1. Field of the Invention
The present invention generally relates to medical devices and methods. More particularly, the present invention relates to devices and methods for diagnosing and/or treating spinal pain
Back pain takes an enormous toll on the health and productivity of people around the world. According to the American Academy of Orthopedic Surgeons, approximately 80 percent of Americans will experience back pain at some time in their life. In just the year 2000, approximately 26 million visits were made to physicians' offices due to back problems in the United States. On any one day, it is estimated that 5% of the working population in America is disabled by back pain.
Unfortunately, back pain is not only extremely common, but can also be difficult to accurately diagnose and effectively treat. Challenges stem from the fact that it is often difficult to pinpoint exactly what is causing a patient's pain or even where the pain originates. Although a number of effective treatments exist for various types of back pain, a number of them are highly invasive and may actually exacerbate pain or cause pain in other parts of the back. Therefore, due to the challenges involved in diagnosing and treating back pain, and fueled by the large number of patients suffering from back pain, improved diagnostic and treatment methods and devices and constantly being sought.
Back pain may be classified into two general categories: (1) “axial spinal pain,” which arises from pathology or dysfunction in the structural components of the spine, such as the vertebrae or the intervertebral discs between the vertebrae; and (2) “radicular pain,” which originates from pressure on or irritation of nerve roots. Radicular pain is often relatively simple to diagnose and pinpoint, because pain tends to radiate from irritated nerve roots out into the body in predictable patterns, and nerve root compression can often be seen on an MRI study or other radiological study of the spine. Treatment of radicular pain is also often quite straightforward, typically involving injections or surgical procedures to decrease inflammation in or remove the structures impinging on the effected nerve root.
In contrast to radicular pain, axial spinal pain is typically much more difficult to diagnose and localize. “Discogenic pain,” for example, which is a type of spinal pain originating in one or more intervertebral discs (soft tissue structures between vertebrae of the spine), is particularly difficult to diagnose and pinpoint to one or more specific discs. The physical examination and complaints of the patient typically provide only general clues as to the actual cause and originating location of the pain, and no currently available radiological studies can accurately assess which of a patient's discs (if any) is causing discogenic pain. Adding to the difficulty of diagnosis is the fact that many different factors may lead to discogenic pain. Furthermore, it is often difficult to determine whether treatment of a disc (or discs) will actually alleviate the patient's pain or whether there are other underlying causes of the pain that will remain even after a disc is treated. Therefore, diagnosing and treating discogenic pain can often be incredibly challenging, and there is always a risk that surgery will be performed unnecessarily or will fail to relieve the patient's back pain.
The most commonly performed surgical procedure for treating discogenic pain is spinal fusion, in which adjacent vertebrae above and below the disc causing pain are fused together to prevent motion, thus bypassing the painful disc. Spinal fusion can be a very effective treatment, but it is relatively costly and invasive, and may be associated with a prolonged recovery and a number of potential complications. For example, fusion may sometimes lead to accelerated degeneration of one or more discs adjacent the treated disc due to increased forces placed on the adjacent discs from the fusion. Another possible treatment of discogenic pain involves replacement of the disc with an artificial (prosthetic) disc. This treatment may allow for better patient mobility than spinal fusion, but this treatment option is still in its infancy. Regardless of the method used to treat discogenic pain, an accurate diagnosis is essential for the treatment's success.
Despite the importance of obtaining a correct and specific diagnosis of discogenic pain, currently available diagnostic techniques have a number of drawbacks. A diagnostic test referred to as “discography” is the most commonly used and accepted diagnostic technique. Discography involves inserting a needle into an intervertebral disc and injecting a contrast dye into the compliant inner core of the disc (the nucleus pulposus) under pressure. A radiograph (or “X-ray”) of the spine is then taken. Sometimes, anatomical defects of the disc, such as tears in the fibrous outer layer of the disc (the annulus fibrosis) can been seen on a radiograph, which may be indicative of a possible cause of pain. Additionally, the injection of contrast into the disc under pressure has been shown to sometimes cause the patient to feel pain, caused by the chemical composition of the contrast and/or by increased pressure within the nucleus pulposus. Sometimes this pain mimics the back pain that the patient usually feels during daily activities. Through a combination of subjective analysis of radiographs and a subjective description of the back pain by the patient, the physician attempts to determine whether the particular disc is causing the patient's pain. In some instances, multiple discs on one patient are injected during a diagnostic procedure.
Some clinicians theorize that if a discogram is positive according to commonly used criteria, then the tested disc is the source of the patient's pain. However, there is no universally accepted definition of the criteria for a positive discogram. As a result, interpretation of discograms has been a longstanding controversy. Not only does the test rely on subjective feedback, but results themselves have been shown to have a high rate of false positives and false negatives, with up to 30-40% of patients with no back pain having positive discograms. Similarly, some patients have reported feeling a replication of their usual pain during discography, even though it is later found that another, non-discogenic cause was the actual origin of the pain. These facts demonstrate that the traditional discogram is not highly specific.
A number of currently available epidural catheters and techniques provide for injecting substances, typically anesthetics, into an epidural space of a spine. Examples of such epidural catheters are described in U.S. Pat. Nos. 3,885,561; 4,737,146; 4,973,305; 5,004,456; 5,024,655; 5,084,016; 5,129,889; 5,234,406; 5,344,439; 5,800,407; 6,676,643 and 6,368,315. Such catheters, however, are not adapted for delivery into an intervertebral disc. Furthermore, injecting substances into the epidural space is not helpful for diagnosing discogenic pain.
Due to the prevalence of discogenic pain and other types of back pain, the difficulty of accurately diagnosing and pinpointing discogenic pain, and the invasive nature of typical discogenic pain treatment techniques such as spinal fusion, improved methods and apparatus for diagnosing and/or treating discogenic pain are needed. Ideally, such methods and apparatus would enhance a physician's ability to pinpoint one or more discs that are causing a patient pain, thus enhancing or replacing traditional discography. Also ideally, these methods and devices would be no more invasive, or perhaps even less invasive, than discography. Even more ideally, variations of techniques and devices for diagnosing discogenic pain could also be used to treat back pain in some individuals, thus providing less invasive alternatives to traditional spinal fusion and other surgical techniques. At least some of these objectives will be met by the present invention.
