that is 0.005″, which thickness is considered not gas permeable. However, during the thermal reforming process, one can decrease the thickness of the insert at the radiused apex to, for example, about 0.003″ (photograph not included), which makes the well-bottom as gas permeable as the HYPER-product film (which is also 0.003″ thick polystyrene).


The disclosure has been described with reference to various specific embodiments and techniques. However, it should be understood that many variations and modifications are possible while remaining within the scope of the disclosure.

Claims
  • 1. A cell culture article, comprising: at least one chamber, each chamber comprising: an opaque vertical side wall;a top aperture; anda gas-permeable, liquid impermeable rounded bottom comprising at least one transparent interior concave arcuate surface of a hemispherical surface, wherein at least a portion of the bottom is transparent, wherein the bottom is molded to the opaque sidewall, wherein at least a portion of the bottom comprises a low-adhesion or no-adhesion material in or on the at least one interior concave arcuate surface, wherein the article is suitable for use with 3D cell cultures, wherein the gas-permeable, liquid impermeable rounded bottom has a thickness of from about 0.001 inch to about 0.003 inch, and wherein the gas permeable, liquid impermeable bottom comprises polystyrene.
  • 2. The article of claim 1 further comprising a liner having a porous membrane situated within a portion of the chamber to divide the chamber into an upper chamber and a lower chamber.
  • 3. The article of claim 1 further comprising a chamber annex for receiving a pipette tip for aspiration, the chamber annex comprises a surface adjacent to and in fluid communication with the chamber, the chamber annex having a second bottom spaced away and at an elevation above the gas-permeable, transparent bottom, wherein the second bottom deflects fluid dispensed from a pipette away from the transparent bottom.
  • 4. The article of claim 3 further comprising a liner having a porous membrane situated within a portion of the chamber to form an upper chamber and a lower chamber the porous membrane providing separation of a second cellular material in the upper chamber, from a first cellular material in the lower chamber.
  • 5. The article of claim 1 wherein the article comprises from 1 to about 2,000 of said chambers, wherein each chamber is physically separated from any other chamber.
  • 6. The article of claim 1 wherein the at least one concave arcuate surface comprises a plurality of concave surfaces within the same chamber.
  • 7. The article of claim 1 wherein the opaque side wall surface comprises a vertical cylinder, a portion of a vertical conic of decreasing diameter from the chamber's top to bottom surface, a vertical square shaft having a conical transition to the at least one concave arcuate surface, or a combination thereof.
  • 8. The article of claim 1 wherein the at least one concave arcuate surface comprises a hemisphere, or a portion thereof, having a diameter of from about 250 to about 5,000 microns.
  • 9. The article of claim 1, further comprising culture media and a spheroid in said chamber.
  • 10. The article of claim 1, wherein said opaque side wall is adjacent to said transparent portion of said bottom.
  • 11. The article of claim 1, further comprising one or more auxiliary chambers in fluid communication with said chamber.
  • 12. A perfusion plate apparatus comprising: at least one cell culture article of claim 1;a media source well in fluid communication with at least one chamber of the cell culture article that controllably provides a source fresh media to the at least one chamber; anda waste well in fluid communication with the at least one chamber of the cell culture article that controllably receives waste media from the at least one chamber.
  • 13. The apparatus of claim 12 further comprising a porous liner situated within a portion of the at least one chamber to form an upper chamber and a lower chamber, the porous liner providing separation of a second cellular material in the upper portion of the chamber, from a first cellular material in the lower chamber.
  • 14. The apparatus of claim 12 further comprising: a perfusion plug between the source well and the at least one chamber, a perfusion plug between the at least one chamber and the waste well, or both.
  • 15. The apparatus of claim 12 wherein the at least one concave arcuate surface comprises a plurality of adjacent concave arcuate surfaces.
  • 16. A method of making the article of claim 1 comprising: combining the gas-permeable, transparent, bottom and an opaque side wall surface portion to form the article.
  • 17. The method of claim 16 wherein combining is accomplished with: injection molding, thermal reforming, post forming, distortion printing, over molding, or combinations thereof.
  • 18. The method of claim 16 wherein the gas-permeable, transparent, bottom includes a distortion collar integral with or attached to the gas permeable transparent bottom to prevent opaque side wall material from entering the concave arcuate surface of the gas-permeable, liquid impermeable bottom.
  • 19. The method of claim 16 further comprising inserting a porous membrane in at least one of the chambers of the resulting article.
  • 20. A method of culturing spheroids comprising: charging the article of claim 1 with culture media; andadding spheroid forming cells to the culture media.
  • 21. The method of claim 20 further comprising optically examining the cultured spheroid forming cells through the transparent bottom.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is filed under 35 U.S.C. § 111 as a continuation application of U.S. patent application Ser. No. 15/708,473, filed Sep. 19, 2017, which is a continuation application of U.S. application Ser. No. 14/087,906, filed on Nov. 22, 2013, which claims the benefit of priority to U.S. Provisional Application No. 61/817,539 filed on Apr. 30, 2013, the content of which is relied upon and incorporated herein by reference in its entirety. The entire disclosure of any publication or patent document mentioned herein is incorporated by reference.

