Additional examples of system components and corrective methodology in accordance with various embodiments of the present invention are set forth in U.S. Patent Publication No. 2010/0318129, filed Jun. 16, 2009; U.S. Patent Publication No. 2010/0249837, filed Mar. 26, 2009; U.S. Patent Publication No. 2011/0054536, filed Sep. 1, 2010; U.S. Pat. No. 7,658,753; and U.S. Patent Publication No. 2009/0012565, filed on Jun. 5, 2008. The entire contents of each of the above disclosures are hereby incorporated by reference.
Many systems have been utilized to treat spinal deformities such as scoliosis, spondylolisthesis, and a variety of others. Primary surgical methods for correcting a spinal deformity utilize instrumentation to correct the deformity as much as possible and separate implantable hardware systems to rigidly stabilize and maintain the correction.
Some aspects relate to a method of correcting a spinal deformity, the method comprising: extending a first rod along a first side of a spine of a patient; securing a first anchor to a vertebra of the spine; receiving the first rod with the first anchor such that the first rod is secured against substantial lateral translation relative to the first anchor and the first rod is allowed to slide axially relative to the first anchor through a first pivot point and to change in at least two of pitch, yaw, and roll about the first pivot point during correction; securing a second anchor to a vertebra of the spine; receiving the first rod with the second anchor such that the first rod is secured against substantial lateral translation relative to the second anchor and is allowed to change in at least pitch and yaw about a second pivot point during correction; extending a second rod along a second side of the spine of the patient; securing a third anchor to a vertebra of the spine; receiving the second rod with the third anchor such that the second rod is secured against substantial lateral translation relative to the third anchor during correction and such that the second rod is secured against changes in pitch, yaw, roll, and axial sliding; securing a fourth anchor to a vertebra of the spine; receiving the second rod with the fourth anchor such that the second rod is secured against substantial lateral translation relative to the fourth anchor; and laterally coupling the first rod and the second rod such that the lateral coupling facilitates derotation and translation of the spine.
Some aspects relate to a method of correcting a spinal deformity including securing a first rod on a first side of a spine, securing an anchor on a second side of a spine, securing a lateral coupling between the rod and the anchor, translating and derotating the spine to correct the spinal deformity by adjusting an effective length of the lateral coupling, and securing a second rod on a second side of the spine to provide secondary stabilization to the spine.
Some aspects relate to a method of correcting a spinal deformity of a patient's spinal column, the method comprising: securing a first rod anchor to a first vertebra of the patient's spine; securing a second rod anchor to a second vertebra of the patient's spine; coupling a first rod to the first rod anchor and the second rod anchor such that: the first rod is laterally constrained relative to the first rod anchor while being free to slide axially and to change in alignment relative to the first rod anchor; and the first rod is laterally constrained relative to the second rod anchor while being free to slide axially and to change in alignment relative to the second rod anchor; securing a third rod anchor to a third vertebra of the patient's spine; securing a fourth rod anchor to a fourth vertebra of the patient's spine; coupling a second rod to the third rod anchor and the fourth rod anchor such that: the second rod is laterally constrained relative to the third rod anchor while being free to slide axially and to change in alignment relative to the third rod anchor; and the second rod is laterally constrained relative to the fourth rod anchor while being free to slide axially and to change in alignment relative to the fourth rod anchor; and coupling the first rod with the second rod such that the coupling facilitates derotation and translation of the spinal deformity.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
Some embodiments relate to a spinal correction and fusion system for implantation into a patient, as well as associated methods and devices. In general terms, the system provides for lateral translational corrective force(s) and/or derotational corrective force(s) on a spinal column with associated instrumentation for facilitating vertebral fusion at a selected region of the spine. Some features of the system include implementation of a first, relatively longer rod for initial correction, a second, shorter rod for secondary spinal stabilization. If desired, the secondary stabilization helps promote a fusion process. In some embodiments, the spine retains freedom of motion above and below the spinal segment corresponding to the shorter rod, with the first, relatively longer rod remaining implanted. In other embodiments, the first, relatively longer rod is trimmed and removed following correction of the spinal column and implementation of the second, shorter rod. A variety of additional features and advantages of the inventive systems are contemplated and provided by the instant disclosure.
Although the system 10 is shown with a select number of components, such as two stabilizing anchors 16, 18 two transverse anchors 28, 30, and two adjustment assemblies 32, 34, more or fewer are implemented as appropriate. For example, in some embodiments a single transverse anchor, such as the first transverse anchor 28, is secured to one or more of a plurality of vertebrae 42 at an apex A of a spinal deformation, with a corresponding adjustment assembly, such as the first adjustment assembly 32, coupled to the transverse anchor 28. Moreover, although four anchors 20, 22, 24, 26 are shown, in some embodiments there are more or less of the anchors. For example, in some embodiments the system 10 includes the first rod 12, the second rod 14, a single transverse anchor, such as the transverse anchor 28 and a single anchor, such as the third anchor 24, with the second rod 14 secured between the transverse anchor 28 and the third anchor 24. In still other embodiments, the system 10 does not include any of the anchors 20, 22, 24, 26, but instead the second rod 14 is secured between the first and second transverse anchors 28, 30 (see, e.g.,
Various planes and associated directions are referenced in the following description, including a sagittal plane defined by two axes, one drawn between a head (superior) and tail (inferior) of the body and one drawn between a back (posterior) and front (anterior) of the body; a coronal plane defined by two axes, one drawn between a center (medial) to side (lateral) of the body and one drawn between a head (superior) and tail (inferior) of the body; and a transverse plane defined by two axes, one drawn between a back and front of the body and one drawing between a center and side of the body. The terms pitch, roll, and yaw are also used, where roll generally refers to angulation, or rotation, in a first plane through which a longitudinal axis of a body orthogonally passes (e.g., rotation about a longitudinal axis corresponding to the spinal column), pitch refers to angulation, or rotation, in a second plane orthogonal to the first plane, and yaw refers to angulation, or rotation, in a third plane orthogonal to the first and second planes. In some embodiments, pitch is angulation in the sagittal plane, yaw is angulation in the coronal plane, and roll is angulation in the transverse plane.
In various embodiments, changes in pitch, yaw, and/or roll occur concurrently or separately as desired. Moreover, as used herein, “lateral translation” is not limited to translation in the medial-lateral direction unless specified as such.
As shown in
The first rod 12 is elongate and cylindrical including a superior portion 50, an intermediate portion 52, and an inferior portion 54. The first rod 12 is adapted, or otherwise structured, to extend along the spinal column 40. The first rod 12 is optionally contoured to complement a desired spinal curvature (e.g., generally following the curvature of a corrected or natural spine as shown in
The first rod 12 has a longitudinal axis X—where the rod 12 is substantially straight, the longitudinal axis X is substantially straight and, where the rod 12 is substantially curved or angled, the longitudinal axis X is similarly curved or angled. The sections 50, 52, 54 of the first rod 12 are optionally continuously formed or are formed as separate, connected parts as desired. In still other embodiments, expandable rod designs are also contemplated.
As shown in
As shown in
In some embodiments, the mounting portion 70 includes a pedestal with first and second anchor locations, each of the anchor locations defining a surface suitable for mounting the first stabilizing anchor 16 to one or more vertebrae 42. The first and second anchor locations each optionally include through holes 74 for receiving one of the fasteners 36, such as a pedicle screw or similar device to secure the mounting portion 70 to one or more vertebrae 42, such as the first vertebra 42A.
The housing portion 72 of the first stabilizing anchor 16 includes a body 80 and a sleeve insert 82. In some embodiments, the sleeve insert 82 is substantially spherical in shape and the body 80 forms a substantially spherical mating race for receiving the sleeve insert 82. The body 80 has a sleeve aperture 84 (
As shown in
As shown, the passage 100 has a non-circular cross-section (e.g., a splined cross-section corresponding to the inferior portion 54 of the first rod 12). Upon mating the non-circular cross-sections of the first rod 12 and the passage 100, rotation of the first rod 12 relative to the sleeve insert 82 is substantially inhibited or prevented. In some embodiments, the passage 100 defines a plurality (e.g., six) of inward splines 112 and a plurality of recessed pockets 114 (e.g., six) between the splines 112. The splines 112 are optionally trapezoidal (e.g., like the teeth of a gear) in shape overall. A variety of shapes are contemplated for the splines 112, including involute shapes, for example. The pockets 114 optionally include corner recesses 116 that are rounded in shape (e.g., to help prevent binding between the passage 100 and the first rod 112 during sliding of the first rod 112 in the passage 100). In some embodiments, the splines 60, 112 are designed to help maximize efficiency of torque transfer between the first rod 12 and the sleeve insert 82 while reducing contact pressure angle(s) between the components.