Methods and devices of the present invention generally facilitate diagnosis, and in some cases treatment, of discogenic pain. More specifically, methods and devices of the invention help determine whether one or more intervertebral discs in a patient are actually causing the patient's back pain, and also help pinpoint which disc or discs are causing the pain. In one embodiment, a distal portion of a catheter device is positioned transannularly or transosseously in an intervertebral disc that is thought to be the cause of the patient's pain. One or more anchoring members are then used to maintain the distal portion in the disc. The patient is asked to assume a position or perform a task, such as bending over, which typically causes the patient to experience back pain. Using the catheter device, one or more substances, such as an anesthetic or analgesic, are injected into the disc. The patient then reports whether the anesthetic has alleviated the pain. Optionally, additional intervertebral discs may be tested, one or more placebo injections may be used, a conventional discography may be added to the procedure and/or the like. Based on the patient's response to the introduction of substance(s) into the disc (or discs), a determination may be made as to whether one or more specific discs are causing the patient's pain. Diagnostic and treatment decisions may be based on such a determination.
An “intervertebral disc” is generally referred to herein as soft tissue between any two adjacent vertebrae. An intervertebral disc generally includes a fibrous outer layer called the “annulus fibrosis” and a more compliant inner core called the “nucleus pulposus.” In various embodiments, substances may be introduced into an annulus fibrosis, nucleus pulposus, or both. To the extent that other soft tissues between two adjacent vertebrae may also be considered part of an intervertebral disc, it is contemplated within the scope of the invention that one or more substances may be introduced into such soft tissues as well.
In some cases, devices and methods for diagnosing discogenic pain may also be used for treating pain. Catheter devices of the invention generally include one or more anchoring members for maintaining a distal portion of the catheter device in a position within a disc. Such a catheter device may be coupled with, for example, an implantable pump or injection port, and the pump or port may be used to supply one or more substances, such as anesthetic or analgesic, to the disc to treat a patient's back pain. Many other substances may be introduced to the disc, as discussed fully below, and other treatment modalities are possible, such as transcutaneous electrical nerve stimulation (TENS).
In one aspect of the present invention, a method for introducing one or more substances into an intervertebral disc involves positioning a distal portion of a catheter device in the disc, anchoring the distal portion of the catheter device to maintain the distal portion in the disc, and introducing at least one substance into the disc through the catheter device. A number of different methods for positioning the distal portion may be employed in various embodiments of the invention. In one embodiment, for example, the catheter device is passed through a lumen of an introducer device. In one such embodiment, positioning the distal portion of the catheter involves passing the catheter device through the lumen of the introducer device over a pointed stylet, piercing through an annulus fibrosis of the disc using the stylet, and withdrawing the stylet from the catheter device. In an alternative embodiment, positioning the distal portion involves piercing through an annulus fibrosis of the disc into the disc with a tapered distal end of the catheter device. In some embodiments, the catheter device is passed over a guidewire.
In various embodiments in which an introducer device is used, the introducer device may either be advanced to a position within the disc or to a position just outside the disc. In either case, the catheter device may have a distal end or portion configured to facilitate advancement of the distal end through the annulus fibrosis. In some embodiments, the catheter device is passed over a guidewire. In some cases, the catheter is passed over the guidewire within the needle, while in alternative embodiments the introducer is removed over the guidewire before the catheter device is passed over the guidewire. In some embodiments, positioning the distal portion is facilitated by visualizing at least one radioopaque marker or material at or near the distal portion to assess its location.
In some embodiments, anchoring the catheter device involves deploying one or more anchoring members disposed along the catheter body. In some cases, such anchoring members may be disposed at or near the distal portion of the catheter, while in other embodiments anchoring may occur at locations farther from the distal portion. In some embodiments, anchoring may be achieved by using a separate anchoring device, such as by applying adhesive, suture or the like to anchor the catheter to the patient in a desired position. In one embodiment, anchoring involves inflating at least a first expandable member in the disc. Optionally, this technique may further involve inflating at least a second expandable member adjacent an outer surface of the disc, such that there is one inflatable member in the disc and another inflatable member just outside the annulus fibrosis.
In an alternative embodiment, anchoring comprises deploying at least one mechanism along the distal portion of the catheter device to increase the effective cross-sectional diameter of the catheter at one or more locations. For example, in one embodiment the cross-sectional diameter is increased by releasing one or more shape memory or spring loaded members from constraint. In other embodiments, the cross-sectional diameter may be increased by actuating one or more mechanical members or moving an inner catheter shaft of the catheter device relative to an outer catheter shaft of the catheter device to cause one or more anchoring members to buckle outwards. In another embodiment, anchoring comprises causing at least part of the distal portion to change from a substantially straight shape to a substantially curved or geometric shape. And in yet another embodiment, anchoring comprises attaching part of the distal portion to an annulus fibrosis of the disc. For example, the attachment member may be screwed, twisted or pierced into the annulus fibrosis in various embodiments.
In addition to the anchor mechanisms described above, the access and treatment catheters of the present invention can be modified to promote tissue growth on or into at least selected portions of the catheter. Such tissue growth promotion could be accomplished by modifying the exterior texture or shape of the catheter exterior, or by providing additional physical structure which would promote tissue ingrowth and attachment. Alternatively or in addition, the catheter could be provided with an osteogenic substance, drug, or chemical to promote the desired tissue attachment. Such tissue attachment can be promoted in bone, muscle, fibrotic tissue, scar tissue, chondrocytes, or other tissue which occurs in or around the disc space of vertebral bodies. Anchoring by promoting tissue ingrowth is particularly useful when the catheter will be implanted for an extended length of time, as will often be the case for therapeutic treatment protocols.