US Referenced Citations (198)
Number Name Date Kind
2947116 Wilton et al. Aug 1960 A
3630849 David et al. Dec 1971 A
4382685 Pearson May 1983 A
4498785 De Bruyne Feb 1985 A
4534656 De Bruyne Aug 1985 A
4670396 Bear et al. Jun 1987 A
4760028 De Bruyne et al. Jul 1988 A
4927764 Lyman et al. May 1990 A
4980293 Jeffs Dec 1990 A
5047347 Cline Sep 1991 A
5151366 Serkes et al. Sep 1992 A
5171994 Bahraman Dec 1992 A
5171995 Gast et al. Dec 1992 A
5240854 Berry et al. Aug 1993 A
5272084 O'Connell et al. Dec 1993 A
5319436 Manns Jun 1994 A
5374557 Verma Dec 1994 A
5398837 Degrassi Mar 1995 A
5487872 Hafeman et al. Jan 1996 A
5554536 Rising Sep 1996 A
5598262 Jutard et al. Jan 1997 A
5665562 Cook Sep 1997 A
5693537 Wilson et al. Dec 1997 A
5707869 Wolf et al. Jan 1998 A
5710043 Pay Jan 1998 A
5736397 Garcia et al. Apr 1998 A
5759494 Szlosek Jun 1998 A
5766949 Liau et al. Jun 1998 A
5772905 Chou Jun 1998 A
5783440 Stevens Jul 1998 A
5792653 Weibezahn et al. Aug 1998 A
5858309 Mathus et al. Jan 1999 A
5972694 Mathus Oct 1999 A
6030829 Dannoux et al. Feb 2000 A
6039972 Barlow et al. Mar 2000 A
6306646 Saad et al. Oct 2001 B1
6348999 Summersgill et al. Feb 2002 B1
6514464 Knebel Feb 2003 B1
6521451 Potter Feb 2003 B2
6567675 Rosen et al. May 2003 B1
6767607 Tanner et al. Jul 2004 B2
6811752 Barbera-Guillem Nov 2004 B2
6908767 Bader Jun 2005 B2
7470424 Kataoka et al. Dec 2008 B2
7547547 Dang et al. Jun 2009 B2
7674346 Clements et al. Mar 2010 B2
7687262 Cattadoris Mar 2010 B2
7691369 Kataoka et al. Apr 2010 B2
7727759 Ozawa et al. Jun 2010 B2
7745209 Martin et al. Jun 2010 B2
7745210 Martin Jun 2010 B2
7897379 Kenney et al. Mar 2011 B2
7919319 Jervis et al. Apr 2011 B2
8053230 Whittlinger Nov 2011 B2
8143053 Yerbic Mar 2012 B2
8148152 Kolossov et al. Apr 2012 B2
8158426 Wilson et al. Apr 2012 B2
8158427 Wilson et al. Apr 2012 B2
8163537 Martin et al. Apr 2012 B2
8168432 Wilson et al. May 2012 B2
8178345 Bennett et al. May 2012 B2
8273572 Martin et al. Sep 2012 B2
8318479 Domansky et al. Nov 2012 B2
8415144 Wilson et al. Apr 2013 B2
8470589 Martin et al. Jun 2013 B2
D685497 Kenney et al. Jul 2013 S
8486692 Simon Jul 2013 B2
8597597 Deutsch et al. Dec 2013 B2
8617879 Yu et al. Dec 2013 B2
8697443 Wilson et al. Apr 2014 B2
8759017 Owen et al. Jun 2014 B2
8778669 Lacey et al. Jul 2014 B2
8846399 Martin et al. Sep 2014 B2
8906685 Takayama et al. Dec 2014 B2
8932544 Mueller et al. Jan 2015 B2
9039883 Guerrieri et al. May 2015 B2
9040293 Gulzow et al. May 2015 B2
9045721 Martin et al. Jun 2015 B2
9068281 Wu et al. Jun 2015 B2
9126199 Moritz et al. Sep 2015 B2
9169460 Cecchi Oct 2015 B2
D748812 Kenney et al. Feb 2016 S
9260684 Egeler et al. Feb 2016 B1
9260695 Crowley et al. Feb 2016 B2
9493733 Giles Nov 2016 B2
9494577 Mcgarr et al. Nov 2016 B2
9573128 McClelland Feb 2017 B1
9587213 Morgan et al. Mar 2017 B2
9732317 Wilson Aug 2017 B2
9790465 Bennett et al. Oct 2017 B2
9845451 Martin et al. Dec 2017 B2
9862918 Ito Jan 2018 B2
10254274 Miklas et al. Apr 2019 B2
11441121 Bennett Sep 2022 B2
20020022219 Clements et al. Feb 2002 A1
20020172621 Barbera-Guillem Nov 2002 A1
20030031829 Tanner et al. Feb 2003 A1
20030104494 Ravkin et al. Jun 2003 A1
20030183958 Goff et al. Oct 2003 A1
20030186217 Bader Oct 2003 A1
20030215941 Campbell et al. Nov 2003 A1
20040091397 Picard May 2004 A1
20040101955 Whitley May 2004 A1
20040125266 Miyauchi et al. Jul 2004 A1
20040216835 Tanner et al. Nov 2004 A1
20040259242 Malinge et al. Dec 2004 A1
20040259423 Elbaz et al. Dec 2004 A1
20050032208 Oh et al. Feb 2005 A1
20050047971 Clements et al. Mar 2005 A1