The protrusion 98 is optionally a pin with a head 120, a neck 122, and a body 124, the neck 122 being located between the head 120 and the body 124. The head 120, the neck 122, and the body 124 are optionally substantially cylindrical with the head 120 having a greater diameter than the body 124 and the body 124 having a greater diameter than the neck 122. The protrusion 98 is received in the pin chase 90 with the head 120 received in the seat 92 such that the head projects into the aperture 84. In some embodiments the protrusion 98 is press fit into the pin chase 90 and/or welded, adhered, or otherwise secured within the pin chase 90. In other embodiments the protrusion is temporary and is removable, providing temporary prevention of roll of the sleeve insert 82 within the body 80 so that the first stabilizing anchor 16 is able to be adjusted so that the rod 12 is free to rotate.
As relative rotation between the sleeve insert 82 and the body 80 is also substantially inhibited, relative rotation between the first rod 12 and the first stabilizing anchor 16 is substantially inhibited or limited, allowing the first rod 12 to be maintained at a pre-selected rotational position relative to the first stabilizing anchor 16. It also should be understood that other cross-sectional shapes for each of the passage 100 (
In some embodiments, the second stabilizing anchor 18 is substantially similar to the first stabilizing anchor 16, including any desired combination of previously-described features. As shown in
The first anchor 20 is shown in greater detail in
As shown, the first anchor 20 includes a mounting portion 140, a head portion 142, and a connection portion 144. The mounting portion 140 has a top surface 150, a bottom surface 152, and a slot 154 for receiving one of the fasteners 36, such as a pedicle screw or other bone screw. The slot 154, also described as an aperture, is elongate and extends longitudinally in a first direction R1.
The head portion 142 is substantially U-shaped, including a first prong 160 and a second prong 162 defining a pocket 164 for receiving one of the first and second rods 12, 14. As shown, the prongs 160, 162 are threaded for receiving a clamping screw 166 adapted to engage and secure one of the first and second rods 12, 14 immobilized within the pocket 164.
The connection portion 144 extends in a second direction R2 that is offset from the first direct R1. The connection portion 144 extends between the mounting portion 140 and the head portion 142 at an angle of about 45 degrees, for example, relative to the first direction R1.
The first and second transverse anchors 28, 30 are optionally substantially similar, and thus various features of both the first and second transverse anchors are described in association with the first transverse anchor 28, where when referenced, features of the first transverse anchor 28 are designated with reference numbers and similar features of the second transverse anchor 30 are designated with the same reference numbers followed by a “B.”
The first transverse anchor 28 is shown in greater detail in
The head portion 172 is substantially U-shaped, including a first prong 190 and a second prong 192 defining a pocket 194 for receiving the second rod 14. As shown, the prongs 190, 192 are threaded for receiving a clamping screw 196 adapted to engage and secure the second rod 14 immobilized within the pocket 194.
The connection portion 174 extends in a second direction R2 that is offset from the first direct R1. The connection portion 174 extends between the mounting portion 170 and the head portion 172 at an angle of about 45 degrees, for example, relative to the first direction R1. In other embodiments, the connection portion 174 extends between the mounting portion and head portion 170, 172 at another angle, such as from about 30 to about 60 degrees, or at no angle (i.e., the portions 170, 172, 174 are generally in-line with one another).
The arm portion 176 includes a neck section 200 that is substantially elongate and cylindrical, a shoulder section 202 that is flared and defines an abutment face 203, and a terminal section 204 that is threaded. The arm portion 176 extends longitudinally in the first direction R1. The arm portion 176 is adapted to extend across a portion of one of the vertebrae 42 for example, from one side of the spinal column 40 to an opposite side of the spinal column 40. For example, the first transverse anchor 28 is secured to one of the vertebrae 42 such that the arm portion 176 extends laterally across the vertebra 42.
The first adjustment assembly 32 is adapted to adjust, and provides means for adjusting tension and/or a distance between the first rod 12 and the first transverse anchor 28. The first and second adjustment assemblies 32, 34 are optionally substantially similar. Thus, various features of both the first and second adjustment assemblies 32, 34 are described in association with the first adjustment assembly 32, where features of the first adjustment assembly 32 are designated with reference numbers and similar features of the second adjustment assembly 34 are designated with the same reference numbers followed by a “B.”
As shown, the first adjustment assembly 32 includes a tensioner 208, the tensioner 208 including a housing 210, a reel 212, a circumferential gear 214 surrounding the reel 212, a drive gear 216 in contact with the circumferential gear 214, and an actuation head 218. The first adjustment assembly 32 also includes an elongate connector 219 adapted to be wound about the reel 212.
The reel 212, as well as the circumferential gear 214 and drive gear 216 are maintained at least partially within the housing 210. In turn, the housing 210 is adapted to be secured to the first rod 12. For example, the housing 210 optionally forms a central lumen 220 through which the rod first 12 is receivable. Upon inserting the first rod 12 through the central lumen 220, the housing 210 is adapted to be clamped onto the first rod 12.
In some embodiments, the housing 210 defines a first side 223 and a second side 224 and incorporates a clamshell design (e.g., a first portion adjustably secured to a second portion) adapted to be tightened onto the first rod 12 (e.g., using one or more fasteners). Thus, in some embodiments, the first adjustment assembly 32 is substantially fixed with respect to the first rod 12. Other designs, such as monolithic housing designs and others are contemplated. Moreover, in some embodiments, the first adjustment assembly 32 is movable with respect to the first rod 12, for example being able to slide and/or rotate about the first rod 12.
The central lumen 220 of the housing 210 defines a longitudinal axis L and forms a pocket 226 for receiving the reel 212 and the circumferential gear 214 such that the reel 212 and the circumferential gear 214 are able to rotate within the housing 210. The housing 210 also defines a pair of opposed apertures 228 for receiving ends of the drive gear 216 to retain the drive gear 216 while allowing the drive gear 216 to rotate. As shown, the housing 210 also defines a top 230 and a bottom 232, where the bottom 232 forms a lower opening 234 and a raised abutment 236 adjacent to the lower opening 234, toward the first side 223 of the housing 210.
As shown, the reel 212 includes a helical groove 238 for receiving the elongate connector 219 and a raised anchor block 240 for securing the elongate connector 219 to the reel 212. For example, the anchor block 240 optionally includes an aperture for receiving the elongate connector 219 and is welded or otherwise fastened in the aperture. The reel 212, as well as the circumferential gear 214, form a lumen 242 for coaxially receiving the first rod 12. In some embodiments, by receiving the first rod 12 through the reel 212 and circumferential gear 214, an overall size, or profile, of the tensioner 208 is able to be reduced.
As shown, the circumferential gear 214 is connected to, and coaxially aligned with the reel 212. The circumferential gear 214 is engaged with the drive gear 216 such that rotation of the drive gear 216 causes the circumferential gear 214, and thus, the reel 212, to turn (e.g., in a worm or crossed-spur gear configuration).
The elongate connector 219 includes a flexible tether 250 and a connector head 252. In some embodiments, the flexible tether 250 is substantially flexible and able to be pivoted in a multiple directions and/or be spooled or wound, for example. Suitable flexible materials include wire and stranded cables, monofilament polymer materials, multifilament polymer materials, multifilament carbon or ceramic fibers, and others. In some embodiments, the flexible tether 250 is formed of cobalt chromium alloy or titanium alloy wire or cable, although a variety of materials are contemplated. The flexible tether 250 includes a terminal cap 256 (
The elongate connector 219, also described as a connector or cable, is adapted to be secured to the first transverse anchor 28 and the first adjustment assembly 32. So secured, the elongate connector 219 defines an effective length between the first transverse anchor 28 and tensioner 208 and, and thus the first rod 12 (although, in some embodiments, the elongate connector 219 is secured directly to the rod 12). As described, in some embodiments, the tensioner 208 is adapted to modify, and provides means for modifying, the effective length of the tether 250 of the elongate connector 219 (e.g., by spooling the tether 250 on and off of the reel 212).
