Embodiments of the present invention refer to a sphygmomanometer.
Blood pressure is a very important physiological parameter of human body. Regular measure of blood pressure is advantageous for earlier detection and diagnosis of the variety of hypertension disease so as to propose appropriate therapeutic recommendation thereto.
At present, existing devices for measuring blood pressure usually comprise standard mercury sphygmomanometer and electronic sphygmomanometer. Practical operation of the standard mercury sphygmomanometer requires a user to possess certain specialized knowledge, which results in relatively narrower application range. The electronic sphygmomanometer doesn't require the user to possess much specialized knowledge for practical operation, and hence is relatively broader in application range. However, both of the standard mercury sphygmomanometer and the electronic sphygmomanometer require the user to wear a wrist strap belt, with relatively complicated operation process; moreover, the standard mercury sphygmomanometer and the electronic sphygmomanometer both have relatively larger size, which makes the miniaturization and portability of the sphygmomanometer unachievable and cannot satisfy demand of user who requires for measurement of blood pressure whenever and wherever possible.
Therefore, the present filed always has a demand for sphygmomanometers with simple operation and small size for portability.
To this end, embodiments of the present invention provide a sphygmomanometer with advantageous such as simple operation and small size for portability.
Embodiments of the present invention provide a sphygmomanometer, comprising a housing; a circuit board and a power supply that are disposed within the housing; and a first electrode, a second electrode and a photoelectric sensor that are electrically connected to the circuit board, respectively; wherein the first electrode, the second electrode and the photoelectric sensor are embedded at a surface of the housing.
In some embodiments, the second electrode and the photoelectric sensor are embedded at the same side of the housing.
In some embodiments, the first electrode and the second electrode are embedded at two opposite sides of the housing, respectively.
In some embodiments, a surface of the first electrode exposed from the housing has a length of 15 mm to 25 mm, the surface of the first electrode exposed from the housing has a width of 8 mm to 12 mm, and the first electrode has a thickness of 1 mm to 1.5 mm.
In some embodiments, a surface of the second electrode exposed from the housing has a length of 15 mm to 25 mm; the surface of the second electrode exposed from the housing has a width of 8 mm to 12 mm; and the second electrode has a thickness of 1 mm to 1.5 mm.
In some embodiments, a surface of the photoelectric sensor exposed from the housing has a length of 5 mm to 6 mm; the surface of the photoelectric sensor exposed from the housing has a width of 2 mm to 2.5 mm; and the photoelectric sensor has a thickness of 1 mm to 1.5 mm.
In some embodiments, the sphygmomanometer further comprises a third electrode electrically connected to the circuit board; wherein the third electrode and the second electrode are embedded at the same side of the housing.
In some embodiments, a surface of the third electrode exposed from the housing has a length of 15 mm to 25 mm; the surface of the third electrode exposed from the housing has a width of 8 mm to 12 mm; and the third electrode has a thickness of 1 mm to 1.5 mm.
In some embodiments, the sphygmomanometer further comprises a wrist strap belt connected to the housing.
In some embodiments, the sphygmomanometer further comprises at least one selected from the group consisting of a Bluetooth device, and a display embedded at a surface of the housing.
During practical operation of the sphygmomanometer as provided by embodiments of the present invention, for measuring the blood pressure, it only requires a user to contact the first electrode and the second electrode with his/her two hands respectively while contacting the photoelectric sensor with his/her one hand; as compared with the existing sphygmomanometer, it's simpler in operation without the need of wearing a wrist strap belt; moreover, the first electrode, the second electrode and the photoelectric sensor are all embedded at the surface of the housing so that it not only doesn't affect the acquisition of electrocardiosignal of the first electrode and the second electrode and the acquisition of pulse wave signal of the photoelectric sensor, but also achieves miniaturization and portability of the sphygmomanometer by integrating the first electrode, the second electrode and the photoelectric sensor within the housing, thereby satisfying the demand of user who requires for measurement of blood pressure whenever and wherever possible.
In order to clearly illustrate the technical solution of the embodiments of the present invention, the drawings of the embodiments will be briefly described in the following. Obviously, the drawings described as below merely refer to some embodiments of the present invention without limiting the present invention thereto.
In order to make objects, technical solutions and advantages of the embodiments of the present invention apparent, the technical solutions of the embodiment will be described in a clearly and fully understandable way in connection with the drawings related to the embodiments of the present invention. It is obvious that the described embodiments are just a part but not all of the embodiments of the present invention. Based on the described embodiments herein, those skilled in the art can obtain other embodiment(s), without any inventive work, which should be within the scope of the present invention.
Hereafter, particular implementations of the sphygmomanometer as provided by embodiments of the present invention are further described in more details with reference to the appending drawings.