20050074873 Shanler et al. Apr 2005 A1
20050112030 Gaus May 2005 A1
20050116717 Dransfield et al. Jun 2005 A1
20050147959 Frondoza et al. Jul 2005 A1
20060110822 Robbins et al. May 2006 A1
20060234370 Korpinen et al. Oct 2006 A1
20060252044 Okumura et al. Nov 2006 A1
20060292654 Reardon Dec 2006 A1
20070178441 Li Aug 2007 A1
20070216897 Sonda Sep 2007 A1
20080003671 Martin Jan 2008 A1
20080009027 Fraker et al. Jan 2008 A1
20080118974 Martin et al. May 2008 A1
20080206857 Kenney et al. Aug 2008 A1
20080268515 Cullimore et al. Oct 2008 A1
20080297784 Leblanc et al. Dec 2008 A1
20080299649 Martin et al. Dec 2008 A1
20080300278 Torrens et al. Dec 2008 A1
20090017540 Nishio et al. Jan 2009 A1
20090018033 Morgan et al. Jan 2009 A1
20090029462 Beardsley et al. Jan 2009 A1
20090037293 Unger et al. Feb 2009 A1
20090170190 Nishi et al. Jul 2009 A1
20090191620 Martin et al. Jul 2009 A1
20090288963 Guerrieri et al. Nov 2009 A1
20090298164 Cattadoris et al. Dec 2009 A1
20090298166 Fang et al. Dec 2009 A1
20100055774 Wilson Mar 2010 A1
20100068793 Ungrin et al. Mar 2010 A1
20100093075 Rolf Apr 2010 A1
20100112014 Gilbert et al. May 2010 A1
20100112684 Lee et al. May 2010 A1
20100119418 Clements et al. May 2010 A1
20100170790 Takahashi et al. Jul 2010 A1
20100190197 Martin et al. Jul 2010 A1
20100197013 Kamp et al. Aug 2010 A1
20100247386 Deutsch et al. Sep 2010 A1
20100273258 Lannutti et al. Oct 2010 A1
20100297600 Cecchi Nov 2010 A1
20110086375 Ungrin et al. Apr 2011 A1
20110097790 Yerbic Apr 2011 A1
20110129923 Wilson et al. Jun 2011 A1
20110229961 Higashi et al. Sep 2011 A1
20120064627 Khine et al. Mar 2012 A1
20120129208 Khine et al. May 2012 A1
20120129257 Yu et al. May 2012 A1
20120219572 Prockop et al. Aug 2012 A1
20130052331 Kram et al. Feb 2013 A1
20130122539 Li et al. May 2013 A1
20130122580 Tsukada et al. May 2013 A1
20130143254 Thomas et al. Jun 2013 A1
20130164848 Munaka et al. Jun 2013 A1
20130203159 Itoh et al. Aug 2013 A1
20130344598 Nistor Dec 2013 A1
20140004086 Peak Jan 2014 A1
20140027784 Wada et al. Jan 2014 A1
20140099717 Fraker et al. Apr 2014 A1
20140106394 Ko et al. Apr 2014 A1
20140106452 Vukasinovic Apr 2014 A1
20140120573 Tavana et al. May 2014 A1
20140178992 Nakashima et al. Jun 2014 A1
20140221225 Danen et al. Aug 2014 A1
20140226004 Son et al. Aug 2014 A1
20140227784 Ejiri et al. Aug 2014 A1
20140315296 Wilson Oct 2014 A1
20140322806 Bennett et al. Oct 2014 A1
20150004686 Goral et al. Jan 2015 A1
20150064738 Tsukada et al. Mar 2015 A1
20150072405 Ito Mar 2015 A1
20150184119 Tsukada et al. Jul 2015 A1
20150247112 Orr et al. Sep 2015 A1
20160003796 Kranbuehl Jan 2016 A1
20160017267 Hansen et al. Jan 2016 A1
20160040120 Gottwald et al. Feb 2016 A1
20160137962 Ejiri et al. May 2016 A1
20160194588 Guenat et al. Jul 2016 A1
20160216250 Ritter et al. Jul 2016 A1
20170067019 Ho Mar 2017 A1
20170073625 Kasuto et al. Mar 2017 A1
20170226455 Fang et al. Aug 2017 A1
20170267959 Martin et al. Sep 2017 A1
20170283757 Carter et al. Oct 2017 A1
20170306281 Martin et al. Oct 2017 A1
20170342363 Fang et al. Nov 2017 A1
20180166743 Lee et al. Jun 2018 A1
20180201888 Miwa et al. Jul 2018 A1
20180301754 Badding et al. Oct 2018 A1
20190006707 Sakamoto et al. Jan 2019 A1
20200239854 Ayano et al. Jul 2020 A1
Foreign Referenced Citations (165)
Number Date Country
2004256209 Jan 2005 AU
2558946 Jan 2005 CA
2679011 Sep 2008 CA
2848875 Mar 2013 CA
2186755 Jan 1995 CN
1168921 Dec 1997 CN
1234112 Nov 1999 CN
1867663 Nov 2006 CN
1875093 Dec 2006 CN
201626959 Nov 2010 CN
101978041 Feb 2011 CN
102105578 Jun 2011 CN
102257123 Nov 2011 CN
102449135 May 2012 CN