The substance (or substances) introduced into the disc may be any suitable substance, typically introduced for diagnosis and/or treatment of discogenic pain, but in alternative embodiments for any other suitable purpose. Any suitable combination of substances may be introduced, either simultaneously or sequentially, for diagnosis, treatment or other purposes. In some embodiments, one or more placebo substances may be introduced into one or more discs, typically to assist in diagnosis but in other embodiments for study or experimental purposes or the like. In some embodiments, for example, introduced substance(s) may include, but are not limited to, an anesthetic; an analgesic; an antibiotic; a hydrating agent such as hypotonic saline, isotonic saline or hypertonic saline; a supportive agent such as a hydrogel, ethylene-vinyl alcohol copolymer, Dimethyl Sulfoxide or Tantalum; a prolotherapy agent such as sodium morrhuate, cod oil, phenol, minerals or ethyl alcohol; and other agents such as collagen, stem cells, Osteogenic Protein-1, ethanol, alcohol, steroids, radio-opaque contrast agents, ultrasound contrast agent, Bone Morphogenetic Protein (BMP), BMP-2, BMP-4, BMP-6, BMP-7, BMP-12, Serotonin 5-HT2A receptor inhibitors, LMP-1, TIMP-1, TGF-1, TGF-2, Rofecoxib, Ketorolac, Glucosamine, Chondroitin Sulfate, Dextrose, DMSO, non-steroidal antiinflammatory drugs, ibuprofen, naprosyn, Bextra, Vioxx, Celebrex, indomethacin, botulinum toxin, capsaicin, vanilloid agonists, vanilloid antagonists, VR1, VRL-1, steroids, methylprednisolone or chymopapain. Substances may be delivered in a biodegradable or time release vehicle to provide long-term administration of the substances.
Examples of anesthetics and analgesics include, but are not limited to lidocaine, chloroprocaine, mepivacaine, ropivacaine, xylocaine, prilocaine, morphine, bupivocaine, marcaine, 2-chloroprocain, fentanyl, diamorphine, meperidine, methadone, alfentanil, hydromorphone, lofentanil, sufentanil, buprenorphine, other opiates, adrenergic agonists, somatostatin analogs, calcium channel blockers, N-methyl-D-aspartate receptor antagonists, ketamine, benzodiazepines, klonidine, tizanidine, midazolam, levorphanol, heterocyclic antidepressants, nonheterocyclic, serotonin-enhancning antidepressants, GABA analogues, psychogenic amines, somatostatin, octreotide, SNX-111, midazolam, methylprednisolone acetate, Aristospan, ethyl chloride, etidocaine, linocaine, triamcinolone diacatate, Astramorph, Duramorph, Dilaudid, Sensorcaine MPF, Baclofen (Lioresal), Clonidine, baclofen, codeine, neurontin and Demerol. Examples of antibiotics include, but are not limited to, Penicillins, Cephalosporins, Tetracycline, Erythromycin, Clindamycin, Vancomycin, Bacitracin, Doxycycline, Ampicillin, Levaquin, Metronidazole, Azithromycin, Ciprofloxacin, Augmentin, Bactrim, TMP-SMX, Rocephin, Gentamycin, Keflex and Macrobid.
In some embodiments, the method further involves, before introducing the substance, causing the patient to assume a position in which substantial spinal pain is experienced. In such embodiments, the substance introduced is often an anesthetic or analgesic, and determining whether the patient feels the spinal pain after introduction of the substance helps determine whether pain is caused by that particular disc. Such a method may optionally further include positioning a distal portion of a second catheter device in a second intervertebral disc, anchoring the distal portion of the second catheter device to maintain the distal portion in the second disc, and introducing at least one substance into the second disc through the second catheter device. The method may also involve, before introducing the at least one substance into the second disc, causing the patient to assume a position in which substantial spinal pain is experienced, wherein the at least one substance includes at least one anesthetic or analgesic. In some embodiments, the method involves determining which of the discs into which the at least one substance was introduced is causing the patient's spinal pain. Such methods may optionally further include performing a discography procedure on the intervertebral disc before positioning the distal portion of the catheter device in the disc. Alternatively, in other embodiments the discography procedure may be performed on the intervertebral disc after introducing the at least one anesthetic.
In one embodiment of this method, the at least one substance is introduced into the disc (or into multiple discs) automatically over a period of time. This may involve, for example, coupling the catheter device with an automated injection device, which will allow the patient to rest alone in a clinic or hospital room, assume various back-pain-generating positions or the like, while various substances are being introduced into one or more discs. In some embodiments, such a method may also include recording one or more patient inputs describing back pain experienced by the patient.
Some embodiments of the method further include leaving the catheter device in position with the distal portion in the disc and administering the at least one substance over time to provide treatment of spinal pain. As mentioned previously, in some embodiments the substance(s) may be administered over time via a subcutaneous injection port or implanted pump, the method further comprising coupling the catheter device to the subcutaneous injection port or implanted pump. In alternative embodiments, the substance(s) may be administered over time via any other suitable combination of devices or other means.
In another aspect of the present invention, a method for identifying an intervertebral disc that is causing pain involves positioning a distal portion of a catheter device in a disc of a patient, anchoring the distal portion of the catheter device to maintain the distal portion in the disc, causing the patient to assume a position in which substantial spinal pain is experienced, and introducing at least one substance into the disc through the catheter. In this aspect, the method may include any of the features, steps or variations described above.
In yet another aspect of the present invention, a catheter device for introducing one or more substances into an intervertebral disc comprises an elongate flexible catheter body and at least one anchoring member disposed along the catheter body for anchoring at least part of the distal portion of the catheter in the intervertebral disc. The catheter body itself has a proximal portion, a self-introducing distal portion for facilitating penetration of an annulus fibrosis of the disc, and at least one lumen for introducing one or more substances into the intervertebral disc. By “self-introducing,” it is meant that the distal portion of the catheter body has at least one feature that facilitates penetration of an annulus fibrosis by the distal portion.
In some embodiments, the anchoring member is disposed on or near the distal portion of the catheter, while in other embodiments it may be located farther from the distal portion or may even be a separate device used to anchor the catheter. In various embodiments, the anchoring member (or multiple anchoring members) of the catheter device may take any of a number of various forms. For example, in one embodiment the anchoring member comprises at least one expandable member coupled with an inflation lumen. In an alternative embodiment, the anchoring member comprises at least one shape memory, spring loaded or mechanically activated member for increasing the effective cross-sectional diameter of the catheter body at or near the distal portion. Alternatively, the anchoring member may comprise at least one outwardly buckling member coupled with an inner catheter shaft and an outer catheter shaft of the catheter body so as to outwardly buckle when the inner shaft is moved axially relative to the outer shaft. In yet another embodiment, the anchoring member comprises at least one attachment member for attaching to an annulus fibrosis of the disc. Such an attachment member, for example, may include at least one threaded surface, spiral needle or the like. In another embodiment, the anchoring member comprises at least one deformable member to change at least part of the distal portion from a substantially straight shape to a substantially curved or geometric shape.