A shape or a dimension of respective components in the drawings is not intended to reflect an actual scale thereof but only to illustratively explain contents of the present invention.
As illustrated in
During practical operation of the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, for measuring the blood pressure, it only requires a user to contact the first electrode and the second electrode with his/her two hands respectively while contacting the photoelectric sensor with his/her one hand; as compared with the existing sphygmomanometer, it's simpler in operation without the need of wearing a wrist strap belt; moreover, the first electrode, the second electrode and the photoelectric sensor are all embedded at the surface of the housing so that it not only doesn't affect the acquisition of electrocardiosignal of the first electrode and the second electrode and the acquisition of pulse wave signal of the photoelectric sensor but also achieves miniaturization and portability of the sphygmomanometer by integrating the first electrode, the second electrode and the photoelectric sensor within the housing, thereby satisfying the demand of user who requires for measurement of blood pressure whenever and wherever possible.
In particular implementation, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, a processer and an amplifier that are electrically connected can be integrated on the circuit board. Particularly, the first electrode and the second electrode are electrically connected to two ends (a positive end and a negative end) of the amplifier respectively; the photoelectric sensor is electrically connected to the processer; the power supply is electrically connected to the processer, the amplifier, the photoelectric sensor and the display for supplying electrical power to the processer, the amplifier, the photoelectric sensor and the display (and/or Bluetooth).
Hereinafter, particular working principle of the above-mentioned sphygmomanometer as provided by the embodiment of the present invention will be described in more details. The user contact the first electrode and the second electrode respectively with his/her two hands while contacting the photoelectric sensor with his/her one hand for a certain period of time (usually 10 seconds), so as to measure the blood pressure. During such operation, the amplifier is configured to acquire electrocardiosignal through the first electrode and the second electrode under a control of the processer and send the electrocardiosignal as acquired to the processer; the photoelectric sensor is configured to acquire pulse wave signal under a control of the processer and sends the pulse wave signal as acquired to the processer; the processer is configured to receive the electrocardiosignal sent by the amplifier and the pulse wave signal sent by the photoelectric sensor, recognize a peak point of the electrocardiosignal and a peak point of the pulse wave signal, determine a time difference between the peak point of the electrocardiosignal (as indicated by a curve a illustrated in
It should be explained that, in the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, the equation of blood pressure versus pulse transmission time pre-stored in the processor can be obtained by way of calibration. In particular, measuring a standard blood pressure of a human body by using a standard mercury sphygmomanometer and measuring a current pulse transmission time of the human body by using the sphygmomanometer to be calibrated at the same time, so as to obtain a group of data of blood pressure versus pulse transmission time; measuring a plurality of groups of data of blood pressure versus pulse transmission time and linearly fitting the plurality of groups of data, so as to obtain the equation of blood pressure versus pulse transmission time for the sphygmomanometer to be calibrated; then inputting the equation into the processer.
During particular implementation, when a user measures blood pressure by using the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, he/she contacts both the first electrode and the second electrode with his/her two hands respectively while contacting the photoelectric sensor with his/her one hand. Particularly, the user can choose to contact the first electrode and the photoelectric sensor with the same hand, and to contact the second electrode with the other hand; or, the user can choose to contact the second electrode and the photoelectric sensor with the same hand, and to contact the first electrode with the other hand; however, embodiments of the present invention are not limited thereto. Hereinafter the case where the user contacts the second electrode and the photoelectric sensor with the same hand and contacts the first electrode with the other hand will be described by way of example.
In some embodiments, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, in order for the convenience of the user to contact both the second electrode and the photoelectric sensor at the same time with the same hand, as illustrated in
In some embodiments, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, when the second electrode and the photoelectric sensor are embedded at the same side of the housing, as illustrated in
Of course, the surface of the display can be exposed from any side of the housing; in particular, it can be adapted appropriately according to actual conditions by comprehensively considering several factors such as the convenience for the user to view the blood pressure value and the reduction of the size of the sphygmomanometer as far as possible; however, embodiments of the present invention are not limited thereto.
In some embodiments, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, when the second electrode and the photoelectric sensor are embedded at the same side of the housing, as illustrated in
Of course, in case where the second electrode and the photoelectric sensor are embedded at the same side of the housing, the first electrode and the second electrode can also be embedded at two adjacent sides of the housing 1 respectively, that is, a surface of the first electrode and a surface of the second electrode are exposed from two adjacent sides of the housing respectively; however, embodiments of the present invention are not limited thereto.
In some embodiments, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, in order to ensure that the user can fully contact the first electrode with his/her hand so as to guarantee an accuracy of the electrocardiosignal as acquired by the amplifier and also reduce the size of the sphygmomanometer as far as possible for achieving miniaturization and portability thereof, a length of the surface of the first electrode exposed from the housing can be controlled to be within a range from 15 mm to 25 mm, a width of the surface of the first electrode exposed from the housing can be controlled to be within a range from 8 mm to 12 mm, and a thickness of the first electrode can be controlled to be within a range from 1 mm to 1.5 mm.