102687023 Sep 2012 CN
202450098 Sep 2012 CN
202849407 Apr 2013 CN
103080294 May 2013 CN
103119151 May 2013 CN
203513696 Apr 2014 CN
103814125 May 2014 CN
204608026 Sep 2015 CN
204702760 Oct 2015 CN
204714819 Oct 2015 CN
204752742 Nov 2015 CN
204803327 Nov 2015 CN
205170866 Apr 2016 CN
205669029 Nov 2016 CN
205839030 Dec 2016 CN
205990396 Mar 2017 CN
107208025 Sep 2017 CN
107460125 Dec 2017 CN
8309876 Dec 1983 DE
10019862 Nov 2001 DE
202006017853 Jan 2007 DE
102009005526 Jul 2010 DE
102014214077 Jan 2016 DE
102014017728 Jun 2016 DE
0307048 Mar 1989 EP
0605527 Jul 1994 EP
0681846 Nov 1995 EP
0800571 Oct 1997 EP
0834552 Apr 1998 EP
0965633 Dec 1999 EP
1181349 Feb 2002 EP
1348533 Oct 2003 EP
1445022 Aug 2004 EP
1988152 Nov 2008 EP
2032262 Mar 2009 EP
2617807 Jul 2013 EP
2653531 Oct 2013 EP
2759592 Jul 2014 EP
2896684 Jul 2015 EP
3081627 Oct 2016 EP
3296018 Mar 2018 EP
3351615 Jul 2018 EP
3372666 Sep 2018 EP
2147100 May 1985 GB
03-139350 Jun 1991 JP
06-038734 Feb 1994 JP
06327462 Nov 1994 JP
09-173049 Jul 1997 JP
09-234811 Sep 1997 JP
10-210866 Aug 1998 JP
10-210966 Aug 1998 JP
2001-106749 Apr 2001 JP
2003-135056 May 2003 JP
2003-180335 Jul 2003 JP
2004-129558 Apr 2004 JP
2004-535829 Dec 2004 JP
2005-080660 Mar 2005 JP
2006-121991 May 2006 JP
2006-191809 Jul 2006 JP
2007-510429 Apr 2007 JP
3139350 Feb 2008 JP
2009-017810 Jan 2009 JP
2009-050194 Mar 2009 JP
2009-183288 Aug 2009 JP
2009-542230 Dec 2009 JP
2010-088347 Apr 2010 JP
2010-104327 May 2010 JP
2010-518879 Jun 2010 JP
2010-158214 Jul 2010 JP
2011-509686 Mar 2011 JP
2011-521642 Jul 2011 JP
2011-172533 Sep 2011 JP
2011-528226 Nov 2011 JP
2012-249547 Dec 2012 JP
2013-055911 Mar 2013 JP
2014-132869 Jul 2014 JP
2015-012827 Jan 2015 JP
2015-029431 Feb 2015 JP
2015-073520 Apr 2015 JP
2016-002023 Jan 2016 JP
5845185 Jan 2016 JP
2016-093149 May 2016 JP
2016-136920 Aug 2016 JP
2016-136921 Aug 2016 JP
2017-532970 Nov 2017 JP
2018-108032 Jul 2018 JP
10-2014-0113139 Sep 2014 KR
10-2014-0125662 Oct 2014 KR
10-2017-0008539 Jan 2017 KR
9207063 Apr 1992 WO
9307258 Apr 1993 WO
9621851 Jul 1996 WO
9815355 Apr 1998 WO
9831466 Jul 1998 WO
0180997 Nov 2001 WO
0192462 Dec 2001 WO
2004044120 May 2004 WO
2004094060 Nov 2004 WO
2005047464 May 2005 WO
2006043267 Apr 2006 WO
2007015770 Feb 2007 WO
2007097120 Aug 2007 WO
2008006104 Jan 2008 WO
2008008149 Jan 2008 WO
2008106771 Sep 2008 WO
2008118500 Oct 2008 WO
2008140295 Nov 2008 WO
2008149039 Dec 2008 WO
2008153783 Dec 2008 WO
2009094125 Jul 2009 WO
2009148509 Dec 2009 WO
2009148512 Dec 2009 WO
2010008566 Jan 2010 WO
2010042072 Apr 2010 WO
2010069589 Jun 2010 WO
2012036011 Mar 2012 WO
2012077683 Jun 2012 WO
2012170232 Dec 2012 WO
2013042360 Mar 2013 WO
2013108293 Jul 2013 WO
2013116449 Aug 2013 WO
2014042162 Mar 2014 WO
2014072432 May 2014 WO
2014140181 Sep 2014 WO
2014156455 Oct 2014 WO
2014165273 Oct 2014 WO
2014171782 Oct 2014 WO
2014179196 Nov 2014 WO
2014196204 Dec 2014 WO
2015033507 Mar 2015 WO
2015061907 May 2015 WO
2015087369 Jun 2015 WO
2016020992 Feb 2016 WO
2016064757 Apr 2016 WO
2016069885 May 2016 WO
2016069892 May 2016 WO
2016069895 May 2016 WO
2016069917 May 2016 WO
2016069930 May 2016 WO
2016157322 Oct 2016 WO
2017025584 Feb 2017 WO
2017047735 Mar 2017 WO
2017077163 May 2017 WO
2017142410 Aug 2017 WO
2018068034 Apr 2018 WO
2018200893 Nov 2018 WO
2019014621 Jan 2019 WO
2019014627 Jan 2019 WO
2019014635 Jan 2019 WO
2019014636 Jan 2019 WO
2019178039 Sep 2019 WO
Non-Patent Literature Citations (106)
Entry
Curcio et al. “Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system.” Biomaterials 28 (2007) 5487-5497. (Year: 2007).