In various embodiments, the catheter body may have any suitable configuration, dimensions, features or the like. For example, in one embodiment the self-introducing distal portion of the catheter body comprises at least one pushable portion, the pushable portion having a stiffness greater than adjacent portions of the catheter body. Optionally, the self-introducing portion may further comprise a tapered distal end of the catheter device. In some embodiments, the device may include a pointed stylet removably disposed within a lumen of the catheter device for piercing through the annulus fibrosis of the disc.
A number of features may facilitate passage of the catheter body through an introducer device. For example, in one embodiment the catheter body includes a friction resistant outer surface. In some embodiments, the outer diameter of the catheter body is less than 2 mm. Also in some embodiments, a cross-sectional diameter of the catheter body is larger near a proximal end of the body than near a distal end of the body. Optionally, the catheter body may also include an outer surface having one or more markings for indicating depth of insertion of the catheter device into a patient's body. In alternative embodiments, the catheter body may include an outer surface having two or more different colors for indicating depth of insertion of the catheter device into a patient's body. The catheter body may further include at least one radioopaque marker or material for facilitating visualization of the catheter device in a patient.
In one embodiment, the catheter device includes an injection tube extending through at least part of the lumen of the catheter body for introducing one or more substances into the disc and an inflation tube extending through at least part of the lumen for expanding the deployable anchoring member. The injection tube may be made of any suitable material or combination of materials, such as but not limited to stainless steel, tempered stainless steel, annealed stainless steel, polymers, and superelastic alloys. In some embodiments, the injection and inflation tubes exit a proximal end of the catheter body and are removably coupled with at least one adapter to provide for injection and inflation. In some embodiments, the injection and inflation tubes extend through at least part of the catheter body lumen coaxially. Alternatively, the injection and inflation tubes may extend through at least part of the catheter body lumen side-by-side. In other embodiments, the injection and inflation tubes may extend through part of the catheter body lumen coaxially and through another part of the lumen side-by-side. In an alternative embodiment of the catheter device, the catheter body does not include injection and inflation tubes but instead comprises a single extrusion having an injection lumen for introducing one or more substances into the disc and an inflation lumen for expanding the at least one anchoring member.
In various embodiments, the catheter device may have any suitable proximal end configurations for providing connection to one or more injection, inflation, suction, irrigation or other devices, for providing guidewire access and/or the like. In one embodiment, for example, a proximal end of the proximal portion of the catheter body is bifurcated into two separate catheter body proximal ends. In some embodiments, each of the two proximal ends is removably coupled with an adapter for facilitating injection or inflation via either end. Some embodiments of the device also include a guidewire having a distal end shaped to maintain the distal end within the disc. Such a distal end may include, for example, a double guidewire, a coil or a pigtail. Such guidewires can be made from any conventional guidewire material, including stainless steels and superelastic materials such as nickel-titanium alloys. Generally, the use of superelastic guidewires is preferred since other materials, such as stainless steel, may inadvertently kink in a location distal to the tip of the catheter as it is being advanced. If the guidewire kinks, it can be difficult to remove the guidewire from the catheter, interfering with the remainder of the procedure.
It will also be preferred in some instances to provide a guidewire with radioopaque markers. The guidewire will have a small diameter, and superelastic materials, such as nitinol, have low visibility under fluoroscopic imaging. The radioopacity of the guidewire can be improved by adding a radiopaque material in a variety of conventional ways. For example, the guidewire can be coated with the radioopaque material, a radioopaque core may be provided within the guidewire, a radioopaque material may be braided over the guidewire, or the material provided as ring-like markers. Such coated guidewires having improved radioopacity can be manufactured in a variety of ways, including sputtering, electroplating, electroless plating, and the like.
In another aspect of the invention, a system for introducing one or more substances into an intervertebral disc includes an introducer device and a catheter device passable through the introducer device. The catheter device includes an elongate flexible catheter body and at least one deployable anchoring member disposed along the catheter body for anchoring at least part of the distal portion of the catheter in the disc. The catheter body includes a proximal portion, a self-introducing distal portion for facilitating penetration of an annulus fibrosis of the disc, and at least one lumen for introducing one or more substances into the intervertebral disc. In various embodiments, the catheter device may include any of the features, configurations or combinations described above.
In some embodiments, the system further includes a pointed stylet removably disposed within a lumen of the catheter device for piercing through the annulus fibrosis. In some embodiments, the system includes a guidewire over which the catheter device may be passed within the introducer device. The catheter device and introducer device may have any suitable dimensions, but in one embodiment the outer diameter of the catheter body is less than 2 mm. An inner diameter of the needle, in some embodiments, is between about 0.1 mm and about 0.01 mm larger than the outer diameter of the catheter body.
In some embodiments, the system may further include an automatic injection device removably coupled with the catheter device for automatically introducing the at least one substance into the disc. These or other embodiments may optionally further include a recording device for recording patient inputs describing pain felt by a patient.
In another aspect of the present invention, a kit for introducing one or more substances into an intervertebral disc includes a catheter device, at least one implantable device removably couplable with the catheter device for introducing the one or more substances into a disc over time, and instructions for using the catheter device and implantable device. The catheter device includes: an elongate flexible catheter body having a proximal portion, a self-introducing distal portion for facilitating penetration of an annulus fibrosis of the disc, and at least one lumen for introducing one or more substances into the intervertebral disc; and at least one anchoring member disposed along the catheter body for anchoring at least part of the distal portion of the catheter within the disc. This catheter device may have any of the features described above.
The implantable device may include any of a number of suitable devices in various embodiments. For example, in some embodiments the implantable device comprises a pump. In other embodiments, the implantable device comprises an injection port.