The elongate connector 219 is attached or secured to the reel 212 and passes out of the housing 210 through the lower opening 234 in the housing 210. Although a lower opening is shown, in other embodiments the opening is in the side or top, for example. Actuation of the drive gear 216 via the actuation head 218 turns the circumferential gear 214, which turns the reel 212, thus winding (or unwinding, depending on the direction in which the reel 212 is turned) the elongate connector 219 about the reel 212. Rotation of the reel 212 in the appropriate direction draws the tether 250 in toward the tensioner 208 (
The first and second actuation assemblies 32, 34 are slid onto or otherwise coupled to the first rod 12 and then secured (e.g., clamped) at a desired location along the rod 12. The first rod 12 is received in the first and second stabilizing anchors 16, 18, with the splined, or inferior portion 54 of the first rod 12 slidably received in the sleeve insert 82 of the first stabilizing anchor 16 and the superior portion 50 of the rod 12 slidably received in the second stabilizing anchor 18. Thus, in some embodiments the first rod 12 extends along the first side 40A of the spine 40 and is secured against lateral movement relative to a portion of the spine 40.
In some embodiments, the first rod 12 is attached by the stabilizing anchors 16, 18 to pedicles and/or transverse processes on the first side 40A of the spinal column 40 and is able to slide axially relative to the first and/or second stabilizing anchors 16, 18. In other embodiments, the rod 12 is attached by the stabilizing anchors 16, 18 to the second side 40B of the spinal column 40, on different sides of the spinal column 40 (e.g., the first stabilizing anchor 16 on the left side and the second stabilizing anchor 18 on the right side), or along the mid-line of the spinal column 40. In other embodiments, the first rod 12 is adjustable length to compensate for changes in length of the spinal column 40.
By limiting rotation, or roll, of the first rod 12 relative to the first stabilizing anchor 16, the bend in the first rod 12 is oriented and maintained in a desired rotational position. Maintaining the rotational orientation at one end (i.e., at the first stabilizing anchor 16) is useful, for example, to help ensure that the bend or shape of the rod 12 consistently follows or otherwise appropriately tracks a desired curvature of a spinal column 40. Freedom of rotation at the other end of the first rod 12 (i.e., at the second stabilizing anchor 18), however, still permits the spinal column 40 to have more natural movement while the corrective forces are being applied.
Though not shown, the system 10 optionally includes one or more stop features for limiting axial sliding, or translation of the first rod 12 relative to one of the stabilizing anchors to a desired range. Generally, sliding of the first rod 12 in a particular axial direction is substantially limited, or arrested, when a stop feature engages, or abuts an adjacent stabilizing anchor 16, though other stop mechanisms are contemplated.
The first and second transverse anchors 28, 30 are secured to one or more of the vertebrae 42, such as a third vertebra 42C in an apical region A of the spine 40 and a fourth vertebra 42D in an apical region A of the spine 40. The first transverse anchor 28 is secured to the third vertebra 42C by driving one of the fasteners 36 through the slot 184 in the mounting portion 170 of the first transverse anchor 28. For example, the first transverse anchor 28 is optionally secured into a pedicle and/or transverse processes of the third vertebra 42C on the second side 40B of the spine 40. The second transverse anchor 30 is optionally similarly secured on the second side of the spine 42B to a pedicle of the fourth vertebra 42D. As shown, the arm portions 176, 176B (
The first and second actuation assemblies 32, 34 are secured to the first and second transverse anchors 28, 30 by attaching (e.g., screwing) the connector heads 252, 252B of the elongate connectors 219, 219B to the threaded terminal sections of the transverse anchors 28, 30. Some methods include adjusting a curvature of the spine 40 to a desired curvature using the actuation assemblies 32, 34. For example, the tensioners 208, 208B of the first and second actuation assemblies 32, 34 are actuated (independently or simultaneously) in order to draw the elongate connectors 219, 219B into the respective tensioners 208, 208B, thereby drawing the third and fourth vertebrae 42C, 42D and surrounding portions of the spine 40 toward the first rod 12 and to a more desirable spinal curvature.
As shown in
If desired, the first rod 12 is received in the first and second anchors 20, 22 (e.g., prior to securing the first and second anchors 20, 22 to the spine 40) and the first rod 12 is secured in the pocket 164 of the first anchor 20 using the clamping screw 166 (
As shown in
As shown in
Thus, according to various embodiments, the spinal column 40 (and thus, the person) is able to twist, bend side-to-side, and bend forward-and-backward in a more natural manner while corrective forces are being applied to the spinal column 40 and/or to achieve a desired correction of the spine 40. In some embodiments, the effective lengths of the actuation assemblies 34, 36, and specifically the elongate connectors 219, 219B are adjusted (e.g., periodically or all at one time), bringing the spinal column into natural alignment, while the system 10 facilitates a more natural movement of the spinal column 40 (e.g., twisting and bending forward-and-backward and side-to-side) due to the freedom of movement afforded by the system 10. During a secondary fusion procedure, the second rod 14 is secured to the corrected spine 40 opposite first rod 12 to rigidly secure a region of the spine for fusion as shown in
In some embodiments, by linking the convex and concave sides of the spine 40 together, stress on the spine 40 is distributed at the anchor-vertebral interfaces as well as stiffening the apical region A of the spine, helping to stabilize the deformity. Thus, in addition to the connection between the apical region A and the first rod 12, the lateral connection between the rods 12, 14 optionally helps resist vertebral rotation and lateral translation).
As previously indicated, in some embodiments, the spine 40 is optionally corrected, or tensioned toward the first rod 12 prior to securing the second rod 14 to the spine 40. In other embodiments, the corrective method includes securing the second rod 14 to the spine 40 (e.g., to partially or fully correct spinal curvature the apical region A) and then tensioning the second rod 14 toward the first rod 12 in order to correct the spine 40 or portions thereof (e.g., a curvature of the spine 40 superior and/or inferior to the apical region A).
As previously indicated, the system 10 may include greater or fewer components according to various embodiments.
As shown, the first stabilizing anchor 16A is substantially similar to the first stabilizing anchor 16. The first stabilizing anchor 16A includes a mounting portion 70A and a housing portion 72A. The mounting portion 70A optionally includes through holes 74A for receiving one of the fasteners 36, such as a pedicle screw or similar device to secure the mounting portion 70A to one or more vertebrae 42, such as the first vertebra 42A.
The housing portion 72A of the first stabilizing anchor 16A includes a body 80A and a sleeve insert 82A. The body 80A is substantially similar to the body 80 of the first stabilizing anchor 16 with an optional difference being that the body 80A is split by a gap 298A dividing the body 80A into a lower portion 300A and an upper portion 302A that can be clamped together with adjustment member 304A (e.g., a bolt) secured across the gap 298A. The sleeve insert 82A, in turn, is substantially similar to the sleeve insert 82 with the addition of a gap 306A that facilitates clamping of the sleeve insert 82A onto the rod 12. For example, upon sufficiently tightening the adjustment member 304A, the sleeve insert 82A is clamped onto rod 12 to arrest sliding and rolling motion of the rod 12 through the sleeve insert 82A. Additionally, the clamping action of the body 80A on the sleeve 82A arrests changes in pitch and yaw. In different terms, the rod 12 is able to be selectively locked relative to the stabilizing anchor 16A.