Evenou et al. “Spontaneous Formation of Highly Functional Three-Dimensional Multilayer from Human Hepatoma Hep G2 Cells Cultured on an Oxygen-Permeable Polydimethylsiloxane Membrane.” Tissue Engineering: Part C vol. 16, No. 2, 2010, pp. 311-318. (Year: 2010).
Koike et al. “Characterization of Embryo id Bodies of Mouse Embryonic Stem Cells Formed under Various Culture Conditions and Estimation of Differentiation Status of Such Bodies.” Journal of Bioscience and Bioengineering vol. I 04, No. 4, 294-299. 2007. (Year: 2007).
Vinci et al. “Advances in establishment and analysis of threedimensional tumor spheroid-based functional assays for target validation and drug evaluation.” BMC Biology 2012, 10:29, 1-20. (Year: 2012).
Madoux et al; “Building Phenotypic 3D Spheroid HTS Assays To Identify Synthetic Lethal Small Molecule Inhibitors of KRAS”; the Scripps Research Institute Molecular Screening Center and Department of Cancer Biology, Scripps Florida, Jupiter, Florida, Department of Pathology, Jupiter Medical Center, Jupiter, Florida.
Markovitz-Bishitz, “A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids” Biomaterials and Biotechnology 31 (2010) pp. 8436-8444.
Messner et al, Multi-cell type human liver microtissues for hepatotoxicity testing. Archives of Toxicology, Nov. 11, 2012, 5 pages.
Mimetas the Organ-On-A-Chip Company; “Organ-On-A-Chip Models for Science and Pharma”; 4 Pages; (Downloaded Mar. 9, 2020); https://mimetas.com/.
Mironov et al; “Organ Printing: Tissue Spheroids as Buliding Blocks” Biomaterials, 2009; 30 (12) 2164-2174.
Moon et al; “Optimizing Human Embryonic Stem Cells Differentiation Efficiency By Screening Size-Tunable Homogenous Embryoid Bodies”; Biomaterials; 35 (2014) 5987-5997.
Murphy et al; “3D Bioprinting of Tissues and Organs”; Nature Biotechnology, vol. 32, No. 8. Aug. 2014, pp. 773-785.
Nortis; “Bridging the Gap Between in Vitro and in Vivo Research”; 16 Pages; (2015); https://www.nortisbio.com/.
Organovo, “Pioneering Bioprinted Tissues To Treat Disease”; 2 Pages; (Downloaded Mar. 9, 2020) http://organovo.com/.
Otsuka et al, “Two-dimensional multiarray formation of hepatocyte spheroids on a microfabricated PEG-brush surface.” ChemBioChem 2004; 5:850-855.
Peshwa et al. “Mechanistics of formation and ultrastructural evaluation of hepatocyte spheroids.” In Vitro Cell Dev Biol Anim 1996;32:197-203.
Rezende et al, “Scalable Biofabrication of Tissue Spheroids for Organ Printing”; Sciverse Science Direct, Procedia CIRP 5, (2013) 276-281.
Sa et al. “Round-bottomed Honeycomb Microwells: Embryoid body shape correlates with stem cell fate” Journal of Developmental Biology and Tissue Engineering vol. 4(2), pp. 12-22, May 2012.
Sakai et al, “Detachably Assembled Microfluidic Device for Perfusion Culture and Post-Culture Analysis of Spheroid Array”; Biotechnol. J. 2014, 9, 971-979.
Sakai et al, “Large-scale preparation and function of porcine hepatocyte spheroids.” Int J Artif Organs 1996; vol. 19, No. 5, pp. 294-301.
Sakai et al, “Technique for the Control of Spheroid Diameter Using Microfabricated Chips”; Sciencedirect, Acta Biomaterialia 3 (2007) 1033-1040.