In various embodiments, the kit may also include one or more additional devices, such as but not limited to an introducer device for facilitating positioning of the catheter device in the disc, a pointed stylet removably disposed within a lumen of the catheter device for piercing through the annulus fibrosis and/or a guidewire passable through the needle.
These and other aspects and embodiments of the present invention are described more fully below with reference to the attached drawing figures.
Methods, devices and systems of the present invention generally provide for introduction of one or more substances into an intervertebral disc to facilitate diagnosis and/or treatment of discogenic pain (i.e., back pain originating in one or more intervertebral discs). Methods, devices and systems may be used alone or in conjunction with other methods or devices that are currently known or hereafter developed, such as discography, radiological studies, physical examination and/or the like. In alternative embodiments, methods and devices of the invention may be used for purposes other than diagnosis or treatment, such as for study or experimental purposes or the like. Therefore, although the following description focuses on diagnostic and therapeutic applications, various embodiments may be used for any other suitable application.
Referring now to
In one embodiment, an introducer device 2 and a pointed obturator 4 are introduced together through the skin S of a patient's back to position their distal ends near the intervertebral disc D. Introducer device 2 and obturator 4 may have any suitable dimensions, but in one embodiment introducer device 2 is about 18-22 gauge and obturator 4 is about 20-25 gauge.
As shown in
After placing injection needle 6, a guidewire 8 may be passed through injection needle 6 into the disc, as shown in
Referring to
When the catheter is delivered through a needle, either a sharpened needle as illustrated in
The method just described is but one embodiment of a technique for placing and anchoring a distal portion of a catheter within a disc and introducing a substance therein. In various alternative embodiments, any number of suitable changes to the technique, such as additions or deletions of various steps, use of varied devices and the like, may be made without departing from the scope of the present invention.
Stylets such as illustrated in
Optionally, the distal tips of the stylets may be made to be radioopaque in order to enhance fluoroscopic imaging. For example, at least the distal portions of the stylets 24 could be composed at least partly, or plated with, a radioopaque material such as platinum, iridium, or gold. The remaining portions of the stylet may be made from stainless steel, nitinol, or other materials having the desired column strength and flexibility to provide for “pushability” of the combination of stylet 24 and catheter 20. By providing a stylet tip which is inherently radioopaque, the number of components and the profile or cross-section of the combined device (including both the stylet 24 and catheter 20) may be reduced. Reducing profile is advantageous, since it facilitates entry into the disc space through the annulus fibrosis.
Referring now to
Typically, once a catheter device is in place, with a distal portion residing in a disc and one or more anchoring members deployed to maintain the catheter's position, the patient is instructed to assume a position or perform a task that typically causes the patient pain, such as bending over to pick up an object or the like. A substance is then introduced into the disc, and the patient is asked to relate whether pain is lessened, eliminated, remains the same or the like. In various embodiments, the patient is asked to rate the experienced pain on a scale of 1 to 10 before and after introduction of substances into the disc. In one embodiment, the substance introduced is an anesthetic or analgesic, and thus may alleviate the patient's pain if injected into the disc that is actually causing the pain. In some instances multiple injections are performed, and one or more injected substances may be placebos, to test the accuracy of the test results. Again, such testing may be performed either alone or before or after traditional discography. In some embodiments, multiple discs of one patient may be accessed and tested. Also in some embodiments, testing may be performed over a prolonged period of time, to test multiple discs and/or to enhance the accuracy or certainty of test results.
In various embodiments, any of a number of different substances may be introduced into a disc. For different purposes, such as diagnosis or treatment of discogenic pain, study purposes or experimentation or the like, introduction of different substances may be warranted. Examples of possible substances that may be introduced into a disc include, but are not limited to anesthetics; analgesics; antibiotics; hydrating agents such as hypotonic saline, isotonic saline or hypertonic saline; supportive agents such as a hydrogel, ethylene-vinyl alcohol copolymer, Dimethyl Sulfoxide or Tantalum; prolotherapy agents such as sodium morrhuate, cod oil, phenol, minerals or ethyl alcohol; and/or other agents such as collagen, stem cells, Osteogenic Protein-1, ethanol, alcohol, steroids, radio-opaque contrast agents, ultrasound contrast agent, Bone Morphogenetic Protein (BMP), BMP-2, BMP-4, BMP-6, BMP-7, BMP-12, Serotonin 5-HT2A receptor inhibitors, LMP-1, TIMP-1, TGF-1, TGF-2, Rofecoxib, Ketorolac, Glucosamine, Chondroitin Sulfate, Dextrose, DMSO, non-steroidal antiinflammatory drugs, ibuprofen, naprosyn, Bextra, Vioxx, Celebrex, indomethacin, botulinum toxin, capsaicin, vanilloid agonists, vanilloid antagonists, VR1, VRL-1, steroids, methylprednisolone or chymopapain. Substances may be delivered in a biodegradable or time release vehicle to provide long-term administration of the substances.
Examples of anesthetics and analgesics include, but are not limited to lidocaine, chloroprocaine, mepivacaine, ropivacaine, xylocaine, prilocaine, morphine, bupivocaine, marcaine, 2-chloroprocain, fentanyl, diamorphine, meperidine, methadone, alfentanil, hydromorphone, lofentanil, sufentanil, buprenorphine, other opoids, adrenergic agonists, somatostatin analogs, calcium channel blockers, N-methyl-D-aspartate receptor antagonists, ketamine, benzodiazepines, klonidine, tizanidine, midazolam, levorphanol, heterocyclic antidepressants, nonheterocyclic, serotonin-enhancning antidepressants, GABA analogues, psychogenic amines, somatostatin, octreotide, SNX-111, midazolam, methylprednisolone acetate, Aristospan, ethyl chloride, etidocaine, linocaine, triamcinolone diacatate, Astramorph, Duramorph, Dilaudid, Sensorcaine MPF, Baclofen (Lioresal), Clonidine, baclofen, codeine, neurontin and Demerol. Examples of antibiotics include, but are not limited to, Penicillins, Cephalosporins, Tetracycline, Erythromycin, Clindamycin, Vancomycin, Bacitracin, Doxycycline, Ampicillin, Levaquin, Metronidazole, Azithromycin, Ciprofloxacin, Augmentin, Bactrim, TMP-SMX, Rocephin, Gentamycin, Keflex and Macrobid.