In some embodiments, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, in order to ensure that the user can fully contact the second electrode with his/her hand so as to guarantee an accuracy of the electrocardiosignal as acquired by the amplifier and also reduce the size of the sphygmomanometer as far as possible for achieving miniaturization and portability thereof, a length of the surface of the second electrode exposed from the housing can be controlled to be within a range from 15 mm to 25 mm, a width of the surface of the second electrode exposed from the housing can be controlled to be within a range from 8 mm to 12 mm, and a thickness of the second electrode can be controlled to be within a range from 1 mm to 1.5 mm.
In some embodiments, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, in order to ensure that the user can fully contact the photoelectric sensor with his/her hand so as to guarantee an accuracy of the pulse wave signal as acquired by the photoelectric sensor and also reduce the size of the sphygmomanometer as far as possible for achieving miniaturization and portability thereof, a length of the surface of the photoelectric sensor exposed from the housing can be controlled to be within a range from 5 mm to 6 mm, a width of the surface of the photoelectric sensor exposed from the housing can be controlled to be within a range from 2 mm to 2.5 mm, and a thickness of the photoelectric sensor can be controlled to be within a range from 1 mm to 1.5 mm.
In some embodiments, as illustrated in
In some embodiments, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, in order to ensure that the user can fully contact the third electrode with his/her hand so as to guarantee an accuracy of electrocardiosignal as acquired by the amplifier and also reduce the size of the sphygmomanometer as far as possible for achieving miniaturization and portability thereof, a length of the surface of the third electrode exposed from the housing can be controlled to be within a range from 15 mm to 25 mm, a width of the surface of the third electrode exposed from the housing can be controlled to be within a range from 8 mm to 12 mm, and a thickness of the third electrode can be controlled to be within a range from 1 mm to 1.5 mm.
In some embodiments, as illustrated in
During particular implementation, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, the processer can be an ARM processer capable of controlling an acquisition of signal (e.g., controlling a sampling rate and a signal magnification of the amplifier; controlling a sampling rate and an illumination intensity of the photoelectric sensor, etc.) and reading and processing data in real time.
During particular implementation, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, the power supply can be a rechargeable battery, such as, a lithium battery.
It should be explained that, for the above-mentioned sphygmomanometer as provided by the embodiment of the present invention, the photoelectric sensor can preferably be a reflective photoelectric sensor. Because both of a luminotron and a photoreceiver of the reflective photoelectric are located at the same side of the user's hand, the reflective photoelectric sensor can be integrated within the housing with only the surface of the reflective photoelectric sensor being exposed, so as to ensure achieving miniaturization and portability of the sphygmomanometer.
It should be explained that the above-mentioned sphygmomanometer as provided by the embodiment of the present invention is not limited to a structure which displays the blood pressure value through a display, but also can utilize a Bluetooth in place of the display. In particular, the Bluetooth can send the blood pressure value calculated by the processer to a mobile phone or a computer of the user through which the blood pressure value can be read; in this way, the size of the sphygmomanometer can be further reduced so that the sphygmomanometer as provided by embodiments of the present invention is smaller and more portable.
Hereinafter particular dimensions of the above-mentioned sphygmomanometer as provided by embodiments of the present invention will be described in more details with reference to the sphygmomanometer as illustrated in
Embodiments of the present invention provide a sphygmomanometer, during practical operation, in order to measure the blood pressure, it only requires a user to contact the first electrode and the second electrode with his/her two hands respectively while contacting the photoelectric sensor with his/her one hand; as compared with the existing sphygmomanometer, it's simpler in operation without the need of wearing a wrist strap belt; moreover, the first electrode, the second electrode and the photoelectric sensor are all embedded at the surface of the housing so that it not only doesn't affect the acquisition of electrocardiosignal of the first electrode and the second electrode and the acquisition of pulse wave signal of the photoelectric sensor but also achieves miniaturization and portability of the sphygmomanometer by integrating the first electrode, the second electrode and the photoelectric sensor within the housing, thereby satisfying the demand of user who requires for measurement of blood pressure whenever and wherever possible.
The foregoing are merely exemplary embodiments of the present invention but not to limit the present invention thereto. The scope of protection of the present invention shall be defined by the appended claims.
The present application claims priority of Chinese Patent Application No. 201510275205.5 filed on May 26, 2015, the disclosure of which is incorporated herein by reference in its entirety as part of the present application.
Number | Date | Country | Kind |
---|---|---|---|
201510275205.5 | May 2015 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2015/094323 | 11/11/2015 | WO | 00 |