Sart et al, “Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties and applications” Tissue engineering, 2013, Part B, vol. 00, No. 00, 1-16.
Satoh et al, “A Pneumatic Pressure-Driven Multi-Throughput Microfluidic Circulation Culture System” Lab Chip, 2016, 16, 2339-2348.
Seldon et al; “Evaluation of Encapsulated Liver Cell Spheroids in a Fluidised-Bed Bioartificial Liver for Treatment of Ischaemic Acute Liver Failure in Pigs in the Translational Setting”: PLOS One; Dec. 2013, vol. 8, Issue 12, 12 Pages.
Stemcell Technologies, Reproducible and Uniform Embryoid Bodies Using AggreWell Plates, StemCell Technologies, Version 3.0.0, Mar. 2011, Catalog #29146, pp. 1-28.
Takezawa et al. “Morphological and immunocytochemical characterization of a heterospheroid composed of fibroblasts and hepatocytes.” J Cell Sci 1992;101:495-501.
Tara; “Innovating Predictive Cardiac Physiology”; 4 Pages; (2019) http://tarabiosystems.com/.
The Lab Depot(Registered) Products for Discovery Lab Supplies; Shake Flasks, 3 and 4 Baffles Product Information; 5 Pages (2019).
Tissue Dynamics, “Disruptive Drug Development”; 3 Pages; (Downloaded Mar. 9, 2020); https://www.tissuedynamics.com/.
Tissuse, “Emulating Human Biology, Pioneering Human-On-A-Chip Developments”; 1 Page; (Downloaded Mar. 9, 2020) https://www.tissuse.com/en/.
Tobe et al., “Receptor-mediated formation of multilayer aggregates of primary cultured adult rat hepatocytes on tactose-subsliluled polystyrene” Biochem Biophys Res Commun 1992; 184(1):225-230.
Tong et al, “Long-term culture of adult rat hepatocyte spheroids.” Exp Cell Res 1992; 200:326-332.
Truckemuller, et al., Thermoforming of Film-Based Biomedical Microdevices, Adv. Mater. 2011, 23, pp. 1311-1329.
Tung et al, “High-throughput 3D spheroid culture and drug testing using 384 hanging drop array” Analyst, 2011, 136 (3), 473-478.
Uchida et al; “An Injectable Spheroid System With Genetic Modification for Cell Transplantation Therapy”; Biomaterials, 35 (2014) 2499-2506.
Urich et al; “Multicellular Self-Assembled Spheroidal Model of the Blood Brain Barrier”; Scientific Reports; 3, 1500, 8 Pages.
Vinci et al. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation, BMC Biology 2012, 10:29.
Weegman et al, “Nutrient Regulation By Continuous Feeding Removes Limitations On Cell Yield in the Large-Scale Expansion of Mammalian Cell Spheroids”; PLOS ONE, 2013, vol. 8, Issue 10, e76611, 10 Pages.
Wikipedia; “Antiroll Tanks”; 3 Pages; Page Last Edited May 23, 2019.
Wrighton et al, “Forces of Change: Mechanics Underlying Formation of Functional 3D Organ Buds” Cell Stem Cell, May 7, 2015; 16(5): 453-454.
Xu et al, “Characterisation of some cytotoxic endpoints using rat liver and HepG2 spheroids as in vitro models and their application in hepatotoxicity studies. I. Glucose metabolism and enzyme release as cytotoxic markers.” Toxicol Appl Pharmacol 2003; 189:100-111.
Yamada et al, “Efficient induction of hepatocyte spheroids in a suspension culture using a water-soluble synthetic polymer as an artificial matrix.” J Biochem 1998; 123:1017-1023.
Achilli et al, “Advances in the Formation, Use and Understanding of Multi-Cellular Spheroids”, Expert Opin. Biol. Ther. (2012) 12(10):1347-1360.
Alepee et al. “State of the art 3D cultures (organs-on-a-chip) in safety testing and pathophysiology” Trnasatlantic Think Tank for Toxicology, t4 Workshop Report, Altex 31 4/14, pp. 441-477, retrieved from: http://dx.doi.org/10.14573/altex1406111 (Jul. 14, 2014).
Aline; “We Engineer Microfluidic Products” ; 7 Pages; (2020) https:/alineinc.com/.
Anada et al; “An Oxygen-Permeable Spheroid Culture System for the Prevention of Central Hypoxia and Necrosis of Spheroids”; Biomaterials, 33, (2012) 8430-8441.
AxoSIM, Nerve-On-A-Chip Mini-Brain About Team; 6 Pages; (Downloaded Mar. 9, 2020); http://axosim.com/.
Bartosh et al; “Aggregation of Human Mesenchymal Stromal Cells (MSCS) Into 3D Spheroid Enhances Their AntiInflammatory Properties”; PNAS, Aug. 3, 2010, vol. 107, No. 31 pp. 13724-13729.
Bioivt Elevating Science(Registered); 6 Pages; (2020); http://www.hepregen.com/.