As already mentioned, in some embodiments the method further includes leaving the catheter device in place to provide treatment of a patient's back pain, such as with anesthetic or analgesic agent(s) or other substances. In some embodiments, the catheter device may be coupled with an implantable pump, injection port or other device to provide such treatment.
Referring now to
In various embodiments, the distal portion of catheter device 30 may have one or more features that facilitate advancement of the distal portion through an annulus fibrosis of an intervertebral disc. A distal portion having one or more such features is generally referred to as “self-introducing.” Therefore, by “self-introducing” it is meant simply that the distal portion has one or more features for facilitating its passage through annulus fibrosis tissue. Such features may include, for example, one or more sections on a catheter shaft that are stiffer than adjacent sections to help make the shaft pushable. Another feature may comprise a tapered or pointed distal tip for piercing through annulus fibrosis. In some embodiments, catheter device 30 may be coupled with a removable, pointed stylet. These or any other suitable features may be included in a distal portion of catheter device 30 for facilitating passage through an annulus fibrosis.
The various components of catheter device 30 may be constructed from any suitable materials and may have any suitable shapes, sizes, dimensions or the like in various embodiments. In one embodiment, for example, the cross-sectional diameter of catheter body 32 decreases along its length from its proximal end to its distal end. Such a tapered configuration may allow catheter device 30 to be easily introduced through an introducer device. The outer diameter of catheter body 32 will also generally be slightly smaller than an inner diameter of an introducer device. In one embodiment, for example, catheter body 32 has an outer diameter of about 2 mm or less along at least part of its length.
In various embodiments, catheter body 32 may comprise a rigid single polymer or a composite consisting of reinforced metallic or polymeric components. Metallic components may include, for example, stainless steel, nitinol or other superelastic alloys. Polymers may include, but are not limited to Polyetheretherketone (PEEK), Polyether Block Amide (PEBAX), Nylon, Polyester, Polyolefin, polyamide, Polyimide, Polycarbonate, Polypropylene, Fluorinated Ethylene Polymer (FEP), Perfluoroalkoxy (PFA), Polytetrafluoroethylene-Perfluoromethylvinylether (MFA), Polyurethane or Low density polyethylene (LDPE). Such materials may be reinforced with coils or braids in some embodiments. The materials may also be coated internally or externally with materials the resist friction such as Teflon (Poly-Tetra-Flouro-Ethylene), hydrophilic materials, parylene or the like.
In various embodiments, catheter shaft may include one or more radiopaque markers 33 and/or may be made from one or more radiopaque materials to facilitate visualization. Such radiopaque markers/materials may include, but are not limited to, gold, Platinum, Iridium, Tungsten, Tantulum, resins containing Barium Sulfate, Bismuth trioxide or Tungsten and/or the like.
Anchoring member 36 may also be made of any suitable materials now known or discovered in the future, according to various embodiments. For example, expandable anchoring member 36 may comprise flexible polyvinyl chloride (PVC), Polyethylene, Polyether Block Amide (PEBAX), Polyethylene Terepthalate (PET), Polyester, Nylon, Polyurethanes, Polyether Block Amide (PEBAX), Polyolefins or any suitable combination thereof. Various adhesives may be used to attach anchoring member 36 to catheter shaft 32 or for any other suitable purpose. Any suitable adhesive(s) may be used, such as but not limited to, light activated acrylics, light activated cyanoacrylates, light activated silicones, heat activated adhesives, ambient curing adhesives, cyanoacrylates, epoxy adhesives, and/or polyurethane adhesives. Various parts of catheter device 30 may also be attached using alternative means, such as friction fitting, snap fitting, screw fitting, application of energy such as thermal or radiofrequency energy, and/or the like.
Referring now to
An alternative embodiment of a catheter device 50 is shown in
Referring now to
With reference now to
In other embodiments, and with reference now to
Referring now to
With reference now to
As discussed above, and referring now to
In one embodiment, implantable device 138 may comprise an implantable pump 139. In some embodiments the pump may be programmed to deliver drug from an attached reservoir into the nucleus pulposus at a constant rate, at programmed intervals, upon triggering by the patient or physician through the use of an external device capable of communicating with the pump, such as but not limited to magnetic reed switches, electromagnetic wave communication devices such as visible light, radio-wave, microwave, or short-wave, or wireless communication protocols such as Bluetooth. In some embodiments, the patient may control pump-mediated drug delivery by physically manipulating switches, toggles, or other similar devices coupled with the pump. Optionally, the implantable pump may be configured to store data related to the usage pattern of the drug by the patient. This information could be downloaded for review through wireless communication with an external device such as those listed above. In embodiments having a drug reservoir, the implantable device may also include an injection port to allow the reservoir to be refilled transcutaneously.
The distance between the disc D and the surface of the skin can change as the patient moves. To prevent the distal end of catheter device 134 and anchoring member 136 from pulling out of the nucleus, a mechanism for providing strain relief in the attachment between catheter device 134 and implantable device 138 may be provided. In one embodiment, for example, catheter device 134 may extend between implantable device 138 and the disc D in a circular, spiral, curved, serpentine, or otherwise nonlinear path, thus providing an amount of slack (as shown in broken line) in catheter device to allow for movement between the disc D and the implantable device 138 with patient movement.
Implantable catheter devices, such as catheter device 134, will be provided with anchoring members 136, which typically may be inflatable balloons or other structures. Preferably, the catheter devices 134 will have an integral balloon inflation lumen, or will be provided with separate balloon inflation tubes to permit inflation of the balloon anchor 136 after proper positioning of the catheter. Rather than using a stopcock or other valve structure for providing balloon inflation, the catheter devices 134 may be provided with self-sealing septum structures at an end of the inflation lumen. Optionally, the catheter devices 134 could also include substance delivery lumens which also terminate at a proximal end in a self-sealing septum to allow for drug and substance delivery after the device has been implanted. Suitable septum materials include silicone, rubber, latex rubber, isoprene rubber, polyisoprene rubber, and numerous other known materials.