As shown, the first stabilizing anchor 16B is substantially similar to the first stabilizing anchors 16, 16A and includes a clamping mechanism similar to first stabilizing anchor 16A. The first stabilizing anchor 16B includes a mounting portion 70B and a housing portion 72B. The mounting portion 70B differs from the mounting portion 70A of the first stabilizing anchor 16A in that the mounting 70B portion includes a single through hole 74A for receiving one of the fasteners 36, such as a pedicle screw or similar device to secure the mounting portion 70B to one or more vertebrae 42, such as the first vertebra 42A. In some embodiments, the first stabilizing anchor 16B is adapted to be secured to a single vertebra, as compared to being secured across multiple vertebrae.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 14/814,728, filed Jul. 31, 2015, which is a continuation of U.S. patent application Ser. No. 14/482,927, filed Sep. 10, 2014, now U.S. Pat. No. 9,113,959, which is a divisional of U.S. patent application Ser. No. 13/865,775, filed Apr. 18, 2013, now U.S. Pat. No. 8,920,472, which is a continuation-in-part of U.S. application Ser. No. 13/297,841, filed Nov. 16, 2011, now abandoned. The entire contents of each of the above disclosures are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2774350 | Cleveland | Dec 1956 | A |
3242922 | Thomas | Mar 1966 | A |
3352226 | Nelsen | Nov 1967 | A |
3648691 | Lumb et al. | Mar 1972 | A |
3693616 | Roaf et al. | Sep 1972 | A |
3865105 | Lode | Feb 1975 | A |
4024588 | Janssen et al. | May 1977 | A |
4078559 | Nissinen | Mar 1978 | A |
4257409 | Bacal et al. | Mar 1981 | A |
4269178 | Keene | May 1981 | A |
4274401 | Miskew | Jun 1981 | A |
4355645 | Mitani et al. | Oct 1982 | A |
4361141 | Tanner | Nov 1982 | A |
4369769 | Edwards | Jan 1983 | A |
4404967 | Bacal et al. | Sep 1983 | A |
4411259 | Drummond | Oct 1983 | A |
4411545 | Roberge | Oct 1983 | A |
4448191 | Rodnyansky et al. | May 1984 | A |
4505268 | Sgandurra | Mar 1985 | A |
4554914 | Kapp et al. | Nov 1985 | A |
4573454 | Hoffman | Mar 1986 | A |
4604995 | Stephens et al. | Aug 1986 | A |
4611581 | Steffee | Sep 1986 | A |
4611582 | Duff | Sep 1986 | A |
4634445 | Helal | Jan 1987 | A |
4648388 | Steffee | Mar 1987 | A |
4653481 | Howland et al. | Mar 1987 | A |
4658809 | Ulrich et al. | Apr 1987 | A |
4697582 | William | Oct 1987 | A |
4738251 | Plaza | Apr 1988 | A |
4773402 | Asher et al. | Sep 1988 | A |
4805602 | Puno et al. | Feb 1989 | A |
4815453 | Cotrel | Mar 1989 | A |
4827918 | Olerud | May 1989 | A |
4854311 | Steffee | Aug 1989 | A |
4931055 | Bumpus et al. | Jun 1990 | A |
4936848 | Bagby | Jun 1990 | A |
5000166 | Karpf | Mar 1991 | A |
5005562 | Cotrel | Apr 1991 | A |
5011484 | Breard | Apr 1991 | A |
5030220 | Howland | Jul 1991 | A |
5042982 | Harms et al. | Aug 1991 | A |
5084049 | Asher et al. | Jan 1992 | A |
5092866 | Breard et al. | Mar 1992 | A |
5092867 | Harms et al. | Mar 1992 | A |
5127912 | Ray et al. | Jul 1992 | A |
5129900 | Asher et al. | Jul 1992 | A |
5133716 | Plaza | Jul 1992 | A |
5147363 | Harle | Sep 1992 | A |
5176679 | Lin | Jan 1993 | A |
5176680 | Vignaud et al. | Jan 1993 | A |
5181917 | Rogozinski | Jan 1993 | A |
5190543 | Schlapfer | Mar 1993 | A |
5196014 | Lin | Mar 1993 | A |
5207678 | Harms et al. | May 1993 | A |
5209752 | Ashman et al. | May 1993 | A |
5219349 | Krag et al. | Jun 1993 | A |
5242443 | Kambin | Sep 1993 | A |
5254118 | Mirkovic | Oct 1993 | A |
5257994 | Lin | Nov 1993 | A |
5259398 | Vrespa | Nov 1993 | A |
5282862 | Baker et al. | Feb 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5312404 | Asher et al. | May 1994 | A |
5312410 | Miller et al. | May 1994 | A |
5312420 | Toso et al. | May 1994 | A |
5330473 | Howland | Jul 1994 | A |
5330474 | Lin | Jul 1994 | A |
5352226 | Lin | Oct 1994 | A |
5360431 | Puno et al. | Nov 1994 | A |
5366455 | Dove et al. | Nov 1994 | A |
5368594 | Martin et al. | Nov 1994 | A |
5380323 | Howland | Jan 1995 | A |
5380325 | Lahille et al. | Jan 1995 | A |
5382248 | Jacobson et al. | Jan 1995 | A |
5387212 | Yuan et al. | Feb 1995 | A |
5387213 | Breard et al. | Feb 1995 | A |
5391168 | Sanders et al. | Feb 1995 | A |
5397363 | Gelbard | Mar 1995 | A |
5413576 | Rivard | May 1995 | A |
5436542 | Petelin et al. | Jul 1995 | A |
5437669 | Yuan et al. | Aug 1995 | A |
5437671 | Lozier et al. | Aug 1995 | A |
5456722 | McLeod et al. | Oct 1995 | A |
5466238 | Lin | Nov 1995 | A |
5470333 | Ray | Nov 1995 | A |
5480440 | Kambin | Jan 1996 | A |
5486174 | Fournet-Fayard et al. | Jan 1996 | A |
5487744 | Howland | Jan 1996 | A |
5490851 | Nenov et al. | Feb 1996 | A |
5496318 | Howland et al. | Mar 1996 | A |
5498262 | Bryan | Mar 1996 | A |
5501684 | Schlapfer et al. | Mar 1996 | A |
5520688 | Lin | May 1996 | A |
5527314 | Brumfield et al. | Jun 1996 | A |
5534002 | Brumfield et al. | Jul 1996 | A |
5540689 | Sanders et al. | Jul 1996 | A |
5544993 | Harle | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5562660 | Grob | Oct 1996 | A |
5562662 | Brumfield et al. | Oct 1996 | A |
5569246 | Ojima et al. | Oct 1996 | A |
5571191 | Fitz | Nov 1996 | A |
5575791 | Lin | Nov 1996 | A |
5584626 | Assmundson | Dec 1996 | A |
5586983 | Sanders et al. | Dec 1996 | A |
5591165 | Jackson | Jan 1997 | A |
5601554 | Howland et al. | Feb 1997 | A |
5609592 | Brumfield et al. | Mar 1997 | A |
5611800 | Davis et al. | Mar 1997 | A |
5620443 | Gertzbein et al. | Apr 1997 | A |
5630816 | Kambin | May 1997 | A |
5643259 | Sasso et al. | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5649926 | Howland | Jul 1997 | A |
5658284 | Sebastian et al. | Aug 1997 | A |
5672175 | Martin | Sep 1997 | A |
5676703 | Gelbard | Oct 1997 | A |
5702395 | Hopf | Dec 1997 | A |
5702399 | Kilpela et al. | Dec 1997 | A |
5702452 | Argenson et al. | Dec 1997 | A |
5704936 | Mazel | Jan 1998 | A |
5713898 | Stucker et al. | Feb 1998 | A |
5716355 | Jackson et al. | Feb 1998 | A |
5720746 | Soubeiran | Feb 1998 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5728097 | Mathews | Mar 1998 | A |
5733284 | Martin | Mar 1998 | A |
5735852 | Amrein et al. | Apr 1998 | A |
5782831 | Sherman et al. | Jul 1998 | A |
5797910 | Martin | Aug 1998 | A |
5810817 | Roussouly et al. | Sep 1998 | A |