Carver et al; Multicellular Tumor Spheroids as a Model for Assessing Delivery of Oligonucleotides in Three Dimensions; Molecular Therapy-Nucleic Acids (2014) 3, E153; 8 Pages.
Chen et al., “Microfluidic array for three-dimensional perfusion culture of human mammary epithelial cells.” Biomed Microdevices, vol. 13 (2011), pp. 753-758.
Cheng et al, “MICRORNA-34a Targets Forkhead Box J2 To Modulate Differentiation of Endothelial Progenitor Cells in Response To Shear Stress”, J Mol Cell Cardiol. 74 (2014) 4-12.
Choi et al., “Feasibility of a simple double-layered coculture system incorporating metabolic processes of the intestine and liver tissue: application to the analysis of benzo[a]pyrene toxicity” Toxicology in Vitro, vol. 18, pp. 393-402, 2004.
CN-BIO, “Transforming Drug Discovery and the Lives of Patients”; 5 Pages; (2020) http://cn-bio.com/.
Colazzo et al., “Shear Stress and VEGF Enhance Endothelial Differentiation of Human Adipose-Derived Stem Cells”, Growth Factors, 2014, 32(5):139-149.
Corning Life Sciences Product Portfolio; 5 Pages Saved Mar. 6, 2020.
Corning(Registered) HTS Transwell(Registered)-96 Tissue Culture Systems, Permeable Supports for High Throughput Screening Applications; 2 Pages (2004).
Dolznig and Walzl, “Organotypic spheroid cultures to study tumor- stroma interactions during cancer development.” Drug discovery today, V 8., No. 2-3, 2011, 113-118.
Domansky et al, “Perfused Multiwell Plate For 30 Liver Tissue Engineering”, Lab Chip, 2010, 10:51-58.
Elveflow; “Microfluidics Innovation Center”; 6 Pages; (Downloaded Mar. 9, 2020); https://www.elveflow.com.
Emulate; 6 Pages; (2019) https://emulatebio.com/.
Endo et al., “Gene transfection to spheroid culture system on micropatterned culture plate by polyplex nanomicelle: a novel platform of genetically-modified cell transplantation”, Drug Deliv. and Transl. Res., 2012, vol. 2, p. 398-405.
Engelberg et al, “Essential operating principles for tumor spheroid growth”, BMC Systems Biology 2008, 2:110, 19 pages.
European Patent Application No. 14727673.7; Communication pursuant to Article 94(3) EPC dated Aug. 6, 2018; 5 pages; European Patent Office.
Friedrich et al. “Spheroid-based drug screen: considerations and practical approach.” Nature protocols, 2009, vol. 4 No. 3, 309-323.
Friedrich et al: “Experimental anti-tumor therapy in 3-D: spheroids-old hat or new challenge?” Int J Radiat Biol 2007, 83:849-871.
Frith et al. “Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential.” Tissue engineering, 2010, 16, No. 4, 735-749.
Fukuda et al, “Efficacy of a polyurethane foam/spheroid artificial liver by using human hepaloblastoma cell line (Hep G2)”, Cell Transplantation, 2003, 12:51-58.
G-Plate: Accelerate your cell cultures to the next dimension, “An original cell culture model allowing for island-shaped 3D cell aggregates”, 1 page, retrieved Sep. 8, 2015.
GeoCHEM Incorporated, Product Line; hllps://www.geocheminc.com, 4 Pages; (2020).
HμREL (Registered) Corporation, Bioanalytic Tools Company; 2 Pages; (2013); http://hurelcorp.com/.
Haycock, “3D cell culture: a review of current approaches and techniques”, Methods Mol Biol, 2011; 695:1-15.
Hirschhaeuser et al., “Mulicellular tumor spheroids: An underestimated tool is catching up again.” Journal of Biotechnology, 2010, 148, 3-15.
Howes et al; “3-Dimensional Culture Systems for Anit-Cancer Compound Profiling and High-Throughput Screening Reveal Increases in EGFR Inhibitor-Mediated Cytotoxicity Compared To Monolayer Culture Systems”; PLOS One; Sep. 2004, vol. 9, Issue 9, 11 Pages.
Hribar et al; “Nonlinear 3D Projection Printing of Concave Hydrogel Microstructures for Long-Term Multicellular Spheroid and Embryoid Body Culture”; Lab Chip, 2015, 15, 2412-2418.
Hwang et al.; “Microwell-Mediated Control of Embryoid Body Size Regulates Embryonic Stem Cell Fate Via Differential Expression of WNT5A and WNT11”; PNAS; Oct. 6, 2009; vol. 106, No. 40. pp. 16978-16983.
International Search Report and Written Opinion of the International Searching Authority; PCT/US14/35635; Mailed Aug. 22, 2014; 9 Pages; European Patent Office.
Jeon et al, “Combined Effects of Flow-Induced Shear Stress and Micropatterned Surface Morphology On Neuronal Differentiation of Human Mesenchymal Stem Cells” J Biosci Bioeng, 2014, 117(2):242-247.
Jiang et al, “Shear Enhances Thrombopoiesis and Formation of Microparticles That Induce Megakaryocytic Differentiation of Stem Cells”, Blood, Sep. 25, 2014; 124(13):2094-2103.