Alternatively, a balloon inflation lumen on the catheter device 134 or separate balloon inflation tube could be sealed using a suture, clip, filament loop, or any of a variety of other external closure elements. Such clips or crimps could be formed from a spring-like material, such that they can be pre-shaped to collapse the inflating lumen. Alternatively, the clips or crimps could be deformable so that they could be tightened over the balloon inflation lumen to effect closure. In both cases, multiple closure members could be placed at different points along the balloon inflation lumen in order to enhance the seal. Moreover, the closure elements could be removable to permit deflation and reinflation of the balloon, should it be desired during or after implantation. The closure elements could also be removed to permit deflation of the balloon for explantation of the catheter.
As a further alternative, the balloon inflation lumen could be sealed using heat, adhesives, or ultrasonic energy, resulting in melting or fusing of the lumen. Heat can come from a variety of sources, including electrical resistance heaters, electrical inductive heaters, or the like.
To facilitate delivery of a distal portion of a catheter device into a disc D, and with reference now to
As shown in
Referring now to
As described thus far, the disc space has been accessed using a transannular approach. As illustrated in
With reference to
In addition to implantable devices and proximal adapters, a catheter device in some embodiments may be coupled with one or more automated injection devices. Such injection devices may facilitate testing of one disc or multiple discs over an extended period of time, with only periodic supervision by a physician, nurse or other clinician. For example, the patient could remain in clinic or hospital room while a series of substances are introduced into a disc, while the patient assumes different positions to test the pain response, while substances are injected into multiple discs through multiple catheter devices and/or the like. Such an automated system may facilitate and enhance diagnosis of discogenic pain by allowing for more extensive testing. In some embodiments, such a system may also include a device for recording patient pain responses, such as an instrument that allows a patient to record pain felt before and after an injection on a scale from 1 to 10 and/or to relate the pain felt to the patient's usual back pain.
Although the foregoing is a complete and accurate description of the invention, a number of changes, additions, variations and the like may be made to various embodiments without departing from the scope of the invention. Therefore, the description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as set forth in the claims.
This application is a Continuation-in-Part of application Ser. No. 10/825,961 , filed on Apr. 16, 2004, and is a continuation of U.S. application Ser. No. 11/597,349, which claims priority under 35 USC 371 from PCT/US2005/012981 , filed on Apr. 15, 2005, the full disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2498672 | Glass | Feb 1950 | A |
3190291 | Foley | Jun 1965 | A |
3482576 | Ericson | Dec 1969 | A |
3885561 | Cami | May 1975 | A |
3952742 | Taylor | Apr 1976 | A |
4141365 | Fischell et al. | Feb 1979 | A |
4419095 | Nebergall et al. | Dec 1983 | A |
4419819 | Dickhudt | Dec 1983 | A |
4512351 | Pohndorf | Apr 1985 | A |
4543087 | Sommercom et al. | Sep 1985 | A |
4573448 | Kambin | Mar 1986 | A |
4626241 | Campbell et al. | Dec 1986 | A |
4684363 | Ari et al. | Aug 1987 | A |
4715378 | Pope | Dec 1987 | A |
4737146 | Amaki et al. | Apr 1988 | A |
4782834 | Maguire et al. | Nov 1988 | A |
4904260 | Ray et al. | Feb 1990 | A |
4919651 | Doane | Apr 1990 | A |
4964853 | Sugiyama et al. | Oct 1990 | A |
4968298 | Michelson | Nov 1990 | A |
4973305 | Goltzer | Nov 1990 | A |
4994032 | Sugiyama et al. | Feb 1991 | A |
4994036 | Biscoping et al. | Feb 1991 | A |
5004456 | Botterbusch et al. | Apr 1991 | A |
5024655 | Freeman et al. | Jun 1991 | A |
5024659 | Sjostrom | Jun 1991 | A |
5084016 | Freeman et al. | Jan 1992 | A |
5129889 | Hahn et al. | Jul 1992 | A |
5163989 | Campbell et al. | Nov 1992 | A |
5215105 | Kizelshteyn et al. | Jun 1993 | A |
5232442 | Johnson et al. | Aug 1993 | A |
5234406 | Drasner et al. | Aug 1993 | A |
5250069 | Nobuyoshi et al. | Oct 1993 | A |
5267960 | Hayman et al. | Dec 1993 | A |
5344399 | DeVries | Sep 1994 | A |
5344439 | Otten | Sep 1994 | A |
5354282 | Bierman | Oct 1994 | A |
5395317 | Kambin | Mar 1995 | A |
5405334 | Roth et al. | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5433739 | Sluijter et al. | Jul 1995 | A |
5445645 | Debbas | Aug 1995 | A |
5527307 | Srisathapat et al. | Jun 1996 | A |
5533986 | Mottola et al. | Jul 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5591132 | Carrie | Jan 1997 | A |
5647860 | Roth et al. | Jul 1997 | A |
5665076 | Roth et al. | Sep 1997 | A |
5693032 | Bierman | Dec 1997 | A |
5762629 | Kambin | Jun 1998 | A |
5772639 | Lampropoulos et al. | Jun 1998 | A |
5800402 | Bierman | Sep 1998 | A |
5800407 | Eldor | Sep 1998 | A |