5810819 | Enico et al. | Sep 1998 | A |
5814046 | Hopf | Sep 1998 | A |
5885285 | Simonson | Mar 1999 | A |
5891145 | Morrison et al. | Apr 1999 | A |
5902305 | Beger et al. | May 1999 | A |
5910142 | Tatar | Jun 1999 | A |
5928232 | Howland et al. | Jul 1999 | A |
5938663 | Petreto | Aug 1999 | A |
5947967 | Barker | Sep 1999 | A |
5964769 | Wagner et al. | Oct 1999 | A |
5976135 | Sherman et al. | Nov 1999 | A |
5980521 | Montague et al. | Nov 1999 | A |
5984924 | Asher et al. | Nov 1999 | A |
5989256 | Kuslich et al. | Nov 1999 | A |
6015409 | Jackson | Jan 2000 | A |
6033412 | Losken et al. | Mar 2000 | A |
6039738 | Sanders et al. | Mar 2000 | A |
6050997 | Mullane | Apr 2000 | A |
6053921 | Wagner et al. | Apr 2000 | A |
6066140 | Gertzbein et al. | May 2000 | A |
6077268 | Farris et al. | Jun 2000 | A |
6080156 | Asher et al. | Jun 2000 | A |
6083224 | Gertzbein et al. | Jul 2000 | A |
6086590 | Margulies et al. | Jul 2000 | A |
6101678 | Malloy et al. | Aug 2000 | A |
6110173 | Thomas, Jr. | Aug 2000 | A |
6123706 | Lange | Sep 2000 | A |
6132431 | Nilsson et al. | Oct 2000 | A |
6132464 | Martin | Oct 2000 | A |
6136000 | Louis et al. | Oct 2000 | A |
6176861 | Bernstein et al. | Jan 2001 | B1 |
6231575 | Krag | May 2001 | B1 |
6248106 | Ferree | Jun 2001 | B1 |
6251111 | Barker et al. | Jun 2001 | B1 |
6254603 | Gertzbein et al. | Jul 2001 | B1 |
6261288 | Jackson | Jul 2001 | B1 |
6264658 | Lee et al. | Jul 2001 | B1 |
6273914 | Papas | Aug 2001 | B1 |
6277120 | Lawson | Aug 2001 | B1 |
6283967 | Troxell et al. | Sep 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
6296643 | Hopf et al. | Oct 2001 | B1 |
6299613 | Ogilvie et al. | Oct 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6328739 | Liu et al. | Dec 2001 | B1 |
6358254 | Anderson | Mar 2002 | B1 |
6364883 | Santilli | Apr 2002 | B1 |
6364885 | Kilpela et al. | Apr 2002 | B1 |
6379357 | Bernstein et al. | Apr 2002 | B1 |
6391030 | Wagner et al. | May 2002 | B1 |
6402749 | Ashman | Jun 2002 | B1 |
6402752 | Schaffler-Wachter et al. | Jun 2002 | B2 |
6419703 | Fallin et al. | Jul 2002 | B1 |
6423065 | Ferree | Jul 2002 | B2 |
6451019 | Zucherman et al. | Sep 2002 | B1 |
6458131 | Ray | Oct 2002 | B1 |
6471704 | Gertzbein et al. | Oct 2002 | B2 |
6488683 | Lieberman | Dec 2002 | B2 |
6514255 | Ferree | Feb 2003 | B1 |
6520962 | Taylor et al. | Feb 2003 | B1 |
6537276 | Metz-Stavenhagen | Mar 2003 | B2 |
6547789 | Ventre et al. | Apr 2003 | B1 |
6551320 | Lieberman | Apr 2003 | B2 |
6554831 | Rivard et al. | Apr 2003 | B1 |
6562038 | Morrison | May 2003 | B1 |
6565569 | Assaker et al. | May 2003 | B1 |
6565605 | Goble et al. | May 2003 | B2 |
6569164 | Assaker et al. | May 2003 | B1 |
6579292 | Taylor | Jun 2003 | B2 |
6579319 | Goble et al. | Jun 2003 | B2 |
6582433 | Yun | Jun 2003 | B2 |
6585738 | Mangione et al. | Jul 2003 | B1 |
6589243 | Viart et al. | Jul 2003 | B1 |
6602254 | Gertzbein et al. | Aug 2003 | B2 |
6602818 | Choi et al. | Aug 2003 | B2 |
6610091 | Reiley | Aug 2003 | B1 |
6616669 | Ogilvie et al. | Sep 2003 | B2 |
6623484 | Betz et al. | Sep 2003 | B2 |
6626906 | Young | Sep 2003 | B1 |
6626909 | Chin | Sep 2003 | B2 |
6641585 | Sato et al. | Nov 2003 | B2 |
6645207 | Dixon et al. | Nov 2003 | B2 |
6651320 | Yagi et al. | Nov 2003 | B1 |
6656185 | Gleason et al. | Dec 2003 | B2 |
6669729 | Chin | Dec 2003 | B2 |
6682532 | Johnson et al. | Jan 2004 | B2 |
6682533 | Dinsdale et al. | Jan 2004 | B1 |
6685705 | Taylor | Feb 2004 | B1 |
6689133 | Morrison et al. | Feb 2004 | B2 |
6709435 | Lin | Mar 2004 | B2 |
6736817 | Troxell et al. | May 2004 | B2 |
6749612 | Conchy et al. | Jun 2004 | B1 |
6755828 | Shevtsov et al. | Jun 2004 | B2 |
6773437 | Ogilvie et al. | Aug 2004 | B2 |
6802844 | Ferree | Oct 2004 | B2 |
6811567 | Reiley | Nov 2004 | B2 |
6835207 | Zacouto et al. | Dec 2004 | B2 |
6840127 | Moran | Jan 2005 | B2 |
6860884 | Shirado et al. | Mar 2005 | B2 |
6887241 | McBride et al. | May 2005 | B1 |
6902580 | Fallin et al. | Jun 2005 | B2 |
6946000 | Senegas et al. | Sep 2005 | B2 |
6966910 | Ritland | Nov 2005 | B2 |
6966930 | Amin et al. | Nov 2005 | B2 |
6974478 | Reiley et al. | Dec 2005 | B2 |
6986771 | Paul et al. | Jan 2006 | B2 |
7008423 | Assaker et al. | Mar 2006 | B2 |
7018379 | Drewry et al. | Mar 2006 | B2 |
7029475 | Panjabi | Apr 2006 | B2 |
7041136 | Goble et al. | May 2006 | B2 |
7048736 | Robinson et al. | May 2006 | B2 |
7051451 | Augostino et al. | May 2006 | B2 |
7074237 | Goble et al. | Jul 2006 | B2 |
7083621 | Shaolian et al. | Aug 2006 | B2 |
7087056 | Vaughan | Aug 2006 | B2 |
7090698 | Goble et al. | Aug 2006 | B2 |
7104992 | Bailey | Sep 2006 | B2 |
RE39325 | Bryan | Oct 2006 | E |
7128743 | Metz-Stavenhagen | Oct 2006 | B2 |
7137986 | Troxell et al. | Nov 2006 | B2 |
7160312 | Saadat | Jan 2007 | B2 |
7220262 | Hynes | May 2007 | B1 |
7261714 | Richelsoph | Aug 2007 | B2 |
7270665 | Morrison et al. | Sep 2007 | B2 |
7290347 | Augostino et al. | Nov 2007 | B2 |
7294129 | Hawkins et al. | Nov 2007 | B2 |
7316684 | Baccelli et al. | Jan 2008 | B1 |
7335203 | Winslow et al. | Feb 2008 | B2 |
7338490 | Ogilvie et al. | Mar 2008 | B2 |
7344539 | Serhan et al. | Mar 2008 | B2 |
7361196 | Fallin et al. | Apr 2008 | B2 |
7367978 | Drewry et al. | May 2008 | B2 |
7406775 | Funk et al. | Aug 2008 | B2 |
7445635 | Fallin et al. | Nov 2008 | B2 |
7473267 | Nguyen et al. | Jan 2009 | B2 |
7473269 | Hynes | Jan 2009 | B1 |
7481828 | Mazda et al. | Jan 2009 | B2 |
7507242 | Triplett et al. | Mar 2009 | B2 |
7524324 | Winslow et al. | Apr 2009 | B2 |
7566345 | Fallin et al. | Jul 2009 | B1 |
7588578 | Triplett et al. | Sep 2009 | B2 |
7588590 | Chervitz et al. | Sep 2009 | B2 |
7591836 | Dick et al. | Sep 2009 | B2 |
7594924 | Albert et al. | Sep 2009 | B2 |
7611526 | Carl et al. | Nov 2009 | B2 |
7618453 | Goble et al. | Nov 2009 | B2 |
7618455 | Goble et al. | Nov 2009 | B2 |
7621955 | Goble et al. | Nov 2009 | B2 |
7648521 | Hestad | Jan 2010 | B2 |
7658753 | Carl et al. | Feb 2010 | B2 |
7674293 | Kuiper et al. | Mar 2010 | B2 |
7678136 | Doubler et al. | Mar 2010 | B2 |
7691145 | Reiley et al. | Apr 2010 | B2 |
7708762 | McCarthy et al. | May 2010 | B2 |
7717939 | Ludwig et al. | May 2010 | B2 |
7717940 | Woods et al. | May 2010 | B2 |
