The present invention relates generally to spinal implants and prostheses, and particularly to a rotatable spinal cage.
Scoliosis is a spinal deformity affecting many people. Current surgical treatment involves affixing long fusion rods to the spine by pedicle screws. The rod system is intended to force the deformed spine into a more healthy position. Other spinal disorders which are often treated by fusion include hyperkyphosis and hyperlordosis.
The present invention also seeks to provide an improved way to correct spinal deformity by using a spinal cage inserted between adjacent vertebral bodies. The spinal cage is built in a way that it has a rotational pivot and a mechanism to allow rotation in one direction while preventing rotation in the opposite direction.
In one embodiment of the present invention, the spinal cage is rotated (pivoted) by a wedge that can slide or move towards the cage's center of rotation along an inclined surface. The wedge can move by being pulled or pushed by an actuator (e.g., spring or others). The wedge can also be activated, pushed or pulled, by a shaft, through a percutaneous procedure or by an implantable mechanism such as an electric motor, magnet arrangement or other means known to those skilled in the art.
In one embodiment of the present invention, the spinal cage may include a ratchet mechanism. After implanting the spinal cage, and after the patient has recovered from the operation, the patient is encouraged to bend to the corrective direction. The rotatable mechanism captures any minor incremental angular correction and then allows the patient's body to get used to the new position. This way, step by step in small increments, the deformity can be corrected.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Reference is now made to
Spinal cage 80 includes first and second spinal attachment members 82 and 84, which may be, without limitation, flat plates. First and second spinal attachment members 82 and 84 are attached to two adjacent vertebrae 83 and 85, respectively. The plates may have coarse or roughened surfaces that interface with the vertebrae for enhanced binding to the vertebra bone or tissue (other adhesion enhancers may be used as well, such as coatings for binding with tissue and the like). For example, fixation of spinal cage 80 can be enhanced by means of spikes, screws or other means known to those skilled in the art.
First and second spinal attachment members 82 and 84 articulate with one another by means of an articulation joint. Accordingly, spinal cage 80 can pivot about the articulation joint in one rotational degree of freedom. In the illustrated embodiment, the articulation joint includes a male member 86 which is pivotally received in a female member 88. In the illustrated embodiment, the male member 86 extends from first spinal attachment member 82 and the female member 88 is formed in second spinal attachment member 84. Of course, the reverse can also be made.
A wedge element 90 is arranged for wedging between first and second spinal attachment members 82 and 84. Wedge element 90 may have a generally conical or trapezoidal shape or any other shape that can be accommodated by first and second spinal attachment members 82 and 84. An actuator 92 is linked to wedge element 90 for moving wedge element 90 in a direction that wedges wedge element 90 further in between members 82 and 84 (i.e., increases the wedging effect) or further away from members 82 and 84 (i.e., decreases the wedging effect). Actuator 92 can be, without limitation, a spring, motor, linear actuator, solenoid and the like. Actuator 92 can pull or push wedge element 90 directly or through a string, rod or any other connecting element.
The surfaces of first and second spinal attachment members 82 and 84 that contact wedge element 90 can be polished, roughened, grooved, etc., to increase the friction between the wedge and the members. In one embodiment, wedge element 90 can have a threaded hole, pin, groove and the like, for grasping with a tool to enable pulling the wedge and to release the uni-directional mechanism and allow some rotation of the attachment members 82 and 84 to another direction.
Referring now to
Reference is now made to
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/020454 | 1/7/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/106263 | 7/18/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5609635 | Michelson | Mar 1997 | A |
6685742 | Jackson | Feb 2004 | B1 |
20050234555 | Sutton | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
2006065419 | Jun 2006 | WO |
Entry |
---|
PCT Written Opinion and Search PCT/US2013/020454, Aug. 16, 2013. |
Number | Date | Country | |
---|---|---|---|
20140330387 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
61631667 | Jan 2012 | US | |
61690835 | Jul 2012 | US | |
61743418 | Sep 2012 | US |