5833666 | Davis | Nov 1998 | A |
5833667 | Bierman | Nov 1998 | A |
5865802 | Yoon et al. | Feb 1999 | A |
5908405 | Imran | Jun 1999 | A |
5954635 | Foley et al. | Sep 1999 | A |
5980504 | Sharkey et al. | Nov 1999 | A |
6033438 | Bianchi et al. | Mar 2000 | A |
6054429 | Bowersox et al. | Apr 2000 | A |
6080160 | Chen et al. | Jun 2000 | A |
6086589 | Kuslich et al. | Jul 2000 | A |
6095149 | Sharkey et al. | Aug 2000 | A |
6146401 | Yoon et al. | Nov 2000 | A |
6161047 | King et al. | Dec 2000 | A |
6187000 | Davison et al. | Feb 2001 | B1 |
6190370 | Tsui | Feb 2001 | B1 |
6224630 | Bao et al. | May 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
6258086 | Ashley et al. | Jul 2001 | B1 |
6261311 | Sharkey et al. | Jul 2001 | B1 |
6368315 | Gillis et al. | Apr 2002 | B1 |
6387076 | Landuyt | May 2002 | B1 |
6423083 | Reiley et al. | Jul 2002 | B2 |
6443988 | Felt et al. | Sep 2002 | B2 |
6524320 | DiPoto | Feb 2003 | B2 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6547810 | Sharkey et al. | Apr 2003 | B1 |
6554802 | Pearson et al. | Apr 2003 | B1 |
6558390 | Cragg | May 2003 | B2 |
6562033 | Shah et al. | May 2003 | B2 |
6575979 | Cragg | Jun 2003 | B1 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6613044 | Carl | Sep 2003 | B2 |
6613054 | Scribner et al. | Sep 2003 | B2 |
6638276 | Sharkey et al. | Oct 2003 | B2 |
6648873 | Arenberg | Nov 2003 | B2 |
6652553 | Davison et al. | Nov 2003 | B2 |
6673063 | Brett | Jan 2004 | B2 |
6676643 | Brushey | Jan 2004 | B2 |
6685695 | Ferree | Feb 2004 | B2 |
6706069 | Berger | Mar 2004 | B2 |
6733496 | Sharkey et al. | May 2004 | B2 |
6733534 | Sherman | May 2004 | B2 |
6736815 | Ginn | May 2004 | B2 |
6736835 | Pellegrino et al. | May 2004 | B2 |
6800084 | Davison et al. | Oct 2004 | B2 |
6805715 | Reuter et al. | Oct 2004 | B2 |
6811558 | Davison et al. | Nov 2004 | B2 |
6812211 | Slivka et al. | Nov 2004 | B2 |
6821276 | Lambrecht et al. | Nov 2004 | B2 |
6827716 | Ryan et al. | Dec 2004 | B2 |
6835205 | Atkinson et al. | Dec 2004 | B2 |
6837891 | Davison et al. | Jan 2005 | B2 |
6852095 | Ray | Feb 2005 | B1 |
6878155 | Sharkey et al. | Apr 2005 | B2 |
6899713 | Shaolian et al. | May 2005 | B2 |
6899716 | Cragg | May 2005 | B2 |
6921403 | Cragg et al. | Jul 2005 | B2 |
7069087 | Sharkey et al. | Jun 2006 | B2 |
7108677 | Courtney et al. | Sep 2006 | B2 |
7452351 | Miller et al. | Nov 2008 | B2 |
20010049518 | Hoch | Dec 2001 | A1 |
20010049531 | Reiley et al. | Dec 2001 | A1 |
20020052576 | Massengale | May 2002 | A1 |
20020087113 | Hartlaub | Jul 2002 | A1 |
20020120259 | Lettice et al. | Aug 2002 | A1 |
20020147497 | Belef et al. | Oct 2002 | A1 |
20020151885 | Underwood et al. | Oct 2002 | A1 |
20020156530 | Lambrecht et al. | Oct 2002 | A1 |
20020173796 | Cragg | Nov 2002 | A1 |
20030032963 | Reiss et al. | Feb 2003 | A1 |
20030040796 | Ferree | Feb 2003 | A1 |
20030055454 | Zucker | Mar 2003 | A1 |
20030069641 | Reuter et al. | Apr 2003 | A1 |
20030083642 | Boyd et al. | May 2003 | A1 |
20030135156 | Bencini et al. | Jul 2003 | A1 |
20030171744 | Leung et al. | Sep 2003 | A1 |
20030208206 | Gitis et al. | Nov 2003 | A1 |
20030216721 | Diederich et al. | Nov 2003 | A1 |
20030216748 | Gitis et al. | Nov 2003 | A1 |
20030216768 | Gitis et al. | Nov 2003 | A1 |
20030229372 | Reiley et al. | Dec 2003 | A1 |
20040019381 | Pflueger | Jan 2004 | A1 |
20040024399 | Sharps et al. | Feb 2004 | A1 |
20040024410 | Olson et al. | Feb 2004 | A1 |
20040054414 | Trieu et al. | Mar 2004 | A1 |
20040083002 | Belef et al. | Apr 2004 | A1 |
20040092948 | Stevens et al. | May 2004 | A1 |
20040116977 | Finch et al. | Jun 2004 | A1 |
20040133276 | Lang et al. | Jul 2004 | A1 |
20040138525 | Saadat et al. | Jul 2004 | A1 |
20040138754 | Lang et al. | Jul 2004 | A1 |
20040181178 | Aldrich et al. | Sep 2004 | A1 |
20040186471 | Trieu | Sep 2004 | A1 |
20040193274 | Trieu | Sep 2004 | A1 |
20040215193 | Shaolian et al. | Oct 2004 | A1 |
20040220545 | Heruth et al. | Nov 2004 | A1 |
20040220546 | Heruth et al. | Nov 2004 | A1 |
20040220547 | Heruth et al. | Nov 2004 | A1 |
20050059930 | Garrison et al. | Mar 2005 | A1 |
20050059931 | Garrison et al. | Mar 2005 | A1 |
20050065397 | Saadat et al. | Mar 2005 | A1 |
20050065401 | Saadat et al. | Mar 2005 | A1 |
20050070913 | Milbocker et al. | Mar 2005 | A1 |
20050085790 | Guest et al. | Apr 2005 | A1 |
20050107663 | Saadat et al. | May 2005 | A1 |
20050113640 | Saadat et al. | May 2005 | A1 |
20050118228 | Trieu | Jun 2005 | A1 |
20050119754 | Trieu et al. | Jun 2005 | A1 |
20050137620 | Aikhatib | Jun 2005 | A1 |
20050203501 | Aldrich et al. | Sep 2005 | A1 |
20050234425 | Miller et al. | Oct 2005 | A1 |
20050245938 | Kochan | Nov 2005 | A1 |
20050246023 | Yeung | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
4028487 | Sep 1990 | DE |
0 931 560 | Jul 1999 | EP |
WO 9964869 | Dec 1999 | WO |
WO 03024506 | Mar 2003 | WO |
WO 03049669 | Jun 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080009826 A1 | Jan 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11597349 | US | |
Child | 10825961 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10825961 | Apr 2004 | US |
Child | 11616219 | US |