7717942 | Schumacher | May 2010 | B2 |
7722647 | Wang et al. | May 2010 | B1 |
7722648 | Drewry et al. | May 2010 | B2 |
7753937 | Chervitz et al. | Jul 2010 | B2 |
7758581 | Chervitz et al. | Jul 2010 | B2 |
7771474 | Cordaro | Aug 2010 | B2 |
7794476 | Wisnewski | Sep 2010 | B2 |
7794478 | Nilsson | Sep 2010 | B2 |
7799054 | Kwak et al. | Sep 2010 | B2 |
7819902 | Abdelgany et al. | Oct 2010 | B2 |
7833252 | Justis et al. | Nov 2010 | B2 |
7837714 | Drewry et al. | Nov 2010 | B2 |
7842071 | Hawkes | Nov 2010 | B2 |
7862586 | Malek | Jan 2011 | B2 |
7896906 | Kwak et al. | Mar 2011 | B2 |
7918876 | Mueller et al. | Apr 2011 | B2 |
7927359 | Trautwein et al. | Apr 2011 | B2 |
7931676 | Veldman et al. | Apr 2011 | B2 |
7935134 | Reglos et al. | May 2011 | B2 |
7942902 | Schwab | May 2011 | B2 |
7959653 | Thramann et al. | Jun 2011 | B2 |
7963978 | Winslow et al. | Jun 2011 | B2 |
7985243 | Winslow et al. | Jul 2011 | B2 |
8012184 | Schlapfer et al. | Sep 2011 | B2 |
8016860 | Carl et al. | Sep 2011 | B2 |
8021400 | Marino et al. | Sep 2011 | B2 |
8029543 | Young et al. | Oct 2011 | B2 |
8029546 | Capote et al. | Oct 2011 | B2 |
8034078 | Laskowitz et al. | Oct 2011 | B2 |
8034084 | Landry et al. | Oct 2011 | B2 |
8043345 | Carl et al. | Oct 2011 | B2 |
8048113 | Winslow et al. | Nov 2011 | B2 |
8052722 | Winslow et al. | Nov 2011 | B2 |
8057472 | Walker et al. | Nov 2011 | B2 |
8066743 | Young et al. | Nov 2011 | B2 |
8070775 | Winslow et al. | Dec 2011 | B2 |
8070776 | Winslow et al. | Dec 2011 | B2 |
8075594 | Purcell | Dec 2011 | B2 |
8097022 | Marik | Jan 2012 | B2 |
8114134 | Winslow et al. | Feb 2012 | B2 |
8114158 | Carl et al. | Feb 2012 | B2 |
8118837 | Lemoine | Feb 2012 | B2 |
8147524 | Piza Vallespir | Apr 2012 | B2 |
8162979 | Sachs et al. | Apr 2012 | B2 |
8167908 | Ely et al. | May 2012 | B2 |
8192471 | Ludwig et al. | Jun 2012 | B2 |
8221466 | Asaad et al. | Jul 2012 | B2 |
8262696 | Falahee | Sep 2012 | B2 |
8292934 | Justis et al. | Oct 2012 | B2 |
8323319 | Mazda et al. | Dec 2012 | B2 |
8353934 | Drewry et al. | Jan 2013 | B2 |
8357182 | Seme | Jan 2013 | B2 |
8357183 | Seme et al. | Jan 2013 | B2 |
8361117 | Michielli et al. | Jan 2013 | B2 |
8403958 | Schwab | Mar 2013 | B2 |
8414614 | Firkins et al. | Apr 2013 | B2 |
8414617 | Young et al. | Apr 2013 | B2 |
8470001 | Trautwein et al. | Jun 2013 | B2 |
RE44392 | Hynes | Jul 2013 | E |
8475499 | Cournoyer et al. | Jul 2013 | B2 |
8480712 | Samuel et al. | Jul 2013 | B1 |
8518086 | Seme et al. | Aug 2013 | B2 |
8828058 | Elsebaie et al. | Sep 2014 | B2 |
9113959 | Seme et al. | Aug 2015 | B2 |
9451987 | Seme et al. | Sep 2016 | B2 |
9757157 | Seme et al. | Sep 2017 | B2 |
9827017 | Seme et al. | Nov 2017 | B2 |
20010037111 | Dixon et al. | Nov 2001 | A1 |
20020032442 | Altarac et al. | Mar 2002 | A1 |
20020133155 | Ferree | Sep 2002 | A1 |
20020143329 | Serhan et al. | Oct 2002 | A1 |
20020151978 | Zacouto et al. | Oct 2002 | A1 |
20020169448 | Vanacker | Nov 2002 | A1 |
20030040746 | Mitchell et al. | Feb 2003 | A1 |
20030045878 | Petit et al. | Mar 2003 | A1 |
20030045879 | Minfelde et al. | Mar 2003 | A1 |
20030093117 | Saadat | May 2003 | A1 |
20030109881 | Shirado et al. | Jun 2003 | A1 |
20030114853 | Burgess et al. | Jun 2003 | A1 |
20030153915 | Nekozuka et al. | Aug 2003 | A1 |
20030220643 | Ferree | Nov 2003 | A1 |
20040006391 | Reiley | Jan 2004 | A1 |
20040049274 | Reiley | Mar 2004 | A1 |
20040049277 | Reiley | Mar 2004 | A1 |
20040097931 | Mitchell | May 2004 | A1 |
20040106921 | Cheung | Jun 2004 | A1 |
20040149065 | Moran | Aug 2004 | A1 |
20040167520 | Zucherman et al. | Aug 2004 | A1 |
20040215190 | Nguyen et al. | Oct 2004 | A1 |
20040230201 | Yuan et al. | Nov 2004 | A1 |
20040230304 | Yuan et al. | Nov 2004 | A1 |
20050027361 | Reiley | Feb 2005 | A1 |
20050033291 | Ebara | Feb 2005 | A1 |
20050033295 | Wisnewski | Feb 2005 | A1 |
20050043797 | Lee | Feb 2005 | A1 |
20050043799 | Reiley | Feb 2005 | A1 |
20050049705 | Hale et al. | Mar 2005 | A1 |
20050055096 | Serhan et al. | Mar 2005 | A1 |
20050080420 | Farris et al. | Apr 2005 | A1 |
20050080486 | Fallin et al. | Apr 2005 | A1 |
20050107789 | Sweeney | May 2005 | A1 |
20050113927 | Malek | May 2005 | A1 |
20050113928 | Cragg et al. | May 2005 | A1 |
20050131537 | Hoy et al. | Jun 2005 | A1 |
20050131538 | Chervitz et al. | Jun 2005 | A1 |
20050149030 | Serhan et al. | Jul 2005 | A1 |
20050154390 | Biedermann et al. | Jul 2005 | A1 |
20050165396 | Fortin et al. | Jul 2005 | A1 |
20050171538 | Sgier et al. | Aug 2005 | A1 |
20050177240 | Blain | Aug 2005 | A1 |
20050203509 | Chinnaian et al. | Sep 2005 | A1 |
20050203511 | Wilson-MacDonald et al. | Sep 2005 | A1 |
20050203514 | Jahng et al. | Sep 2005 | A1 |
20050203516 | Biedermann et al. | Sep 2005 | A1 |
20050209603 | Zucherman et al. | Sep 2005 | A1 |
20050216004 | Schwab | Sep 2005 | A1 |
20050228326 | Kalfas et al. | Oct 2005 | A1 |
20050228377 | Chao et al. | Oct 2005 | A1 |
20050234453 | Shaolian et al. | Oct 2005 | A1 |
20050240264 | Tokish et al. | Oct 2005 | A1 |
20050245929 | Winslow et al. | Nov 2005 | A1 |
20050261685 | Fortin et al. | Nov 2005 | A1 |
20050261770 | Kuiper et al. | Nov 2005 | A1 |
20050267470 | McBride | Dec 2005 | A1 |
20050267579 | Reiley et al. | Dec 2005 | A1 |
20060004449 | Goble et al. | Jan 2006 | A1 |
20060009767 | Kiester | Jan 2006 | A1 |
20060009847 | Reiley | Jan 2006 | A1 |
20060009849 | Reiley | Jan 2006 | A1 |
20060036240 | Colleran et al. | Feb 2006 | A1 |
20060036246 | Carl et al. | Feb 2006 | A1 |
20060036256 | Carl et al. | Feb 2006 | A1 |
20060036259 | Carl et al. | Feb 2006 | A1 |
20060036323 | Carl et al. | Feb 2006 | A1 |
20060036324 | Sachs et al. | Feb 2006 | A1 |
20060047282 | Gordon | Mar 2006 | A1 |
20060058790 | Carl et al. | Mar 2006 | A1 |
20060058791 | Broman et al. | Mar 2006 | A1 |
20060058792 | Hynes | Mar 2006 | A1 |
20060064091 | Ludwig et al. | Mar 2006 | A1 |
20060084976 | Borgstrom et al. | Apr 2006 | A1 |
20060084996 | Metz-Stavenhagen | Apr 2006 | A1 |
20060085075 | McLeer | Apr 2006 | A1 |
20060116686 | Crozet | Jun 2006 | A1 |
20060142758 | Petit | Jun 2006 | A1 |
20060142760 | McDonnell | Jun 2006 | A1 |
20060149234 | de Coninck | Jul 2006 | A1 |
20060189984 | Fallin et al. | Aug 2006 | A1 |