Kelm et al, “Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types”, Biotechnology and Bioengineering 2003; 83(2):173-180.
Kim et al, “Shear Stress Induced By an Interstitial Level of Slow Flow Increases the Osteogenic Differentiation of Mesenchymal Stem Cells Through Taz Activation” PLoS ONE, Mar. 21, 2014; 9(3), e92427, 9 pages.
Koide et al, “Formation of multicellular spheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherent environments”, Exp Cell Res 1990; 186:227-235.
Kunz-Schughart et al: “The use of 3-D cultures for high-throughput screening: the multicellular spheroid model.” J Biomol Screen 2004, 9:273-285.
Kutsuzawa et al, “Highly Robust Protein Production By Co-Culture of Cho Spheroids Layered On Feeder Cells in Serum-Free Medium”; Colloid Polym Sci (2014) 292; 839-848.
Labusca et al. “Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential”, Cell Tissue Res. Mar. 2012 ; 347(3): 701-711.
Labusca, “Scaffold free 3D culture of mesenchymal stem cells; implications for regenerative medicine”, J Transplant Stem Cel Biol 2015 2(1): 8.
Landry et al, “Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities” J Cell Biol 1985; 101:914-923.
Lau et al., “Evaluation of a Novel in Vitro CACO-2 Hepatocyte Hybrid System for Predicting in Vivo Oral Bioavailability” Drug Metabolism and Disposition, vol. 32, No. 9, pp. 937-942, 2004.
Liquid Surge Control, LLC; “The Latest in Drop-In Baffle Technology”; 2 Pages; (2019).
Liu et al. “Quasi-spherical microwells on superhydrophobic substrates for long term culture of multicellular spheroids and high throughput assays” Biomaterials and Cancer 35 (2014) pp. 6060-6068.
Liu et al; “Advanced Micromachining of Concave Microwells for Long Term On-Chip Culture of Multicellular Tumour Spheroids”, ACS Appl. Mater. Interfaces, 2014, 35 Pages.
Lu et al. “Galactosylated PVDF membrane promotes hepatocyte attachment and functional maintenance.” Biomaterials 2003;24:4893-903.
“Laboratory Flasks Selection Guide: Types, Features, Applications”, Engineering360, <https://www.globalspec.com/learnmore/labware_scientific_instruments/labware_consumables/laboratory_flasks#:˜:text=Laboratory%20flasks%20are%20lab%20vessels, the%20opening%20at%20the%20neck.> accessed Apr. 8, 2022 (Year: 2022).
Brandrup et al., “Polymer Handbook”, Fourth Edition, Wiley-Interscience Publication, , Permeability and diffusion data, 1999, 9 pages (Contributors; Preface).
Hsiao et al., “Effects of 3D Microwell Culture on Initial Fate Specification in Human Embryonic Stem Cells”, Published in final edited form as AIChE J. vol. 60 No. 4, Apr. 2014, pp. 1225-1235.
Huang et al., “Preparation of dense Ta-LLZO/MgO composite Li-ion solid electrolyte: Sintering, microstructure, performance and the role of MgO”, Journal of Energy Chemistry, vol. 39, 2019, pp. 8-16.
International Search Report and Written Opinion of the International Searching Authority; PCT/US2021/059622; mailed on May 23, 2022, 11 pages; European Patent Office.
Junji Fukuda et al., “Hepatocyte Spheroid Arrays Inside Microwells Connected With Microchannels”, Biomicrofluidics 5, 2011, pp. 10.
Lin et al., “La2Zr2O7 and MgO co-doped composite Li-Garnet solid electrolyte”, Journal of Energy Chemistry, vol. 40, 2020, pp. 132-136.
Lonza Inc., “SeaPrep Agarose: An Ultralow Gelling, Soft Agarose”, Available Online at <http://www.lonzabio.jp/catalog/pdf/pd/PD031.pdf>, 2007, pp. 1-4.
Martin et al., “Agarose And Methylcellulose Hydrogel Blends For Nerve Regeneration Applications”, J. Neural Eng., vol. 5, 2008, pp. 221-231.
McMillan, “Shear stress in microfluidic devices” Darwin Microfludics interner article (Year: 2017).
Polyimide: Japan Polyimide and Aromatic Polymers Study Group, 2010, pp. 364-371 Table 2.
WO 2017/077163 (Year: 2017).
WO-2008149039 translation (Year: 2008).
Yang et al.,“An Agarose-Gel Based Method for Transporting Cell Lines”, Current Chemical Genomics, vol. 3, Jan. 2009, pp. 50-53.
Zuidema et al., “Fabrication And Characterization Of Tunable Polysaccharide Hydrogel Blends For Neural Repair”, Acta Biomaterialia, vol. 7, No. 4, Apr. 2011, pp. 1634-1643.
Related Publications (1)
Number Date Country
20200392453 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
61817539 Apr 2013 US
Continuations (2)
Number Date Country
Parent 15708473 Sep 2017 US
Child 17005801 US
Parent 14087906 Nov 2013 US
Child 15708473 US