20060200149 | Hoy et al. | Sep 2006 | A1 |
20060212034 | Triplett et al. | Sep 2006 | A1 |
20060217712 | Mueller et al. | Sep 2006 | A1 |
20060217715 | Serhan et al. | Sep 2006 | A1 |
20060217718 | Chervitz et al. | Sep 2006 | A1 |
20060229616 | Albert et al. | Oct 2006 | A1 |
20060241594 | McCarthy et al. | Oct 2006 | A1 |
20060241598 | Khalili | Oct 2006 | A1 |
20060247627 | Farris | Nov 2006 | A1 |
20060247628 | Rawlins et al. | Nov 2006 | A1 |
20060253118 | Bailey | Nov 2006 | A1 |
20060271050 | Piza Vallespir | Nov 2006 | A1 |
20060276787 | Zubok et al. | Dec 2006 | A1 |
20060293663 | Walkenhorst et al. | Dec 2006 | A1 |
20070005062 | Lange et al. | Jan 2007 | A1 |
20070016296 | Triplett et al. | Jan 2007 | A1 |
20070055373 | Hudgins et al. | Mar 2007 | A1 |
20070073293 | Martz et al. | Mar 2007 | A1 |
20070079517 | Augostino et al. | Apr 2007 | A1 |
20070083200 | Gittings et al. | Apr 2007 | A1 |
20070093814 | Callahan et al. | Apr 2007 | A1 |
20070093833 | Kuiper et al. | Apr 2007 | A1 |
20070100339 | Clement et al. | May 2007 | A1 |
20070161987 | Capote et al. | Jul 2007 | A1 |
20070161993 | Lowery et al. | Jul 2007 | A1 |
20070161994 | Lowery et al. | Jul 2007 | A1 |
20070162002 | Tornier | Jul 2007 | A1 |
20070167946 | Triplett et al. | Jul 2007 | A1 |
20070167947 | Gittings | Jul 2007 | A1 |
20070168035 | Koske | Jul 2007 | A1 |
20070173829 | Drewry et al. | Jul 2007 | A1 |
20070185492 | Chervitz et al. | Aug 2007 | A1 |
20070191846 | Bruneau et al. | Aug 2007 | A1 |
20070198014 | Graf et al. | Aug 2007 | A1 |
20070213716 | Lenke et al. | Sep 2007 | A1 |
20070219556 | Altarac et al. | Sep 2007 | A1 |
20070225712 | Altarac et al. | Sep 2007 | A1 |
20070225713 | Altarac et al. | Sep 2007 | A1 |
20070233075 | Dawson | Oct 2007 | A1 |
20070233090 | Naifeh et al. | Oct 2007 | A1 |
20070233093 | Falahee | Oct 2007 | A1 |
20070238335 | Veldman et al. | Oct 2007 | A1 |
20070270803 | Giger et al. | Nov 2007 | A1 |
20070270805 | Miller et al. | Nov 2007 | A1 |
20070270817 | Rezach | Nov 2007 | A1 |
20070270836 | Bruneau et al. | Nov 2007 | A1 |
20070270837 | Eckhardt et al. | Nov 2007 | A1 |
20070270838 | Bruneau et al. | Nov 2007 | A1 |
20070270967 | Fallin et al. | Nov 2007 | A1 |
20070276367 | Puno | Nov 2007 | A1 |
20070276374 | Broman et al. | Nov 2007 | A1 |
20070288011 | Logan | Dec 2007 | A1 |
20070288024 | Gollogly | Dec 2007 | A1 |
20080015577 | Loeb | Jan 2008 | A1 |
20080021466 | Shadduck et al. | Jan 2008 | A1 |
20080021469 | Holt | Jan 2008 | A1 |
20080027436 | Cournoyer et al. | Jan 2008 | A1 |
20080045954 | Reiley et al. | Feb 2008 | A1 |
20080065069 | Betz et al. | Mar 2008 | A1 |
20080077143 | Shluzas | Mar 2008 | A1 |
20080086213 | Reiley | Apr 2008 | A1 |
20080091202 | Reiley | Apr 2008 | A1 |
20080091210 | Reiley | Apr 2008 | A1 |
20080091268 | Reiley | Apr 2008 | A1 |
20080097437 | Reiley | Apr 2008 | A1 |
20080097438 | Reiley | Apr 2008 | A1 |
20080097439 | Reiley | Apr 2008 | A1 |
20080097440 | Reiley et al. | Apr 2008 | A1 |
20080097441 | Hayes et al. | Apr 2008 | A1 |
20080097446 | Reiley et al. | Apr 2008 | A1 |
20080097609 | Reiley | Apr 2008 | A1 |
20080097612 | Reiley | Apr 2008 | A1 |
20080097613 | Reiley et al. | Apr 2008 | A1 |
20080109039 | Michielli | May 2008 | A1 |
20080132951 | Reiley et al. | Jun 2008 | A1 |
20080140202 | Allard et al. | Jun 2008 | A1 |
20080167688 | Fauth et al. | Jul 2008 | A1 |
20080177326 | Thompson | Jul 2008 | A1 |
20080183209 | Robinson et al. | Jul 2008 | A1 |
20080183212 | Veldman et al. | Jul 2008 | A1 |
20080195100 | Capote et al. | Aug 2008 | A1 |
20080195153 | Thompson | Aug 2008 | A1 |
20080195154 | Brown et al. | Aug 2008 | A1 |
20080195159 | Kloss et al. | Aug 2008 | A1 |
20080200953 | Reiley et al. | Aug 2008 | A1 |
20080221622 | Triplett et al. | Sep 2008 | A1 |
20080228227 | Brown et al. | Sep 2008 | A1 |
20080234737 | Boschert | Sep 2008 | A1 |
20080234739 | Hudgins et al. | Sep 2008 | A1 |
20080262545 | Simonson | Oct 2008 | A1 |
20080262546 | Calvosa et al. | Oct 2008 | A1 |
20080269805 | Dekutoski et al. | Oct 2008 | A1 |
20080275507 | Triplett et al. | Nov 2008 | A1 |
20080292161 | Funk et al. | Nov 2008 | A1 |
20080306535 | Winslow et al. | Dec 2008 | A1 |
20080306536 | Frigg et al. | Dec 2008 | A1 |
20080319483 | Triplett et al. | Dec 2008 | A1 |
20080319484 | Fauth | Dec 2008 | A1 |
20080319485 | Fauth et al. | Dec 2008 | A1 |
20080319488 | Helgerson | Dec 2008 | A1 |
20080319489 | Triplett | Dec 2008 | A1 |
20090012565 | Sachs | Jan 2009 | A1 |
20090012566 | Fauth | Jan 2009 | A1 |
20090018583 | Song et al. | Jan 2009 | A1 |
20090024134 | Triplett et al. | Jan 2009 | A1 |
20090024135 | Triplett et al. | Jan 2009 | A1 |
20090024166 | Carl et al. | Jan 2009 | A1 |
20090024167 | Chervitz et al. | Jan 2009 | A1 |
20090024168 | Chervitz et al. | Jan 2009 | A1 |
20090024169 | Triplett et al. | Jan 2009 | A1 |
20090030459 | Hoy et al. | Jan 2009 | A1 |
20090030460 | Chervitz et al. | Jan 2009 | A1 |
20090030461 | Hoy et al. | Jan 2009 | A1 |
20090036929 | Reglos et al. | Feb 2009 | A1 |
20090048632 | Firkins et al. | Feb 2009 | A1 |
20090062864 | Ludwig et al. | Mar 2009 | A1 |
20090062915 | Kohm et al. | Mar 2009 | A1 |
20090069849 | Oh et al. | Mar 2009 | A1 |
20090082871 | Fallin et al. | Mar 2009 | A1 |
20090088802 | Fallin | Apr 2009 | A1 |
20090093820 | Trieu et al. | Apr 2009 | A1 |
20090099607 | Fallin et al. | Apr 2009 | A1 |
20090112207 | Walker et al. | Apr 2009 | A1 |
20090112262 | Pool et al. | Apr 2009 | A1 |
20090112263 | Pool et al. | Apr 2009 | A1 |
20090125062 | Amin | May 2009 | A1 |
20090194206 | Jeon et al. | Aug 2009 | A1 |
20090204156 | McClintock et al. | Aug 2009 | A1 |
20090259256 | Miller | Oct 2009 | A1 |
20090281575 | Carls et al. | Nov 2009 | A1 |
20100057129 | Goble et al. | Mar 2010 | A1 |
20100076493 | Fauth et al. | Mar 2010 | A1 |
20100082107 | Fauth et al. | Apr 2010 | A1 |
20100087880 | Fauth et al. | Apr 2010 | A1 |
20100100130 | Carl et al. | Apr 2010 | A1 |
20100100133 | Carl et al. | Apr 2010 | A1 |
20100106192 | Barry | Apr 2010 | A1 |
20100137913 | Khatchadourian et al. | Jun 2010 | A1 |
20100249836 | Seme | Sep 2010 | A1 |
20100249837 | Seme et al. | Sep 2010 | A1 |
20100256684 | Seme et al. | Oct 2010 | A1 |
20100274286 | Blain et al. | Oct 2010 | A1 |
20100286730 | Gordon | Nov 2010 | A1 |
20100298882 | James | Nov 2010 | A1 |
20100318129 | Seme et al. | Dec 2010 | A1 |
20110054536 | Elsebaie et al. | Mar 2011 | A1 |
20110060367 | Stauber | Mar 2011 | A1 |
20110066188 | Seme et al. | Mar 2011 | A1 |
20110245876 | Brumfield | Oct 2011 | A1 |
20110270314 | Mueller et al. | Nov 2011 | A1 |
20120109197 | Carl et al. | May 2012 | A1 |
20120158064 | Kroll | Jun 2012 | A1 |
20120221057 | Zhang et al. | Aug 2012 | A1 |
20130123851 | Seme et al. | May 2013 | A1 |
20130123853 | Seme et al. | May 2013 | A1 |
20130184757 | Seme et al. | Jul 2013 | A1 |
20130211455 | Seme | Aug 2013 | A1 |
20130231703 | Seme et al. | Sep 2013 | A1 |
20140236234 | Kroll et al. | Aug 2014 | A1 |
20140379033 | Elsebaie et al. | Dec 2014 | A1 |
20150080953 | Otte et al. | Mar 2015 | A1 |
20150080954 | Otte et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
2644735 | Apr 1977 | DE |
2845647 | May 1980 | DE |
0260044 | Mar 1988 | EP |
0322334 | Jun 1989 | EP |
0418387 | Mar 1991 | EP |
1281361 | Feb 2003 | EP |
1600112 | Nov 2005 | EP |
2697744 | May 1994 | FR |
2736535 | Jan 1997 | FR |
2781359 | Jan 2000 | FR |
2801492 | Jun 2001 | FR |
2872021 | Dec 2005 | FR |
2892617 | May 2007 | FR |
2900563 | Nov 2007 | FR |
0780652 | Aug 1957 | GB |
0888969 | Dec 1981 | SU |
9213496 | Aug 1992 | WO |
0217803 | Mar 2002 | WO |
2004017705 | Mar 2004 | WO |
2006010844 | Feb 2006 | WO |
2006017641 | Feb 2006 | WO |
2006136937 | Dec 2006 | WO |
2007051924 | May 2007 | WO |
2008086467 | Jul 2008 | WO |
2008154313 | Dec 2008 | WO |
2010053662 | May 2010 | WO |
2010056650 | May 2010 | WO |
2010111500 | Sep 2010 | WO |
20120167105 | Dec 2012 | WO |
2014062942 | Apr 2014 | WO |
2014172632 | Oct 2014 | WO |
Entry |
---|
Berry, James L et al., A Morphometric Study of Human Lumbar and Selected Thoracic Vertebrae, 12 Spine 362 (1987). |
Eglin, D. et al., “Degradable Polymeric Materials for Osteosynthesis: tutorial”, European Cells and Materials, vol. 16, 2008, pp. 80-91. |
European Search Report issued in EP Application No. 12154799, completed Mar. 2, 2012, 9 pages. |
Fujita, Masaru et al., A Biomechanical Analysis of Sublaminar and Subtransverse Process Fixation Using Metal Wires and Polyethylene Cables, 31 Spine 2202 (2006). |
Girardi, Federico P. et al., Safety of Sublaminar Wires With Isola Instrumentation for the Treatment of Idiopathic Scoliosis, 25 SPINE 691 (2000). |
International Application No. PCT/US2008/065979, filed Jun. 5, 2008, entitled Medical Device and Method to Correct Deformity. |
International Application No. PCT/US2009/063833, filed Nov. 10, 2009, entitled Growth Directed Vertebral Fixation System With Distractible Connector(s) and Apical Control. |
International Application No. PCT/US2010/028684, filed Mar. 25, 2010, entitled Semi-Constrained Anchoring System. |
International Search Report and Written Opinion issued in PCT/US2005/027692, dated May 19, 2008, 4 pages. |
International Search Report and Written Opinion issued in PCT/US2008/065979, dated Oct. 2, 2008, 7 pages. |
International Search Report and Written Opinion issued in PCT/US2009/063833, dated Mar. 15, 2010, 14 pages. |
International Search Report and Written Opinion issued in PCT/US2010/028684, dated Sep. 28, 2010, 19 pages. |
International Search Report and Written Opinion issued in PCT/US2010/036375, dated Sep. 10, 2010, 16 pages. |
International Search Report and Written Opinion issued in PCT/US2010/047117, dated Dec. 2, 2010. |
International Search Report and Written Opinion issued in PCT/US2011/049693, dated Nov. 15, 2011, 16 pages. |
International Search Report and Written Opinion issued in PCT/US2012/040493, dated Aug. 21, 2012, 15 pages. |
International Search Report and Written Opinion issued in PCT/US2012/065262, dated Feb. 5, 2013, 8 pages. |
International Search Report and Written Opinion issued in PCT/US2013/065488, dated Feb. 18, 2014, 10 pages. |
Invitation to Pay Additional Fees and Partial Search Report issued in PCT/US2010/028684, dated Jun. 30, 2010, 6 pages. |
Liljenqvist, Ulf R. et al., Analysis of Vertebral Morphology in Idiopathic Scoliosis with Use of Magnetic Resonance Imaging and Multiplanar Reconstruction, 84 J Bone Joint Surg Am. 359 (2002). |
Molnar, Szabolcs et al., Ex Vivo and in Vitro Determination of the Axial Rotational Axis of the Human Thoracic Spine, 31 Spine E984 (2006). |
Rajasekaran, S. et al., Eighteen-Level Analysis of Vertebral Rotation Following Harrington-Luque Instrumentation in Idiopathic Scoliosis, 76 J Bone Joint Surg Am. 104 (1994). |
U.S. Appl. No. 12/411,558, filed Mar. 26, 2009, entitled Alignment System With Longitudinal Support Features. |
U.S. Appl. No. 12/411,562, filed Mar. 26, 2009, entitled Semi-Constrained Anchoring System. |
U.S. Appl. No. 12/485,796, filed Jun. 16, 2009 entitled Deformity Alignment System With Reactive Force Balancing. |
U.S. Appl. No. 12/560,199, filed Sep. 15, 2009, entitled Growth Modulation System. |
Wenger, Dennis R. et al., Biomechanics of Scoliosis Correction by Segmental Spinal Instrumentation, 7 Spine 260 (1982). |
White III, Augustus A. et al., Biomechancis of the Spine 28-29, Tbl. 1-5 (2d ed. 1990). |
International Search Report and Written Opinion issued in PCT/US2014/055926, dated Jan. 29, 2015, 13 pages. |
European Search Report dated Oct. 7, 2016, issued in EP Application No. 14 78 4708. |
Australian Examination Report dated Apr. 20, 2018, in AU Application No. 2014321490. |
European Communication dated Jan. 2, 2017, issued in European Application No. 14777448. |
European Office Action dated Sep. 20, 2017, Issued in EP14777448. |
Extended European Search Report for EP 15 18 0519 dated Jan. 25, 2016. |
International Search Report for Application No. PCT/US2014/034644 dated May 1, 2015, 4 pages. |
Australian Examination Report dated Jan. 6, 2018, issued in AU Appln. No. 2014253786. |
Number | Date | Country | |
---|---|---|---|
20180125537 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13865775 | Apr 2013 | US |
Child | 14482927 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14814728 | Jul 2015 | US |
Child | 15795827 | US | |
Parent | 14482927 | Sep 2014 | US |
Child | 14814728 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13297841 | Nov 2011 | US |
Child | 13865775 | US |